metal-organic compounds
[Hydrogen N-(phosphonomethyl)iminodiacetato](1,10-phenanthroline)copper(II) trihydrate: a low-temperature redetermination
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt
The room-temperature 2pmida)(phen)]·3H2O [where H2pmida2− is hydrogen N-(phosphonomethyl)iminodiacetate, C5H10NO7P2−, and phen is 1,10-phenanthroline, C12H8N2], was recently determined by Pei Lu, Ke, Li, Qin, Zhou, Wu & Du [Struct. Chem. (2004), 15, 207–210]. We report here a redetermination, at 180 (2) K, with greatly improved precision. Hydrogen bonds lead to the formation of one-dimensional tapes which run along the [100] direction of the Adjacent tapes are interconnected via π–π offset stacking (between the 1,10-phenanthroline ligands) and by hydrogen bonds involving the water molecules of crystallization.
of the title compound, [Cu(HComment
During the course of our research on novel crystalline organic–inorganic hybrid materials (Almeida Paz, Khimyak et al., 2002; Almeida Paz et al., 2005; Almeida Paz & Klinowski, 2004a,b), containing organic ligands with chelating and highly flexible `arms', such as diethylenetriaminepentaacetic acid (Almeida Paz, Bond et al., 2002), nitrilotriacetic acid (Almeida Paz & Klinowski, 2003) and N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Mafra et al., 2005; Shi et al., 2005; Almeida Paz et al., 2004), we recently isolated, in quantitative yield, large single crystals of the title compound, (I), which is composed of discrete complexes of Cu2+ with 1,10-phenanthroline (phen) and H2pmida2− ligands, co-crystallizing with three solvent molecules in P.
Although the et al., 2004), we redetermined it at 180 (2) K, with a final R value of 0.0376, to gain more precise data for our studies of the magnetic properties of such crystalline hybrid materials. The low-temperature redetermination allowed the direct location of all H atoms associated with the protonated carboxylic and phosphonic acid groups, and with the three water molecules of crystallization, thus giving a much better insight into the hydrogen-bond network present in the of (I).
of this compound has recently been reported (PeiThe unit-cell volume decreased by ca 13 Å3, consistent with determination at a lower temperature. The composed of a complete [Cu(H2pmida)(phen)] complex (Fig. 1) plus three water molecules of crystallization (O1W, O2W and O3W). The crystallographically unique Cu2+ atom is coordinated by one phen residue via the two N-donor atoms, leading to a bite angle of 82.18 (9)°, which is in good agreement with that reported by Pei et al. [82.06 (16)°], and also with those typically found in related compounds as revealed by a search in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002; Allen & Motherwell, 2002). The remaining four positions of the Cu2+ coordination are occupied by the N- and O-donor atoms from the H2pmida2− anionic ligand, leading to a typical Jahn–Teller distorted octahedral coordination geometry, {CuN3O3}. In general, the Cu—N and Cu—O bond lengths and angles (Table 1) are not significantly different from those obtained from the room-temperature determination (Pei et al., 2004). Each [Cu(H2pmida)(phen)] complex is connected to adjacent molecules via a series of hydrogen bonds between the protonated carboxylic and phosphonic acid groups (donors), and the coordinated carboxylate groups (acceptors) of a neighbouring complex (Fig. 2 and Table 2). Such a regular arrangement of hydrogen bonds between adjacent complexes leads to the formation of two graph-set motifs, viz. R22(16) and R44(24) (Fig. 2), which are recursively repeated along the [100] direction of the creating a one-dimensional hydrogen-bonded tape. The intermetallic Cu1⋯Cu1i distance across the O7⋯O1 hydrogen-bond bridge is 7.571 (2) Å, while across the O2⋯O5 bridge, Cu1⋯Cu1ii is 9.162 (2) Å [symmetry codes: (i) −1 + x, y, z; (ii) 1 − x, 1 − y, −z]. The one-dimensional tape is formed in such a way that the coordinated phen molecules are external to the hydrogen-bonded core (Fig. 2). Therefore, the aromatic residues are engaged in offset π–π stacking along the [100] direction of the thus linking neighbouring hydrogen-bonded tapes (Fig. 3). Further connections between tapes are made by hydrogen bonds involving the water molecules of crystallization (Fig. 4 and Table 2), thus leading, along with the above-mentioned π–π interactions, to a three-dimensional supramolecular arrangement of [Cu(H2pmida)(phen)] complexes.
Experimental
Chemicals were readily available from commercial sources and were used as received without further purification, i.e. N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, 97% Fluka), 1,10-phenanthroline monohydrate (phen, >99.0% Fluka) and copper(II) hydroxide [CuCO3·Cu(OH)2, 55% in Cu, Panreac]. The title compound was synthesized from a mixture containing 0.19 g of CuCO3·Cu(OH)2, 0.38 g of H4pmida and 0.23 g of phen in ca 6.7 g of distilled water. The mixture was stirred at ambient temperature for 30 min, yielding a homogeneous suspension with a molar composition of ca 1.0:1.9:1.4:433, which was transferred to PTFE-lined stainless steel reaction vessels (ca 40 ml). Reactions took place over a period of 3 d, under autogeneous pressure and static conditions, in a preheated oven at 373 K. The vessels were left to cool to ambient temperature before opening. The mother liquor was filtered off and allowed to stand in the open air for approximately 2 d, yielding a large amount of a dark-green single-crystalline phase. Individual single crystals were washed with copious amounts of distilled water (3 × ca 50 ml), and then air-dried at ambient temperature to give the title compound.
Crystal data
|
Refinement
|
|
H atoms associated with the three water molecules of crystallization, and with the protonated carboxylic and phosphonic acid groups (H2C and H7A), were clearly visible in difference Fourier maps, and were included in subsequent least-squares refinements. For the water molecules, the O—H and H⋯H distances were restrained to 0.95 (1) and 1.55 (1) Å, respectively, to ensure a chemically reasonable geometry for these groups. For the hydroxyl groups, the O—H distances were restrained to 0.90 (1) Å. These H atoms were further refined with an isotropic displacement parameter fixed at 1.5Ueq of the parent O atoms. H atoms bound to carbon were placed in idealized positions and allowed to ride on their parent atoms with relative isotropic displacement parameters (Uiso) fixed at 1.2Ueq of the parent C atom and C—H = 0.95 Å.
Data collection: COLLECT (Nonius 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Bruker 2001).
Supporting information
https://doi.org/10.1107/S1600536805031806/rn6059sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805031806/rn6059Isup2.hkl
Data collection: COLLECT (Nonius 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al.,1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Bruker 2001).[Cu(C5H10NO7P)(C12H8N2)]·3H2O | Z = 2 |
Mr = 522.89 | F(000) = 538 |
Triclinic, P1 | Dx = 1.697 Mg m−3 Dm = no Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5714 (15) Å | Cell parameters from 6202 reflections |
b = 10.696 (2) Å | θ = 1.0–27.5° |
c = 13.047 (3) Å | µ = 1.21 mm−1 |
α = 81.98 (3)° | T = 180 K |
β = 85.04 (3)° | Block, green |
γ = 78.40 (3)° | 0.10 × 0.10 × 0.07 mm |
V = 1023.1 (4) Å3 |
Nonius KappaCCD diffractometer | 3999 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Thin–slice ω and φ scans | θmax = 27.4°, θmin = 3.6° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −9→9 |
Tmin = 0.843, Tmax = 0.922 | k = −13→13 |
11202 measured reflections | l = −14→16 |
4641 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0207P)2 + 1.6723P] where P = (Fo2 + 2Fc2)/3 |
4641 reflections | (Δ/σ)max < 0.001 |
313 parameters | Δρmax = 0.81 e Å−3 |
11 restraints | Δρmin = −0.51 e Å−3 |
Experimental. (Please see the Experimental Section in the main paper) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.46760 (4) | 0.73527 (3) | 0.27104 (2) | 0.01480 (9) | |
P1 | 0.32199 (8) | 0.80933 (6) | 0.03658 (5) | 0.01451 (14) | |
N1 | 0.6456 (3) | 0.72640 (18) | 0.13668 (16) | 0.0141 (4) | |
O1 | 0.2374 (2) | 0.82883 (17) | 0.14408 (14) | 0.0192 (4) | |
O2 | 0.2983 (2) | 0.67179 (17) | 0.01640 (15) | 0.0213 (4) | |
H2C | 0.356 (4) | 0.647 (3) | −0.0425 (15) | 0.032* | |
O3 | 0.2619 (2) | 0.91124 (17) | −0.05012 (14) | 0.0209 (4) | |
O4 | 0.4395 (2) | 0.56551 (16) | 0.24691 (14) | 0.0206 (4) | |
O5 | 0.5322 (3) | 0.41073 (17) | 0.14714 (15) | 0.0279 (4) | |
O6 | 0.7588 (2) | 0.69422 (17) | 0.33266 (14) | 0.0196 (4) | |
O7 | 1.0177 (2) | 0.75556 (19) | 0.28737 (14) | 0.0236 (4) | |
H7A | 1.086 (4) | 0.778 (3) | 0.2311 (17) | 0.035* | |
C1 | 0.5623 (3) | 0.8038 (2) | 0.04237 (19) | 0.0156 (5) | |
H1A | 0.6259 | 0.7679 | −0.0197 | 0.019* | |
H1B | 0.5825 | 0.8930 | 0.0390 | 0.019* | |
C2 | 0.6869 (3) | 0.5863 (2) | 0.1248 (2) | 0.0184 (5) | |
H2A | 0.8023 | 0.5464 | 0.1565 | 0.022* | |
H2B | 0.7028 | 0.5765 | 0.0501 | 0.022* | |
C3 | 0.5413 (3) | 0.5159 (2) | 0.1743 (2) | 0.0189 (5) | |
C4 | 0.8155 (3) | 0.7684 (2) | 0.15323 (19) | 0.0166 (5) | |
H4A | 0.8006 | 0.8627 | 0.1344 | 0.020* | |
H4B | 0.9151 | 0.7267 | 0.1078 | 0.020* | |
C5 | 0.8630 (3) | 0.7334 (2) | 0.26503 (19) | 0.0165 (5) | |
N2 | 0.3410 (3) | 0.71320 (19) | 0.41193 (16) | 0.0168 (4) | |
N3 | 0.4347 (3) | 0.91999 (19) | 0.30146 (16) | 0.0163 (4) | |
C6 | 0.4759 (3) | 1.0235 (2) | 0.2436 (2) | 0.0204 (5) | |
H6 | 0.5387 | 1.0135 | 0.1781 | 0.024* | |
C7 | 0.4316 (4) | 1.1467 (3) | 0.2743 (2) | 0.0264 (6) | |
H7 | 0.4618 | 1.2185 | 0.2297 | 0.032* | |
C8 | 0.3441 (4) | 1.1628 (3) | 0.3694 (2) | 0.0270 (6) | |
H8 | 0.3136 | 1.2458 | 0.3915 | 0.032* | |
C9 | 0.2998 (3) | 1.0555 (3) | 0.4337 (2) | 0.0213 (5) | |
C10 | 0.3469 (3) | 0.9361 (2) | 0.39543 (19) | 0.0162 (5) | |
C11 | 0.2990 (3) | 0.8240 (2) | 0.45614 (19) | 0.0166 (5) | |
C12 | 0.2099 (3) | 0.8325 (3) | 0.5542 (2) | 0.0226 (5) | |
C13 | 0.1672 (4) | 0.9556 (3) | 0.5930 (2) | 0.0268 (6) | |
H13 | 0.1089 | 0.9622 | 0.6600 | 0.032* | |
C14 | 0.2093 (4) | 1.0615 (3) | 0.5348 (2) | 0.0262 (6) | |
H14 | 0.1784 | 1.1418 | 0.5615 | 0.031* | |
C15 | 0.1632 (4) | 0.7192 (3) | 0.6078 (2) | 0.0296 (6) | |
H15 | 0.1035 | 0.7198 | 0.6749 | 0.035* | |
C16 | 0.2042 (4) | 0.6079 (3) | 0.5627 (2) | 0.0306 (6) | |
H16 | 0.1724 | 0.5309 | 0.5979 | 0.037* | |
C17 | 0.2934 (3) | 0.6086 (3) | 0.4641 (2) | 0.0235 (6) | |
H17 | 0.3208 | 0.5309 | 0.4335 | 0.028* | |
O1W | 0.9747 (3) | 0.9223 (2) | 0.83545 (17) | 0.0360 (5) | |
H1C | 1.073 (3) | 0.920 (3) | 0.876 (2) | 0.054* | |
H1D | 0.885 (3) | 0.995 (2) | 0.846 (3) | 0.054* | |
O2W | 0.9472 (3) | 0.6777 (2) | 0.9103 (2) | 0.0462 (6) | |
H2D | 0.939 (5) | 0.7657 (16) | 0.880 (3) | 0.069* | |
H2E | 1.053 (4) | 0.654 (3) | 0.949 (3) | 0.069* | |
O3W | 0.0897 (3) | 0.4767 (2) | 0.2406 (2) | 0.0468 (6) | |
H3A | 0.098 (5) | 0.418 (3) | 0.189 (3) | 0.070* | |
H3B | 0.203 (3) | 0.503 (4) | 0.236 (3) | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01678 (16) | 0.01334 (15) | 0.01508 (16) | −0.00573 (11) | 0.00260 (11) | −0.00256 (11) |
P1 | 0.0135 (3) | 0.0157 (3) | 0.0150 (3) | −0.0049 (2) | −0.0002 (2) | −0.0017 (2) |
N1 | 0.0136 (9) | 0.0130 (10) | 0.0170 (10) | −0.0049 (7) | −0.0011 (8) | −0.0023 (8) |
O1 | 0.0160 (8) | 0.0241 (9) | 0.0182 (9) | −0.0056 (7) | 0.0027 (7) | −0.0049 (7) |
O2 | 0.0235 (9) | 0.0192 (9) | 0.0240 (10) | −0.0101 (7) | 0.0012 (7) | −0.0049 (7) |
O3 | 0.0201 (9) | 0.0219 (9) | 0.0196 (9) | −0.0044 (7) | −0.0037 (7) | 0.0030 (7) |
O4 | 0.0250 (9) | 0.0176 (9) | 0.0211 (9) | −0.0090 (7) | 0.0041 (7) | −0.0053 (7) |
O5 | 0.0405 (11) | 0.0160 (9) | 0.0301 (11) | −0.0130 (8) | 0.0083 (9) | −0.0080 (8) |
O6 | 0.0175 (9) | 0.0227 (9) | 0.0187 (9) | −0.0065 (7) | 0.0004 (7) | −0.0009 (7) |
O7 | 0.0176 (9) | 0.0367 (11) | 0.0188 (10) | −0.0121 (8) | −0.0014 (7) | −0.0012 (8) |
C1 | 0.0141 (11) | 0.0184 (12) | 0.0148 (12) | −0.0048 (9) | −0.0012 (9) | −0.0007 (9) |
C2 | 0.0179 (12) | 0.0135 (11) | 0.0247 (14) | −0.0036 (9) | 0.0003 (10) | −0.0056 (10) |
C3 | 0.0212 (12) | 0.0150 (12) | 0.0207 (13) | −0.0050 (9) | −0.0007 (10) | −0.0006 (10) |
C4 | 0.0151 (11) | 0.0187 (12) | 0.0177 (12) | −0.0074 (9) | −0.0004 (9) | −0.0019 (9) |
C5 | 0.0150 (11) | 0.0148 (11) | 0.0205 (13) | −0.0034 (9) | −0.0011 (9) | −0.0045 (10) |
N2 | 0.0164 (10) | 0.0177 (10) | 0.0164 (10) | −0.0042 (8) | −0.0005 (8) | −0.0014 (8) |
N3 | 0.0172 (10) | 0.0173 (10) | 0.0157 (10) | −0.0062 (8) | −0.0001 (8) | −0.0027 (8) |
C6 | 0.0259 (13) | 0.0182 (12) | 0.0177 (13) | −0.0072 (10) | −0.0008 (10) | −0.0006 (10) |
C7 | 0.0316 (15) | 0.0183 (13) | 0.0306 (16) | −0.0109 (11) | −0.0014 (12) | 0.0008 (11) |
C8 | 0.0301 (15) | 0.0184 (13) | 0.0343 (16) | −0.0042 (11) | −0.0033 (12) | −0.0096 (12) |
C9 | 0.0202 (12) | 0.0222 (13) | 0.0225 (14) | −0.0033 (10) | −0.0026 (10) | −0.0064 (10) |
C10 | 0.0131 (11) | 0.0184 (12) | 0.0174 (12) | −0.0030 (9) | −0.0024 (9) | −0.0026 (9) |
C11 | 0.0121 (11) | 0.0226 (13) | 0.0156 (12) | −0.0032 (9) | −0.0016 (9) | −0.0034 (10) |
C12 | 0.0189 (13) | 0.0284 (14) | 0.0191 (13) | −0.0026 (10) | 0.0001 (10) | −0.0020 (11) |
C13 | 0.0251 (14) | 0.0369 (16) | 0.0179 (13) | −0.0018 (12) | 0.0026 (10) | −0.0101 (12) |
C14 | 0.0251 (14) | 0.0310 (15) | 0.0239 (15) | −0.0013 (11) | −0.0018 (11) | −0.0138 (12) |
C15 | 0.0290 (15) | 0.0381 (17) | 0.0179 (14) | −0.0056 (12) | 0.0064 (11) | 0.0032 (12) |
C16 | 0.0328 (15) | 0.0284 (15) | 0.0276 (16) | −0.0090 (12) | 0.0024 (12) | 0.0091 (12) |
C17 | 0.0230 (13) | 0.0204 (13) | 0.0260 (14) | −0.0054 (10) | 0.0013 (11) | 0.0014 (11) |
O1W | 0.0303 (11) | 0.0443 (13) | 0.0325 (12) | 0.0029 (9) | −0.0091 (9) | −0.0116 (10) |
O2W | 0.0379 (13) | 0.0457 (14) | 0.0583 (17) | −0.0115 (11) | 0.0007 (11) | −0.0157 (12) |
O3W | 0.0364 (13) | 0.0486 (15) | 0.0603 (17) | −0.0151 (11) | 0.0086 (11) | −0.0214 (13) |
Cu1—O1 | 2.474 (2) | N3—C6 | 1.326 (3) |
Cu1—O4 | 1.9412 (18) | N3—C10 | 1.359 (3) |
Cu1—N2 | 2.005 (2) | C6—C7 | 1.399 (4) |
Cu1—N3 | 2.032 (2) | C6—H6 | 0.9500 |
Cu1—N1 | 2.118 (2) | C7—C8 | 1.371 (4) |
Cu1—O6 | 2.3489 (18) | C7—H7 | 0.9500 |
P1—O3 | 1.4902 (19) | C8—C9 | 1.404 (4) |
P1—O1 | 1.5145 (18) | C8—H8 | 0.9500 |
P1—O2 | 1.5775 (19) | C9—C10 | 1.405 (3) |
P1—C1 | 1.816 (2) | C9—C14 | 1.436 (4) |
N1—C4 | 1.486 (3) | C10—C11 | 1.435 (3) |
N1—C2 | 1.495 (3) | C11—C12 | 1.399 (3) |
N1—C1 | 1.496 (3) | C12—C15 | 1.406 (4) |
O2—H2C | 0.897 (10) | C12—C13 | 1.443 (4) |
O4—C3 | 1.274 (3) | C13—C14 | 1.351 (4) |
O5—C3 | 1.242 (3) | C13—H13 | 0.9500 |
O6—C5 | 1.219 (3) | C14—H14 | 0.9500 |
O7—C5 | 1.306 (3) | C15—C16 | 1.370 (4) |
O7—H7A | 0.89 (3) | C15—H15 | 0.9500 |
C1—H1A | 0.9900 | C16—C17 | 1.399 (4) |
C1—H1B | 0.9900 | C16—H16 | 0.9500 |
C2—C3 | 1.508 (3) | C17—H17 | 0.9500 |
C2—H2A | 0.9900 | O1W—H1C | 0.947 (10) |
C2—H2B | 0.9900 | O1W—H1D | 0.946 (10) |
C4—C5 | 1.510 (3) | O2W—H2D | 0.961 (10) |
C4—H4A | 0.9900 | O2W—H2E | 0.96 (3) |
C4—H4B | 0.9900 | O3W—H3A | 0.97 (3) |
N2—C17 | 1.324 (3) | O3W—H3B | 0.95 (3) |
N2—C11 | 1.358 (3) | ||
O4—Cu1—N2 | 90.72 (8) | O6—C5—C4 | 122.4 (2) |
O4—Cu1—N3 | 166.90 (8) | O7—C5—C4 | 116.4 (2) |
N2—Cu1—N3 | 82.18 (9) | C17—N2—C11 | 118.1 (2) |
O4—Cu1—N1 | 84.52 (8) | C17—N2—Cu1 | 129.03 (18) |
N2—Cu1—N1 | 167.49 (8) | C11—N2—Cu1 | 112.88 (16) |
N3—Cu1—N1 | 104.59 (8) | C6—N3—C10 | 117.5 (2) |
O4—Cu1—O6 | 102.28 (7) | C6—N3—Cu1 | 130.76 (17) |
N2—Cu1—O6 | 94.96 (8) | C10—N3—Cu1 | 111.66 (16) |
N3—Cu1—O6 | 89.34 (8) | N3—C6—C7 | 123.2 (2) |
N1—Cu1—O6 | 74.86 (7) | N3—C6—H6 | 118.4 |
O3—P1—O1 | 117.43 (11) | C7—C6—H6 | 118.4 |
O3—P1—O2 | 112.75 (11) | C8—C7—C6 | 119.3 (3) |
O1—P1—O2 | 106.59 (10) | C8—C7—H7 | 120.4 |
O3—P1—C1 | 105.72 (11) | C6—C7—H7 | 120.4 |
O1—P1—C1 | 106.49 (11) | C7—C8—C9 | 119.5 (2) |
O2—P1—C1 | 107.30 (11) | C7—C8—H8 | 120.3 |
C4—N1—C2 | 109.19 (18) | C9—C8—H8 | 120.3 |
C4—N1—C1 | 109.67 (18) | C8—C9—C10 | 117.2 (2) |
C2—N1—C1 | 110.71 (19) | C8—C9—C14 | 124.0 (2) |
C4—N1—Cu1 | 110.98 (15) | C10—C9—C14 | 118.9 (2) |
C2—N1—Cu1 | 103.24 (14) | N3—C10—C9 | 123.4 (2) |
C1—N1—Cu1 | 112.86 (14) | N3—C10—C11 | 116.9 (2) |
P1—O2—H2C | 113 (2) | C9—C10—C11 | 119.6 (2) |
C3—O4—Cu1 | 116.37 (16) | N2—C11—C12 | 123.3 (2) |
C5—O6—Cu1 | 109.37 (16) | N2—C11—C10 | 116.3 (2) |
C5—O7—H7A | 113 (2) | C12—C11—C10 | 120.3 (2) |
N1—C1—P1 | 115.22 (16) | C11—C12—C15 | 117.0 (2) |
N1—C1—H1A | 108.5 | C11—C12—C13 | 119.0 (2) |
P1—C1—H1A | 108.5 | C15—C12—C13 | 124.0 (2) |
N1—C1—H1B | 108.5 | C14—C13—C12 | 120.6 (2) |
P1—C1—H1B | 108.5 | C14—C13—H13 | 119.7 |
H1A—C1—H1B | 107.5 | C12—C13—H13 | 119.7 |
N1—C2—C3 | 113.06 (19) | C13—C14—C9 | 121.6 (2) |
N1—C2—H2A | 109.0 | C13—C14—H14 | 119.2 |
C3—C2—H2A | 109.0 | C9—C14—H14 | 119.2 |
N1—C2—H2B | 109.0 | C16—C15—C12 | 119.5 (3) |
C3—C2—H2B | 109.0 | C16—C15—H15 | 120.2 |
H2A—C2—H2B | 107.8 | C12—C15—H15 | 120.2 |
O5—C3—O4 | 123.3 (2) | C15—C16—C17 | 119.4 (3) |
O5—C3—C2 | 119.5 (2) | C15—C16—H16 | 120.3 |
O4—C3—C2 | 117.1 (2) | C17—C16—H16 | 120.3 |
N1—C4—C5 | 110.69 (19) | N2—C17—C16 | 122.6 (3) |
N1—C4—H4A | 109.5 | N2—C17—H17 | 118.7 |
C5—C4—H4A | 109.5 | C16—C17—H17 | 118.7 |
N1—C4—H4B | 109.5 | H1C—O1W—H1D | 109.3 (15) |
C5—C4—H4B | 109.5 | H2D—O2W—H2E | 107.8 (15) |
H4A—C4—H4B | 108.1 | H3A—O3W—H3B | 106 (3) |
O6—C5—O7 | 121.1 (2) | ||
O4—Cu1—N1—C4 | −133.86 (16) | O6—Cu1—N2—C11 | 88.28 (17) |
N2—Cu1—N1—C4 | −65.9 (4) | O4—Cu1—N3—C6 | −119.3 (4) |
N3—Cu1—N1—C4 | 55.73 (16) | N2—Cu1—N3—C6 | −176.9 (2) |
O6—Cu1—N1—C4 | −29.53 (14) | N1—Cu1—N3—C6 | 13.8 (2) |
O4—Cu1—N1—C2 | −16.99 (14) | O6—Cu1—N3—C6 | 88.0 (2) |
N2—Cu1—N1—C2 | 51.0 (4) | O4—Cu1—N3—C10 | 57.0 (4) |
N3—Cu1—N1—C2 | 172.59 (14) | N2—Cu1—N3—C10 | −0.72 (16) |
O6—Cu1—N1—C2 | 87.33 (14) | N1—Cu1—N3—C10 | −169.99 (16) |
O4—Cu1—N1—C1 | 102.58 (16) | O6—Cu1—N3—C10 | −95.82 (16) |
N2—Cu1—N1—C1 | 170.6 (3) | C10—N3—C6—C7 | −0.8 (4) |
N3—Cu1—N1—C1 | −67.84 (16) | Cu1—N3—C6—C7 | 175.2 (2) |
O6—Cu1—N1—C1 | −153.10 (16) | N3—C6—C7—C8 | 1.2 (4) |
N2—Cu1—O4—C3 | −162.28 (19) | C6—C7—C8—C9 | −0.4 (4) |
N3—Cu1—O4—C3 | 140.9 (3) | C7—C8—C9—C10 | −0.8 (4) |
N1—Cu1—O4—C3 | 6.14 (18) | C7—C8—C9—C14 | 179.6 (3) |
O6—Cu1—O4—C3 | −67.04 (19) | C6—N3—C10—C9 | −0.4 (4) |
O4—Cu1—O6—C5 | 105.68 (17) | Cu1—N3—C10—C9 | −177.19 (19) |
N2—Cu1—O6—C5 | −162.50 (16) | C6—N3—C10—C11 | 178.5 (2) |
N3—Cu1—O6—C5 | −80.40 (17) | Cu1—N3—C10—C11 | 1.7 (3) |
N1—Cu1—O6—C5 | 24.90 (16) | C8—C9—C10—N3 | 1.2 (4) |
C4—N1—C1—P1 | −158.30 (16) | C14—C9—C10—N3 | −179.1 (2) |
C2—N1—C1—P1 | 81.2 (2) | C8—C9—C10—C11 | −177.6 (2) |
Cu1—N1—C1—P1 | −34.0 (2) | C14—C9—C10—C11 | 2.0 (4) |
O3—P1—C1—N1 | 168.57 (16) | C17—N2—C11—C12 | 0.7 (4) |
O1—P1—C1—N1 | 42.95 (19) | Cu1—N2—C11—C12 | 179.84 (19) |
O2—P1—C1—N1 | −70.88 (19) | C17—N2—C11—C10 | −177.8 (2) |
C4—N1—C2—C3 | 142.9 (2) | Cu1—N2—C11—C10 | 1.4 (3) |
C1—N1—C2—C3 | −96.3 (2) | N3—C10—C11—N2 | −2.1 (3) |
Cu1—N1—C2—C3 | 24.8 (2) | C9—C10—C11—N2 | 176.8 (2) |
Cu1—O4—C3—O5 | −176.5 (2) | N3—C10—C11—C12 | 179.4 (2) |
Cu1—O4—C3—C2 | 7.5 (3) | C9—C10—C11—C12 | −1.7 (4) |
N1—C2—C3—O5 | 160.4 (2) | N2—C11—C12—C15 | 0.0 (4) |
N1—C2—C3—O4 | −23.5 (3) | C10—C11—C12—C15 | 178.4 (2) |
C2—N1—C4—C5 | −80.9 (2) | N2—C11—C12—C13 | −178.3 (2) |
C1—N1—C4—C5 | 157.64 (19) | C10—C11—C12—C13 | 0.1 (4) |
Cu1—N1—C4—C5 | 32.3 (2) | C11—C12—C13—C14 | 1.2 (4) |
Cu1—O6—C5—O7 | 160.49 (19) | C15—C12—C13—C14 | −177.0 (3) |
Cu1—O6—C5—C4 | −14.7 (3) | C12—C13—C14—C9 | −0.9 (4) |
N1—C4—C5—O6 | −10.2 (3) | C8—C9—C14—C13 | 178.9 (3) |
N1—C4—C5—O7 | 174.4 (2) | C10—C9—C14—C13 | −0.7 (4) |
O4—Cu1—N2—C17 | 9.7 (2) | C11—C12—C15—C16 | −0.6 (4) |
N3—Cu1—N2—C17 | 178.7 (2) | C13—C12—C15—C16 | 177.6 (3) |
N1—Cu1—N2—C17 | −57.7 (5) | C12—C15—C16—C17 | 0.5 (4) |
O6—Cu1—N2—C17 | −92.7 (2) | C11—N2—C17—C16 | −0.8 (4) |
O4—Cu1—N2—C11 | −169.33 (17) | Cu1—N2—C17—C16 | −179.8 (2) |
N3—Cu1—N2—C11 | −0.38 (16) | C15—C16—C17—N2 | 0.2 (4) |
N1—Cu1—N2—C11 | 123.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···O5i | 0.90 (1) | 1.67 (1) | 2.564 (3) | 175 (3) |
O7—H7A···O1ii | 0.89 (3) | 1.66 (3) | 2.540 (3) | 168 (3) |
O1W—H1C···O3iii | 0.95 (1) | 1.77 (1) | 2.717 (3) | 178 (3) |
O1W—H1D···O1iv | 0.95 (1) | 1.94 (2) | 2.853 (3) | 162 (3) |
O2W—H2D···O1W | 0.95 (1) | 1.76 (1) | 2.704 (4) | 166 (3) |
O2W—H2E···O2iii | 0.96 (3) | 2.17 (2) | 3.087 (3) | 160 (3) |
O3W—H3A···O2Wv | 0.97 (3) | 1.85 (4) | 2.805 (4) | 166 (3) |
O3W—H3B···O4 | 0.95 (3) | 2.06 (3) | 2.999 (3) | 172 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support under the POCTI programme (supported by FEDER), and also for the postdoctoral research grant No. SFRH/BPD/9309/2002 (to FNS).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Almeida Paz, F. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). Acta Cryst. C58, m608–m610. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Almeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828. CrossRef Google Scholar
Almeida Paz, F. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772–782. CSD CrossRef CAS Google Scholar
Almeida Paz, F. A. & Klinowski, J. (2004a). Inorg. Chem. 43, 3882–3893. Web of Science CSD CrossRef PubMed CAS Google Scholar
Almeida Paz, F. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3948–3954. Web of Science CSD CrossRef PubMed CAS Google Scholar
Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. Submitted. Google Scholar
Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768. Web of Science CSD CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–58. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Mafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2005). Chem. Eur. J. In the press. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207–210. Google Scholar
Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. In the press. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.