metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Hydrogen N-(phosphono­meth­yl)imino­di­acetato](1,10-phen­an­throline)copper(II) trihydrate: a low-temperature redetermination

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt

(Received 4 July 2005; accepted 5 October 2005; online 12 October 2005)

The room-temperature crystal structure of the title compound, [Cu(H2pmida)(phen)]·3H2O [where H2pmida2− is hydrogen N-(phosphono­meth­yl)imino­diacetate, C5H10NO7P2−, and phen is 1,10-phenanthroline, C12H8N2], was recently determined by Pei Lu, Ke, Li, Qin, Zhou, Wu & Du [Struct. Chem. (2004), 15, 207–210]. We report here a redetermination, at 180 (2) K, with greatly improved precision. Hydrogen bonds lead to the formation of one-dimensional tapes which run along the [100] direction of the unit cell. Adjacent tapes are inter­connected via ππ offset stacking (between the 1,10-phenanthroline ligands) and by hydrogen bonds involving the water mol­ecules of crystallization.

Comment

During the course of our research on novel crystalline organic–inorganic hybrid materials (Almeida Paz, Khimyak et al., 2002[Almeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.]; Almeida Paz et al., 2005[Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. Submitted. ]; Almeida Paz & Klinowski, 2004a[Almeida Paz, F. A. & Klinowski, J. (2004a). Inorg. Chem. 43, 3882-3893.],b[Almeida Paz, F. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3948-3954.]), containing organic ligands with chelating and highly flexible `arms', such as diethylenetriaminepentaacetic acid (Almeida Paz, Bond et al., 2002[Almeida Paz, F. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). Acta Cryst. C58, m608-m610.]), nitrilo­triacetic acid (Almeida Paz & Klinowski, 2003[Almeida Paz, F. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772-782.]) and N-(phosphono­meth­yl)imino­diacetic acid (H4pmida) (Mafra et al., 2005[Mafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2005). Chem. Eur. J. In the press.]; Shi et al., 2005[Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. In the press.]; Almeida Paz et al., 2004[Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]), we recently isolated, in quantitative yield, large single crystals of the title compound, (I)[link], which is composed of discrete complexes of Cu2+ with 1,10-phenanthroline (phen) and H2pmida2− ligands, co-crystallizing with three solvent mol­ecules in space group P[\overline{1}].

[Scheme 1]

Although the crystal structure of this compound has recently been reported (Pei et al., 2004[Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207-210.]), we redetermined it at 180 (2) K, with a final R value of 0.0376, to gain more precise data for our studies of the magnetic properties of such crystalline hybrid materials. The low-temperature redetermination allowed the direct location of all H atoms associated with the protonated carboxylic and phospho­nic acid groups, and with the three water mol­ecules of crystallization, thus giving a much better insight into the hydrogen-bond network present in the crystal structure of (I)[link].

The unit-cell volume decreased by ca 13 Å3, consistent with determination at a lower temperature. The asymmetric unit composed of a complete [Cu(H2pmida)(phen)] complex (Fig. 1[link]) plus three water mol­ecules of crystallization (O1W, O2W and O3W). The crystallographically unique Cu2+ atom is coordinated by one phen residue via the two N-donor atoms, leading to a bite angle of 82.18 (9)°, which is in good agreement with that reported by Pei et al. [82.06 (16)°], and also with those typically found in related compounds as revealed by a search in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Allen & Motherwell, 2002[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]). The remaining four positions of the Cu2+ coordination are occupied by the N- and O-donor atoms from the H2pmida2− anionic ligand, leading to a typical Jahn–Teller distorted octa­hedral coordination geometry, {CuN3O3}. In general, the Cu—N and Cu—O bond lengths and angles (Table 1[link]) are not significantly different from those obtained from the room-temperature determination (Pei et al., 2004[Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207-210.]). Each [Cu(H2pmida)(phen)] complex is connected to adjacent mol­ecules via a series of hydrogen bonds between the protonated carboxylic and phospho­nic acid groups (donors), and the coordinated carboxyl­ate groups (acceptors) of a neighbouring complex (Fig. 2[link] and Table 2[link]). Such a regular arrangement of hydrogen bonds between adjacent complexes leads to the formation of two graph-set motifs, viz. R22(16) and R44(24) (Fig. 2[link]), which are recursively repeated along the [100] direction of the unit cell, creating a one-dimensional hydrogen-bonded tape. The inter­metallic Cu1⋯Cu1i distance across the O7⋯O1 hydrogen-bond bridge is 7.571 (2) Å, while across the O2⋯O5 bridge, Cu1⋯Cu1ii is 9.162 (2) Å [symmetry codes: (i) −1 + x, y, z; (ii) 1 − x, 1 − y, −z]. The one-dimensional tape is formed in such a way that the coordinated phen mol­ecules are external to the hydrogen-bonded core (Fig. 2[link]). Therefore, the aromatic residues are engaged in offset ππ stacking along the [100] direction of the unit cell, thus linking neighbouring hydrogen-bonded tapes (Fig. 3[link]). Further connections between tapes are made by hydrogen bonds involving the water mol­ecules of crystallization (Fig. 4[link] and Table 2[link]), thus leading, along with the above-mentioned ππ inter­actions, to a three-dimensional supramolecular arrangement of [Cu(H2pmida)(phen)] complexes.

[Figure 1]
Figure 1
A view of the [Cu(H2pmida)(phen)] complex mol­ecule present in the crystal structure of the title compound, showing the labelling scheme for all non-H atoms and for the two H atoms belonging to the carboxylic and phospho­nic acid groups. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2]
Figure 2
Hydrogen bonding in (I)[link] represented as green-filled dashed bonds giving a one-dimensional tape running along the [100] direction of the unit cell with a schematic diagram showing the two graph-set motifs, viz. R22(16) and R44(24). [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) 1 + x, y, z; (iii) −1 + x, y, z; (iv) −x, 1 − y, −z; (v) 2 − x, 1 − y, −z.]
[Figure 3]
Figure 3
π-π offset inter­actions, running along the [100] direction of the unit cell between 1,10-phenanthroline residues belonging to adjacent one-dimensional hydrogen-bonded tapes (see Fig. 2[link]). Hydrogen bonds are represented as green-filled dashed bonds.
[Figure 4]
Figure 4
Perspective view of the crystal packing of the title compound viewed along the [100] direction of the unit cell. Hydrogen bonds are represented as green-filled dashed bonds. For hydrogen-bonding geometry, see Table 2[link].

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification, i.e. N-(phosphono­meth­yl)imino­diacetic acid hydrate (H4pmida, 97% Fluka), 1,10-phenanthroline monohydrate (phen, >99.0% Fluka) and copper(II) hydroxide [CuCO3·Cu(OH)2, 55% in Cu, Panreac]. The title compound was synthesized from a mixture containing 0.19 g of CuCO3·Cu(OH)2, 0.38 g of H4pmida and 0.23 g of phen in ca 6.7 g of distilled water. The mixture was stirred at ambient temperature for 30 min, yielding a homogeneous suspension with a molar composition of ca 1.0:1.9:1.4:433, which was transferred to PTFE-lined stainless steel reaction vessels (ca 40 ml). Reactions took place over a period of 3 d, under autogeneous pressure and static conditions, in a preheated oven at 373 K. The vessels were left to cool to ambient temperature before opening. The mother liquor was filtered off and allowed to stand in the open air for approximately 2 d, yielding a large amount of a dark-green single-crystalline phase. Individual single crystals were washed with copious amounts of distilled water (3 × ca 50 ml), and then air-dried at ambient temperature to give the title compound.

Crystal data
  • [Cu(C5H10NO7P)(C12H8N2)]·3H2O

  • Mr = 522.89

  • Triclinic, [P \overline 1]

  • a = 7.5714 (15) Å

  • b = 10.696 (2) Å

  • c = 13.047 (3) Å

  • α = 81.98 (3)°

  • β = 85.04 (3)°

  • γ = 78.40 (3)°

  • V = 1023.1 (4) Å3

  • Z = 2

  • Dx = 1.697 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6202 reflections

  • θ = 1.0–27.5°

  • μ = 1.21 mm−1

  • T = 180 (2) K

  • Block, green

  • 0.10 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin–slice ω and φ scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-58.])Tmin = 0.843, Tmax = 0.922

  • 11202 measured reflections

  • 4641 independent reflections

  • 3999 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.4°

  • h = −9 → 9

  • k = −13 → 13

  • l = −14 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.06

  • 4641 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0207P)2 + 1.6723P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Cu1—O1 2.474 (2)
Cu1—O4 1.9412 (18)
Cu1—N2 2.005 (2)
Cu1—N3 2.032 (2)
Cu1—N1 2.118 (2)
Cu1—O6 2.3489 (18)
O4—Cu1—N2 90.72 (8)
O4—Cu1—N3 166.90 (8)
N2—Cu1—N3 82.18 (9)
O4—Cu1—N1 84.52 (8)
N2—Cu1—N1 167.49 (8)
N3—Cu1—N1 104.59 (8)
O4—Cu1—O6 102.28 (7)
N2—Cu1—O6 94.96 (8)
N3—Cu1—O6 89.34 (8)
N1—Cu1—O6 74.86 (7)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O5i 0.90 (1) 1.67 (1) 2.564 (3) 175 (3)
O7—H7A⋯O1ii 0.89 (3) 1.66 (3) 2.540 (3) 168 (3)
O1W—H1C⋯O3iii 0.95 (1) 1.77 (1) 2.717 (3) 178 (3)
O1W—H1D⋯O1iv 0.95 (1) 1.94 (2) 2.853 (3) 162 (3)
O2W—H2D⋯O1W 0.95 (1) 1.76 (1) 2.704 (4) 166 (3)
O2W—H2E⋯O2iii 0.96 (3) 2.17 (2) 3.087 (3) 160 (3)
O3W—H3A⋯O2Wv 0.97 (3) 1.85 (4) 2.805 (4) 166 (3)
O3W—H3B⋯O4 0.95 (3) 2.06 (3) 2.999 (3) 172 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1.

H atoms associated with the three water mol­ecules of crystallization, and with the protonated carboxylic and phospho­nic acid groups (H2C and H7A), were clearly visible in difference Fourier maps, and were included in subsequent least-squares refinements. For the water mol­ecules, the O—H and H⋯H distances were restrained to 0.95 (1) and 1.55 (1) Å, respectively, to ensure a chemically reasonable geometry for these groups. For the hydroxyl groups, the O—H distances were restrained to 0.90 (1) Å. These H atoms were further refined with an isotropic displacement parameter fixed at 1.5Ueq of the parent O atoms. H atoms bound to carbon were placed in idealized positions and allowed to ride on their parent atoms with relative isotropic displacement parameters (Uiso) fixed at 1.2Ueq of the parent C atom and C—H = 0.95 Å.

Data collection: COLLECT (Nonius 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al.,1994); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Bruker 2001).

[hydrogen N-(phosphonomethyl)iminodiacetato](1,10-phenanthroline)copper(II) trihydrate top
Crystal data top
[Cu(C5H10NO7P)(C12H8N2)]·3H2OZ = 2
Mr = 522.89F(000) = 538
Triclinic, P1Dx = 1.697 Mg m3
Dm = no Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5714 (15) ÅCell parameters from 6202 reflections
b = 10.696 (2) Åθ = 1.0–27.5°
c = 13.047 (3) ŵ = 1.21 mm1
α = 81.98 (3)°T = 180 K
β = 85.04 (3)°Block, green
γ = 78.40 (3)°0.10 × 0.10 × 0.07 mm
V = 1023.1 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3999 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Thin–slice ω and φ scansθmax = 27.4°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 99
Tmin = 0.843, Tmax = 0.922k = 1313
11202 measured reflectionsl = 1416
4641 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0207P)2 + 1.6723P]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.81 e Å3
11 restraintsΔρmin = 0.51 e Å3
Special details top

Experimental. (Please see the Experimental Section in the main paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.46760 (4)0.73527 (3)0.27104 (2)0.01480 (9)
P10.32199 (8)0.80933 (6)0.03658 (5)0.01451 (14)
N10.6456 (3)0.72640 (18)0.13668 (16)0.0141 (4)
O10.2374 (2)0.82883 (17)0.14408 (14)0.0192 (4)
O20.2983 (2)0.67179 (17)0.01640 (15)0.0213 (4)
H2C0.356 (4)0.647 (3)0.0425 (15)0.032*
O30.2619 (2)0.91124 (17)0.05012 (14)0.0209 (4)
O40.4395 (2)0.56551 (16)0.24691 (14)0.0206 (4)
O50.5322 (3)0.41073 (17)0.14714 (15)0.0279 (4)
O60.7588 (2)0.69422 (17)0.33266 (14)0.0196 (4)
O71.0177 (2)0.75556 (19)0.28737 (14)0.0236 (4)
H7A1.086 (4)0.778 (3)0.2311 (17)0.035*
C10.5623 (3)0.8038 (2)0.04237 (19)0.0156 (5)
H1A0.62590.76790.01970.019*
H1B0.58250.89300.03900.019*
C20.6869 (3)0.5863 (2)0.1248 (2)0.0184 (5)
H2A0.80230.54640.15650.022*
H2B0.70280.57650.05010.022*
C30.5413 (3)0.5159 (2)0.1743 (2)0.0189 (5)
C40.8155 (3)0.7684 (2)0.15323 (19)0.0166 (5)
H4A0.80060.86270.13440.020*
H4B0.91510.72670.10780.020*
C50.8630 (3)0.7334 (2)0.26503 (19)0.0165 (5)
N20.3410 (3)0.71320 (19)0.41193 (16)0.0168 (4)
N30.4347 (3)0.91999 (19)0.30146 (16)0.0163 (4)
C60.4759 (3)1.0235 (2)0.2436 (2)0.0204 (5)
H60.53871.01350.17810.024*
C70.4316 (4)1.1467 (3)0.2743 (2)0.0264 (6)
H70.46181.21850.22970.032*
C80.3441 (4)1.1628 (3)0.3694 (2)0.0270 (6)
H80.31361.24580.39150.032*
C90.2998 (3)1.0555 (3)0.4337 (2)0.0213 (5)
C100.3469 (3)0.9361 (2)0.39543 (19)0.0162 (5)
C110.2990 (3)0.8240 (2)0.45614 (19)0.0166 (5)
C120.2099 (3)0.8325 (3)0.5542 (2)0.0226 (5)
C130.1672 (4)0.9556 (3)0.5930 (2)0.0268 (6)
H130.10890.96220.66000.032*
C140.2093 (4)1.0615 (3)0.5348 (2)0.0262 (6)
H140.17841.14180.56150.031*
C150.1632 (4)0.7192 (3)0.6078 (2)0.0296 (6)
H150.10350.71980.67490.035*
C160.2042 (4)0.6079 (3)0.5627 (2)0.0306 (6)
H160.17240.53090.59790.037*
C170.2934 (3)0.6086 (3)0.4641 (2)0.0235 (6)
H170.32080.53090.43350.028*
O1W0.9747 (3)0.9223 (2)0.83545 (17)0.0360 (5)
H1C1.073 (3)0.920 (3)0.876 (2)0.054*
H1D0.885 (3)0.995 (2)0.846 (3)0.054*
O2W0.9472 (3)0.6777 (2)0.9103 (2)0.0462 (6)
H2D0.939 (5)0.7657 (16)0.880 (3)0.069*
H2E1.053 (4)0.654 (3)0.949 (3)0.069*
O3W0.0897 (3)0.4767 (2)0.2406 (2)0.0468 (6)
H3A0.098 (5)0.418 (3)0.189 (3)0.070*
H3B0.203 (3)0.503 (4)0.236 (3)0.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01678 (16)0.01334 (15)0.01508 (16)0.00573 (11)0.00260 (11)0.00256 (11)
P10.0135 (3)0.0157 (3)0.0150 (3)0.0049 (2)0.0002 (2)0.0017 (2)
N10.0136 (9)0.0130 (10)0.0170 (10)0.0049 (7)0.0011 (8)0.0023 (8)
O10.0160 (8)0.0241 (9)0.0182 (9)0.0056 (7)0.0027 (7)0.0049 (7)
O20.0235 (9)0.0192 (9)0.0240 (10)0.0101 (7)0.0012 (7)0.0049 (7)
O30.0201 (9)0.0219 (9)0.0196 (9)0.0044 (7)0.0037 (7)0.0030 (7)
O40.0250 (9)0.0176 (9)0.0211 (9)0.0090 (7)0.0041 (7)0.0053 (7)
O50.0405 (11)0.0160 (9)0.0301 (11)0.0130 (8)0.0083 (9)0.0080 (8)
O60.0175 (9)0.0227 (9)0.0187 (9)0.0065 (7)0.0004 (7)0.0009 (7)
O70.0176 (9)0.0367 (11)0.0188 (10)0.0121 (8)0.0014 (7)0.0012 (8)
C10.0141 (11)0.0184 (12)0.0148 (12)0.0048 (9)0.0012 (9)0.0007 (9)
C20.0179 (12)0.0135 (11)0.0247 (14)0.0036 (9)0.0003 (10)0.0056 (10)
C30.0212 (12)0.0150 (12)0.0207 (13)0.0050 (9)0.0007 (10)0.0006 (10)
C40.0151 (11)0.0187 (12)0.0177 (12)0.0074 (9)0.0004 (9)0.0019 (9)
C50.0150 (11)0.0148 (11)0.0205 (13)0.0034 (9)0.0011 (9)0.0045 (10)
N20.0164 (10)0.0177 (10)0.0164 (10)0.0042 (8)0.0005 (8)0.0014 (8)
N30.0172 (10)0.0173 (10)0.0157 (10)0.0062 (8)0.0001 (8)0.0027 (8)
C60.0259 (13)0.0182 (12)0.0177 (13)0.0072 (10)0.0008 (10)0.0006 (10)
C70.0316 (15)0.0183 (13)0.0306 (16)0.0109 (11)0.0014 (12)0.0008 (11)
C80.0301 (15)0.0184 (13)0.0343 (16)0.0042 (11)0.0033 (12)0.0096 (12)
C90.0202 (12)0.0222 (13)0.0225 (14)0.0033 (10)0.0026 (10)0.0064 (10)
C100.0131 (11)0.0184 (12)0.0174 (12)0.0030 (9)0.0024 (9)0.0026 (9)
C110.0121 (11)0.0226 (13)0.0156 (12)0.0032 (9)0.0016 (9)0.0034 (10)
C120.0189 (13)0.0284 (14)0.0191 (13)0.0026 (10)0.0001 (10)0.0020 (11)
C130.0251 (14)0.0369 (16)0.0179 (13)0.0018 (12)0.0026 (10)0.0101 (12)
C140.0251 (14)0.0310 (15)0.0239 (15)0.0013 (11)0.0018 (11)0.0138 (12)
C150.0290 (15)0.0381 (17)0.0179 (14)0.0056 (12)0.0064 (11)0.0032 (12)
C160.0328 (15)0.0284 (15)0.0276 (16)0.0090 (12)0.0024 (12)0.0091 (12)
C170.0230 (13)0.0204 (13)0.0260 (14)0.0054 (10)0.0013 (11)0.0014 (11)
O1W0.0303 (11)0.0443 (13)0.0325 (12)0.0029 (9)0.0091 (9)0.0116 (10)
O2W0.0379 (13)0.0457 (14)0.0583 (17)0.0115 (11)0.0007 (11)0.0157 (12)
O3W0.0364 (13)0.0486 (15)0.0603 (17)0.0151 (11)0.0086 (11)0.0214 (13)
Geometric parameters (Å, º) top
Cu1—O12.474 (2)N3—C61.326 (3)
Cu1—O41.9412 (18)N3—C101.359 (3)
Cu1—N22.005 (2)C6—C71.399 (4)
Cu1—N32.032 (2)C6—H60.9500
Cu1—N12.118 (2)C7—C81.371 (4)
Cu1—O62.3489 (18)C7—H70.9500
P1—O31.4902 (19)C8—C91.404 (4)
P1—O11.5145 (18)C8—H80.9500
P1—O21.5775 (19)C9—C101.405 (3)
P1—C11.816 (2)C9—C141.436 (4)
N1—C41.486 (3)C10—C111.435 (3)
N1—C21.495 (3)C11—C121.399 (3)
N1—C11.496 (3)C12—C151.406 (4)
O2—H2C0.897 (10)C12—C131.443 (4)
O4—C31.274 (3)C13—C141.351 (4)
O5—C31.242 (3)C13—H130.9500
O6—C51.219 (3)C14—H140.9500
O7—C51.306 (3)C15—C161.370 (4)
O7—H7A0.89 (3)C15—H150.9500
C1—H1A0.9900C16—C171.399 (4)
C1—H1B0.9900C16—H160.9500
C2—C31.508 (3)C17—H170.9500
C2—H2A0.9900O1W—H1C0.947 (10)
C2—H2B0.9900O1W—H1D0.946 (10)
C4—C51.510 (3)O2W—H2D0.961 (10)
C4—H4A0.9900O2W—H2E0.96 (3)
C4—H4B0.9900O3W—H3A0.97 (3)
N2—C171.324 (3)O3W—H3B0.95 (3)
N2—C111.358 (3)
O4—Cu1—N290.72 (8)O6—C5—C4122.4 (2)
O4—Cu1—N3166.90 (8)O7—C5—C4116.4 (2)
N2—Cu1—N382.18 (9)C17—N2—C11118.1 (2)
O4—Cu1—N184.52 (8)C17—N2—Cu1129.03 (18)
N2—Cu1—N1167.49 (8)C11—N2—Cu1112.88 (16)
N3—Cu1—N1104.59 (8)C6—N3—C10117.5 (2)
O4—Cu1—O6102.28 (7)C6—N3—Cu1130.76 (17)
N2—Cu1—O694.96 (8)C10—N3—Cu1111.66 (16)
N3—Cu1—O689.34 (8)N3—C6—C7123.2 (2)
N1—Cu1—O674.86 (7)N3—C6—H6118.4
O3—P1—O1117.43 (11)C7—C6—H6118.4
O3—P1—O2112.75 (11)C8—C7—C6119.3 (3)
O1—P1—O2106.59 (10)C8—C7—H7120.4
O3—P1—C1105.72 (11)C6—C7—H7120.4
O1—P1—C1106.49 (11)C7—C8—C9119.5 (2)
O2—P1—C1107.30 (11)C7—C8—H8120.3
C4—N1—C2109.19 (18)C9—C8—H8120.3
C4—N1—C1109.67 (18)C8—C9—C10117.2 (2)
C2—N1—C1110.71 (19)C8—C9—C14124.0 (2)
C4—N1—Cu1110.98 (15)C10—C9—C14118.9 (2)
C2—N1—Cu1103.24 (14)N3—C10—C9123.4 (2)
C1—N1—Cu1112.86 (14)N3—C10—C11116.9 (2)
P1—O2—H2C113 (2)C9—C10—C11119.6 (2)
C3—O4—Cu1116.37 (16)N2—C11—C12123.3 (2)
C5—O6—Cu1109.37 (16)N2—C11—C10116.3 (2)
C5—O7—H7A113 (2)C12—C11—C10120.3 (2)
N1—C1—P1115.22 (16)C11—C12—C15117.0 (2)
N1—C1—H1A108.5C11—C12—C13119.0 (2)
P1—C1—H1A108.5C15—C12—C13124.0 (2)
N1—C1—H1B108.5C14—C13—C12120.6 (2)
P1—C1—H1B108.5C14—C13—H13119.7
H1A—C1—H1B107.5C12—C13—H13119.7
N1—C2—C3113.06 (19)C13—C14—C9121.6 (2)
N1—C2—H2A109.0C13—C14—H14119.2
C3—C2—H2A109.0C9—C14—H14119.2
N1—C2—H2B109.0C16—C15—C12119.5 (3)
C3—C2—H2B109.0C16—C15—H15120.2
H2A—C2—H2B107.8C12—C15—H15120.2
O5—C3—O4123.3 (2)C15—C16—C17119.4 (3)
O5—C3—C2119.5 (2)C15—C16—H16120.3
O4—C3—C2117.1 (2)C17—C16—H16120.3
N1—C4—C5110.69 (19)N2—C17—C16122.6 (3)
N1—C4—H4A109.5N2—C17—H17118.7
C5—C4—H4A109.5C16—C17—H17118.7
N1—C4—H4B109.5H1C—O1W—H1D109.3 (15)
C5—C4—H4B109.5H2D—O2W—H2E107.8 (15)
H4A—C4—H4B108.1H3A—O3W—H3B106 (3)
O6—C5—O7121.1 (2)
O4—Cu1—N1—C4133.86 (16)O6—Cu1—N2—C1188.28 (17)
N2—Cu1—N1—C465.9 (4)O4—Cu1—N3—C6119.3 (4)
N3—Cu1—N1—C455.73 (16)N2—Cu1—N3—C6176.9 (2)
O6—Cu1—N1—C429.53 (14)N1—Cu1—N3—C613.8 (2)
O4—Cu1—N1—C216.99 (14)O6—Cu1—N3—C688.0 (2)
N2—Cu1—N1—C251.0 (4)O4—Cu1—N3—C1057.0 (4)
N3—Cu1—N1—C2172.59 (14)N2—Cu1—N3—C100.72 (16)
O6—Cu1—N1—C287.33 (14)N1—Cu1—N3—C10169.99 (16)
O4—Cu1—N1—C1102.58 (16)O6—Cu1—N3—C1095.82 (16)
N2—Cu1—N1—C1170.6 (3)C10—N3—C6—C70.8 (4)
N3—Cu1—N1—C167.84 (16)Cu1—N3—C6—C7175.2 (2)
O6—Cu1—N1—C1153.10 (16)N3—C6—C7—C81.2 (4)
N2—Cu1—O4—C3162.28 (19)C6—C7—C8—C90.4 (4)
N3—Cu1—O4—C3140.9 (3)C7—C8—C9—C100.8 (4)
N1—Cu1—O4—C36.14 (18)C7—C8—C9—C14179.6 (3)
O6—Cu1—O4—C367.04 (19)C6—N3—C10—C90.4 (4)
O4—Cu1—O6—C5105.68 (17)Cu1—N3—C10—C9177.19 (19)
N2—Cu1—O6—C5162.50 (16)C6—N3—C10—C11178.5 (2)
N3—Cu1—O6—C580.40 (17)Cu1—N3—C10—C111.7 (3)
N1—Cu1—O6—C524.90 (16)C8—C9—C10—N31.2 (4)
C4—N1—C1—P1158.30 (16)C14—C9—C10—N3179.1 (2)
C2—N1—C1—P181.2 (2)C8—C9—C10—C11177.6 (2)
Cu1—N1—C1—P134.0 (2)C14—C9—C10—C112.0 (4)
O3—P1—C1—N1168.57 (16)C17—N2—C11—C120.7 (4)
O1—P1—C1—N142.95 (19)Cu1—N2—C11—C12179.84 (19)
O2—P1—C1—N170.88 (19)C17—N2—C11—C10177.8 (2)
C4—N1—C2—C3142.9 (2)Cu1—N2—C11—C101.4 (3)
C1—N1—C2—C396.3 (2)N3—C10—C11—N22.1 (3)
Cu1—N1—C2—C324.8 (2)C9—C10—C11—N2176.8 (2)
Cu1—O4—C3—O5176.5 (2)N3—C10—C11—C12179.4 (2)
Cu1—O4—C3—C27.5 (3)C9—C10—C11—C121.7 (4)
N1—C2—C3—O5160.4 (2)N2—C11—C12—C150.0 (4)
N1—C2—C3—O423.5 (3)C10—C11—C12—C15178.4 (2)
C2—N1—C4—C580.9 (2)N2—C11—C12—C13178.3 (2)
C1—N1—C4—C5157.64 (19)C10—C11—C12—C130.1 (4)
Cu1—N1—C4—C532.3 (2)C11—C12—C13—C141.2 (4)
Cu1—O6—C5—O7160.49 (19)C15—C12—C13—C14177.0 (3)
Cu1—O6—C5—C414.7 (3)C12—C13—C14—C90.9 (4)
N1—C4—C5—O610.2 (3)C8—C9—C14—C13178.9 (3)
N1—C4—C5—O7174.4 (2)C10—C9—C14—C130.7 (4)
O4—Cu1—N2—C179.7 (2)C11—C12—C15—C160.6 (4)
N3—Cu1—N2—C17178.7 (2)C13—C12—C15—C16177.6 (3)
N1—Cu1—N2—C1757.7 (5)C12—C15—C16—C170.5 (4)
O6—Cu1—N2—C1792.7 (2)C11—N2—C17—C160.8 (4)
O4—Cu1—N2—C11169.33 (17)Cu1—N2—C17—C16179.8 (2)
N3—Cu1—N2—C110.38 (16)C15—C16—C17—N20.2 (4)
N1—Cu1—N2—C11123.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O5i0.90 (1)1.67 (1)2.564 (3)175 (3)
O7—H7A···O1ii0.89 (3)1.66 (3)2.540 (3)168 (3)
O1W—H1C···O3iii0.95 (1)1.77 (1)2.717 (3)178 (3)
O1W—H1D···O1iv0.95 (1)1.94 (2)2.853 (3)162 (3)
O2W—H2D···O1W0.95 (1)1.76 (1)2.704 (4)166 (3)
O2W—H2E···O2iii0.96 (3)2.17 (2)3.087 (3)160 (3)
O3W—H3A···O2Wv0.97 (3)1.85 (4)2.805 (4)166 (3)
O3W—H3B···O40.95 (3)2.06 (3)2.999 (3)172 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support under the POCTI programme (supported by FEDER), and also for the postdoctoral research grant No. SFRH/BPD/9309/2002 (to FNS).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlmeida Paz, F. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). Acta Cryst. C58, m608–m610.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlmeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828.  CrossRef Google Scholar
First citationAlmeida Paz, F. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772–782.  CSD CrossRef CAS Google Scholar
First citationAlmeida Paz, F. A. & Klinowski, J. (2004a). Inorg. Chem. 43, 3882–3893.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAlmeida Paz, F. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3948–3954.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAlmeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. Submitted.  Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.  Web of Science CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–58.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationMafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2005). Chem. Eur. J. In the press.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207–210.  Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. In the press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds