organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­chloro-1-nitro­benzene–1,4-dioxane (4/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Theroretical and Computational Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, bDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and cDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: sarah.barnett@ucl.ac.uk

(Received 21 September 2005; accepted 26 September 2005; online 15 October 2005)

The solvate structure of 3,4-dichloro-1-nitro­benzene with 1,4-dioxane, C6H3Cl2NO2·0.25C4H8N2, is reported. The asymmetric unit comprises two independent 3,4-dichloro-1-nitro­benzene mol­ecules and half of a 1,4-dioxane mol­ecule, the solvent molecule being disposed about a centre of inversion. Double chains of 3,4-dichloro-1-nitro­benzene are linked by Cl⋯Cl inter­actions and 1,4-dioxane mol­ecules via C—H⋯O hydrogen bonds into a two-dimensional sheet.

Comment

The title compound, (I)[link], was produced during an automated parallel crystallization polymorph screen on 3,4-dichloro­nitro­benzene (3,4-DCNB). The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated 1,4-dioxane solution by slow evaporation at 298 K yielded samples suitable for single-crystal X-ray analysis. Compound (I)[link] crystallizes in the space group P[\overline{1}] with two mol­ecules of 3,4-DCNB and one half-mol­ecule of 1,4-dioxane (disposed about a centre of inversion) in the asymmetric unit (Fig. 1[link]).

[Scheme 1]

The crystal structure of (I)[link] is characterized by double chains of 3,4-DCNB, linked by Cl⋯Cl inter­actions and 1,4-dioxane mol­ecules to give a two-dimensional sheet parallel to the (212) plane (Fig. 2[link]). Details of the hydrogen-bonding inter­actions are given in Table 1[link]. 3,4-DCNB mol­ecules of type 2 (C7–C12) are connected to mol­ecules of type 1 (C1–C6) via C—H⋯O hydrogen bonds and N—O⋯Cl inter­actions [O4⋯Cl2iv = 3.013 (1) Å and N2—O4⋯Cl2iv = 146.9 (1)°; symmetry code: (iv) 2 − x, −y, −z]. This chain is linked to another identical, but antiparallel, chain by a second set of C—H⋯O hydrogen bonds. These double chains are joined by Cl⋯Cl inter­actions through the type 2 mol­ecules [Cl3⋯Cl4v = Cl4⋯Cl3v = 3.480 (1) Å and C9—Cl3⋯Cl4v = C10—Cl4⋯Cl3v = 160.3 (1)°; symmetry code: (v): 2 − x, 1 − y, −z], while the type 1 mol­ecules are linked via the 1,4-dioxane solvent mol­ecules by C—H⋯O hydrogen bonds, thereby forming a two-dimensional sheet. These sheets stack parallel to the (212) plane in an ABAB fashion (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the numbering scheme used. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
The two-dimensional network formed by (I)[link], showing the inter­molecular inter­actions involved (dashed lines). Colour key: 3,4-DCNB mol­ecule 1 - green; 3,4-DCNB mol­ecule 2 - blue; 1,4-dioxane - red.
[Figure 3]
Figure 3
Packing diagram showing the stacking of the sheets.

Experimental

A single crystal of the title compound was obtained by recrystallization from a 1,4-dioxane solution by slow evaporation at 298 K.

Crystal data
  • C6H3Cl2NO2·0.25C4H8N2

  • Mr = 214.02

  • Triclinic, [P \overline 1]

  • a = 7.3850 (3) Å

  • b = 9.7359 (3) Å

  • c = 13.7218 (5) Å

  • α = 69.347 (2)°

  • β = 87.209 (2)°

  • γ = 67.945 (2)°

  • V = 851.63 (5) Å3

  • Z = 4

  • Dx = 1.669 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3895 reflections

  • θ = 1.0–27.9°

  • μ = 0.72 mm−1

  • T = 123 (2) K

  • Rod, colourless

  • 0.60 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 15060 measured reflections

  • 4003 independent reflections

  • 3176 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.8°

  • h = −9 → 9

  • k = −12 → 12

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.04

  • 4003 reflections

  • 266 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0337P)2 + 0.3147P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 (2) 2.51 (2) 3.396 (2) 158 (2)
C6—H6⋯O3ii 0.91 (2) 2.55 (2) 3.452 (2) 169 (2)
C2—H2⋯O5iii 0.95 (2) 2.39 (2) 3.325 (2) 168 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y+1, z; (iii) x, y-1, z.

The H atoms were refined without constraint. The range of C—H bond distances is 0.91 (2)–1.01 (2) Å.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek 2003).

3,4-dichloro-1-nitrobenzene–1,4-dioxane (4/1) top
Crystal data top
C6H3Cl2NO2·0.25C4H8N2Z = 4
Mr = 214.02F(000) = 432
Triclinic, P1Dx = 1.669 Mg m3
a = 7.3850 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7359 (3) ÅCell parameters from 3895 reflections
c = 13.7218 (5) Åθ = 1.0–27.9°
α = 69.347 (2)°µ = 0.72 mm1
β = 87.209 (2)°T = 123 K
γ = 67.945 (2)°Rod, colourless
V = 851.63 (5) Å30.60 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
3176 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.8°, θmin = 1.6°
ω and φ scansh = 99
15060 measured reflectionsk = 1212
4003 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.3147P]
where P = (Fo2 + 2Fc2)/3
4003 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62051 (7)0.10542 (5)0.15631 (4)0.02868 (12)
Cl20.56440 (7)0.24589 (6)0.01370 (3)0.02641 (12)
O10.1736 (2)0.23085 (17)0.45702 (12)0.0436 (4)
O20.3028 (2)0.02196 (16)0.48900 (10)0.0327 (3)
N10.2699 (2)0.11647 (19)0.43269 (12)0.0258 (3)
C10.3486 (3)0.1463 (2)0.33009 (13)0.0211 (4)
C20.4415 (3)0.0186 (2)0.29880 (14)0.0201 (4)
C30.5085 (3)0.0494 (2)0.19999 (14)0.0205 (4)
C40.4832 (3)0.2053 (2)0.13667 (13)0.0212 (4)
C50.3906 (3)0.3299 (2)0.17175 (14)0.0227 (4)
C60.3214 (3)0.3016 (2)0.26946 (15)0.0228 (4)
Cl31.03628 (7)0.29879 (5)0.00375 (3)0.02794 (12)
Cl40.81808 (7)0.41958 (5)0.18010 (4)0.03230 (13)
O31.0807 (2)0.35332 (16)0.31897 (11)0.0339 (3)
O41.2726 (2)0.31762 (16)0.19579 (11)0.0366 (4)
N21.1469 (2)0.26881 (18)0.25055 (12)0.0263 (3)
C71.0699 (3)0.0988 (2)0.23400 (14)0.0219 (4)
C81.0946 (3)0.0051 (2)0.13951 (14)0.0223 (4)
C91.0157 (2)0.1663 (2)0.12259 (14)0.0217 (4)
C100.9190 (2)0.2191 (2)0.19974 (14)0.0226 (4)
C110.8980 (3)0.1119 (2)0.29399 (15)0.0238 (4)
C120.9717 (3)0.0484 (2)0.31118 (15)0.0240 (4)
H20.455 (3)0.085 (2)0.3429 (16)0.025 (5)*
H50.377 (3)0.434 (3)0.1269 (17)0.035 (6)*
H60.258 (3)0.383 (3)0.2925 (18)0.036 (6)*
H81.163 (3)0.033 (2)0.0863 (15)0.023 (5)*
H110.829 (3)0.149 (2)0.3452 (17)0.032 (6)*
H120.958 (3)0.124 (2)0.3727 (16)0.027 (5)*
O50.4396 (2)0.65954 (15)0.42982 (10)0.0309 (3)
C130.3659 (3)0.6189 (2)0.52986 (16)0.0314 (5)
C140.3661 (3)0.4539 (2)0.56507 (18)0.0327 (5)
H13A0.449 (3)0.623 (2)0.5844 (17)0.033 (6)*
H13B0.235 (3)0.696 (3)0.5214 (16)0.031 (6)*
H14A0.282 (3)0.449 (3)0.5166 (18)0.040 (7)*
H14B0.324 (3)0.424 (3)0.6353 (18)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0340 (3)0.0252 (2)0.0304 (2)0.0106 (2)0.00622 (19)0.01528 (19)
Cl20.0289 (2)0.0313 (2)0.0184 (2)0.0137 (2)0.00469 (17)0.00619 (18)
O10.0620 (10)0.0296 (8)0.0371 (9)0.0138 (7)0.0248 (8)0.0162 (7)
O20.0473 (9)0.0254 (7)0.0238 (7)0.0182 (7)0.0092 (6)0.0033 (6)
N10.0323 (9)0.0258 (8)0.0216 (8)0.0143 (7)0.0060 (7)0.0083 (7)
C10.0239 (9)0.0223 (9)0.0181 (8)0.0111 (7)0.0030 (7)0.0061 (7)
C20.0232 (9)0.0174 (9)0.0198 (9)0.0098 (7)0.0014 (7)0.0042 (7)
C30.0209 (9)0.0201 (9)0.0219 (9)0.0085 (7)0.0006 (7)0.0084 (7)
C40.0215 (9)0.0265 (9)0.0165 (8)0.0116 (8)0.0014 (7)0.0061 (7)
C50.0265 (10)0.0193 (9)0.0216 (9)0.0113 (8)0.0001 (7)0.0035 (7)
C60.0247 (9)0.0186 (9)0.0245 (9)0.0089 (8)0.0020 (7)0.0063 (8)
Cl30.0295 (2)0.0232 (2)0.0241 (2)0.01112 (19)0.00357 (18)0.00041 (18)
Cl40.0313 (3)0.0179 (2)0.0404 (3)0.00612 (19)0.0082 (2)0.0063 (2)
O30.0415 (8)0.0216 (7)0.0356 (8)0.0160 (6)0.0062 (6)0.0031 (6)
O40.0539 (9)0.0244 (7)0.0307 (8)0.0127 (7)0.0137 (7)0.0128 (6)
N20.0340 (9)0.0206 (8)0.0224 (8)0.0118 (7)0.0004 (7)0.0040 (6)
C70.0230 (9)0.0168 (9)0.0239 (9)0.0082 (7)0.0017 (7)0.0038 (7)
C80.0201 (9)0.0250 (9)0.0219 (9)0.0096 (8)0.0008 (7)0.0074 (8)
C90.0192 (9)0.0212 (9)0.0215 (9)0.0097 (7)0.0004 (7)0.0017 (7)
C100.0170 (8)0.0176 (9)0.0284 (10)0.0050 (7)0.0001 (7)0.0041 (7)
C110.0228 (9)0.0233 (9)0.0242 (9)0.0078 (8)0.0037 (7)0.0084 (8)
C120.0237 (9)0.0233 (9)0.0218 (9)0.0105 (8)0.0018 (7)0.0028 (8)
O50.0418 (8)0.0180 (7)0.0263 (7)0.0080 (6)0.0038 (6)0.0045 (6)
C130.0391 (12)0.0215 (10)0.0288 (11)0.0062 (9)0.0031 (9)0.0093 (8)
C140.0389 (12)0.0260 (11)0.0305 (11)0.0125 (9)0.0063 (9)0.0074 (9)
Geometric parameters (Å, º) top
Cl1—C31.7232 (18)N2—C71.468 (2)
Cl2—C41.7239 (17)C7—C121.383 (3)
O1—N11.225 (2)C7—C81.389 (2)
O2—N11.2288 (19)C8—C91.388 (3)
N1—C11.471 (2)C8—H80.97 (2)
C1—C21.381 (3)C9—C101.389 (3)
C1—C61.386 (2)C10—C111.391 (2)
C2—C31.390 (2)C11—C121.379 (3)
C2—H20.95 (2)C11—H110.94 (2)
C3—C41.402 (2)C12—H120.93 (2)
C4—C51.389 (3)O5—C131.429 (2)
C5—C61.383 (3)O5—C14i1.431 (2)
C5—H50.95 (2)C13—C141.505 (3)
C6—H60.91 (2)C13—H13A1.01 (2)
Cl3—C91.7277 (17)C13—H13B0.95 (2)
Cl4—C101.7306 (18)C14—O5i1.431 (2)
O3—N21.2290 (19)C14—H14A0.95 (2)
O4—N21.226 (2)C14—H14B0.98 (2)
O1—N1—O2123.55 (16)C8—C7—N2118.03 (16)
O1—N1—C1118.33 (15)C9—C8—C7117.93 (17)
O2—N1—C1118.12 (15)C9—C8—H8120.8 (11)
C2—C1—C6123.79 (17)C7—C8—H8121.2 (11)
C2—C1—N1118.21 (15)C8—C9—C10120.03 (16)
C6—C1—N1117.98 (16)C8—C9—Cl3118.88 (14)
C1—C2—C3117.56 (16)C10—C9—Cl3121.07 (14)
C1—C2—H2120.6 (12)C9—C10—C11120.66 (17)
C3—C2—H2121.8 (12)C9—C10—Cl4120.86 (14)
C2—C3—C4120.05 (16)C11—C10—Cl4118.47 (15)
C2—C3—Cl1119.27 (13)C12—C11—C10120.06 (18)
C4—C3—Cl1120.68 (14)C12—C11—H11119.6 (13)
C5—C4—C3120.44 (16)C10—C11—H11120.3 (13)
C5—C4—Cl2118.86 (13)C11—C12—C7118.40 (17)
C3—C4—Cl2120.70 (14)C11—C12—H12122.7 (13)
C6—C5—C4120.27 (16)C7—C12—H12118.9 (13)
C6—C5—H5121.6 (14)C13—O5—C14i109.58 (15)
C4—C5—H5118.1 (14)O5—C13—C14110.90 (17)
C5—C6—C1117.88 (18)O5—C13—H13A110.8 (12)
C5—C6—H6120.7 (14)C14—C13—H13A108.0 (12)
C1—C6—H6121.4 (14)O5—C13—H13B106.1 (12)
C9—Cl3—Cl4ii160.34 (6)C14—C13—H13B110.6 (13)
C10—Cl4—Cl3ii123.59 (6)H13A—C13—H13B110.5 (18)
N2—O4—Cl2iii146.92 (11)O5i—C14—C13110.39 (17)
O4—N2—O3124.17 (16)O5i—C14—H14A108.9 (14)
O4—N2—C7118.39 (15)C13—C14—H14A109.5 (13)
O3—N2—C7117.44 (16)O5i—C14—H14B106.7 (12)
C12—C7—C8122.88 (17)C13—C14—H14B110.9 (13)
C12—C7—N2119.06 (16)H14A—C14—H14B110.3 (18)
O1—N1—C1—C2174.18 (17)O4—N2—C7—C819.4 (3)
O2—N1—C1—C25.1 (3)O3—N2—C7—C8160.61 (17)
O1—N1—C1—C64.5 (3)C12—C7—C8—C90.3 (3)
O2—N1—C1—C6176.17 (16)N2—C7—C8—C9177.85 (16)
C6—C1—C2—C31.0 (3)C7—C8—C9—C101.2 (3)
N1—C1—C2—C3177.61 (15)C7—C8—C9—Cl3177.58 (13)
C1—C2—C3—C40.9 (3)Cl4ii—Cl3—C9—C8112.3 (2)
C1—C2—C3—Cl1178.56 (13)Cl4ii—Cl3—C9—C1069.0 (3)
C2—C3—C4—C50.3 (3)C8—C9—C10—C110.7 (3)
Cl1—C3—C4—C5179.16 (14)Cl3—C9—C10—C11178.06 (14)
C2—C3—C4—Cl2179.71 (13)C8—C9—C10—Cl4179.56 (14)
Cl1—C3—C4—Cl20.3 (2)Cl3—C9—C10—Cl40.8 (2)
C3—C4—C5—C60.3 (3)Cl3ii—Cl4—C10—C921.22 (18)
Cl2—C4—C5—C6179.12 (14)Cl3ii—Cl4—C10—C11159.87 (12)
C4—C5—C6—C10.2 (3)C9—C10—C11—C120.8 (3)
C2—C1—C6—C50.4 (3)Cl4—C10—C11—C12178.15 (15)
N1—C1—C6—C5178.19 (16)C10—C11—C12—C71.6 (3)
Cl2iii—O4—N2—O3148.84 (17)C8—C7—C12—C111.1 (3)
Cl2iii—O4—N2—C731.2 (3)N2—C7—C12—C11179.23 (17)
O4—N2—C7—C12162.35 (17)C14i—O5—C13—C1457.9 (3)
O3—N2—C7—C1217.6 (2)O5—C13—C14—O5i58.4 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1iv0.93 (2)2.51 (2)3.396 (2)158.0 (17)
C6—H6···O3v0.91 (2)2.55 (2)3.452 (2)168.6 (19)
C2—H2···O5vi0.95 (2)2.39 (2)3.325 (2)168.4 (16)
Symmetry codes: (iv) x+1, y, z+1; (v) x1, y+1, z; (vi) x, y1, z.
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk).

References

First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds