organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-4-hydr­­oxy-4′-methyl­benzo­phenone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 21 October 2005; accepted 9 November 2005; online 16 November 2005)

The title compound, C14H11ClO2, possesses normal geometrical parameters. The two benzene rings are twisted by 54.70 (4)°, perhaps as a result of steric repulsion between H atoms. The crystal packing is consolidated by an O—H⋯O hydrogen bond, ππ stacking and C—H⋯O and C—H⋯π inter­actions, resulting in a two-dimensional network.

Comment

The title compound, (I)[link] (Fig. 1[link]), is an inter­mediate for the synthesis of podophyllotoxin and its derivatives which have pharmaceutical applications (Basavaraju & Devaraju, 2002[Basavaraju, Y. B. & Devaraju (2002). Indian J. Heterocyl. Chem. 11, 229-232.]). More generally, benzophenone derivatives have many applications in organic chemistry (Sieron et al., 2004[Sieron, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889-o1891.]; Khanum et al., 2005[Khanum, S. A., Mahendra, M., Shashikantha, S., Doreswarmy, B. H., Sridhar, M. A. & Shashidara Prasad, J. (2005). Acta Cryst. E61, o3615-o3617.]).

[Scheme 1]

Compound (I)[link] possesses normal geometrical parameters (Allen et al., 1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]). The dihedral angle, δ, between the mean planes of the two benzene rings (atoms C1–C6 and C8–C13) is 54.70 (4)°. The C—Cc (c = carbon­yl) C6—C7 [1.480 (2) Å] and C7—C8 [1.482 (2) Å] bond lengths are only slightly shorter than normal C—C single bonds, indicating negligible conjugation between the two aromatic ring systems. The rings may be twisted as a result of steric repulsion between the C5 and C9 H atoms (H5⋯H9 = 2.40 Å; van der Waals contact distance = 2.40 Å), although we note that H9 also participates in a C—H⋯O inter­action (see below). Many other substituted benzophenones possess similar geometrical parameters for the equivalent distances and angles. For example, in 4-dimethyl­amino-4′-[bis­(2-hydroxy­ethyl)amino]benzophenone (El Sayed et al., 2001[El Sayed, M., Müller, H., Rheinwald, G., Lang, H. & Spange, S. (2001). J. Phys. Org. Chem. 14, 247-255.]), H⋯H = 2.38 Å, C—Cc = 1.460 (3) and 1.484 (3) Å, and δ = 47.4 (1)°, and in (3-chloro­phen­yl)(2-hydr­oxy-5-methyl­phen­yl)methanone (Khanum et al., 2005[Khanum, S. A., Mahendra, M., Shashikantha, S., Doreswarmy, B. H., Sridhar, M. A. & Shashidara Prasad, J. (2005). Acta Cryst. E61, o3615-o3617.]) H⋯H = 2.52 Å, C—Cc = 1.468 (3) and 1.493 (3) Å, and δ = 57.37 (12)°.

As well as van der Waals forces, the crystal packing in (I)[link] appears to be controlled by several different inter­molecular inter­actions (Table 1[link]). The most clearcut is an O—H⋯O hydrogen bond that links adjacent mol­ecules of (I)[link] in the b-axis direction. Fig. 2[link] shows that ππ stacking occurs between adjacent inversion-related C1–C6 benzene rings, with a centroid–centroid separation of 3.7642 (10) Å and an inter­planar distance of 3.357 Å. Additionally, a PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] identified probable C—H⋯O and C—H⋯π inter­actions (Table 1[link]). Together, these inter­actions lead to a two-dimensional network that propagates in the ab plane. The packing is shown in Fig. 3[link].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2]
Figure 2
Detail of (I)[link] showing how ππ stacking (pink line) and C—H⋯O (yellow lines) and C—H⋯π (green lines) weak inter­molecular inter­actions help to establish the crystal packing. Symmetry codes as in Table 1[link]; additionally (iv) 1 − x, 1 − y, −z.
[Figure 3]
Figure 3
The packing for (I)[link], with all H atoms except H1 omitted for clarity. The O—H⋯O hydrogen bond is indicated by a dashed line. The mol­ecule containing O2* is generated by the symmetry code (x, 1 + y, z).

Experimental

A solution of o-chloro­phenol (1 g, 0.0077 mol) in dry dichloro­methane (10 ml) was treated with anhydrous aluminium chloride (1.037 g, 0.0077 mol). The reaction mixture was stirred continuously for 30 min and then cooled. To this, a solution of toluoyl chloride (1.203 g, 0.0077 mol) in methyl­ene chloride (10 ml) was added dropwise and the mixture kept overnight. After 24 h, about 5 ml of concentrated HCl was added and the reaction mixture was stirred for another 24 h. Aqueous NaCl solution (10%) was added to break the emulsion and the lower organic layer was separated and washed with 10% brine. Excess dichloromethane was distilled off on a water bath. The concentrated solution was kept overnight, resulting in a pale-brown solid (yield: 89.2%; m.p. 352 K). Colourless single crystals of (I)[link] were recrystallized from a 1:1 mixture of acetone and acetonitrile.

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Triclinic, [P \overline 1]

  • a = 7.1062 (3) Å

  • b = 8.5441 (5) Å

  • c = 9.8766 (6) Å

  • α = 86.124 (3)°

  • β = 83.804 (3)°

  • γ = 77.290 (3)°

  • V = 580.96 (5) Å3

  • Z = 2

  • Dx = 1.410 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2534 reflections

  • θ = 2.9–27.5°

  • μ = 0.31 mm−1

  • T = 120 (2) K

  • Cut block, colourless

  • 0.32 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.906, Tmax = 0.969

  • 11199 measured reflections

  • 2684 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.8°

  • h = −9 → 9

  • k = −11 → 11

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.05

  • 2684 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1677P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.78 (2) 1.93 (2) 2.6418 (17) 150 (2)
C9—H9⋯O1ii 0.95 2.48 3.375 (2) 157
C13—H13⋯Cg1iii 0.95 2.59 3.3908 (17) 142
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+2, -z. Cg1 is the centroid of the C1–C6 ring

The hydr­oxy H atom was located in a difference map and its position was freely refined with the constraint Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The —CH3 group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

3-Chloro-4-hydroxy-4'-methylbenzophenone top
Crystal data top
C14H11ClO2Z = 2
Mr = 246.68F(000) = 256
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1062 (3) ÅCell parameters from 2534 reflections
b = 8.5441 (5) Åθ = 2.9–27.5°
c = 9.8766 (6) ŵ = 0.31 mm1
α = 86.124 (3)°T = 120 K
β = 83.804 (3)°Cut block, colourless
γ = 77.290 (3)°0.32 × 0.16 × 0.10 mm
V = 580.96 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.8°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.906, Tmax = 0.969k = 1111
11199 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difmap (O-H) and geom (others)
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1677P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8691 (2)0.7775 (2)0.13871 (18)0.0173 (4)
H20.91980.85580.19530.021*
C20.8806 (2)0.6279 (2)0.18629 (17)0.0169 (4)
C30.8048 (2)0.5108 (2)0.10592 (18)0.0171 (4)
C40.7215 (2)0.5473 (2)0.02553 (18)0.0179 (4)
H40.67120.46860.08200.021*
C50.7113 (2)0.6977 (2)0.07467 (18)0.0176 (4)
H50.65500.72080.16470.021*
C60.7830 (2)0.8149 (2)0.00730 (17)0.0164 (4)
C70.7567 (2)0.9819 (2)0.03481 (18)0.0175 (4)
C80.7257 (2)1.0217 (2)0.18041 (18)0.0171 (4)
C90.8176 (3)0.9232 (2)0.28295 (18)0.0188 (4)
H90.89700.82130.26210.023*
C100.7929 (3)0.9743 (2)0.41554 (19)0.0213 (4)
H100.85730.90700.48450.026*
C110.6753 (3)1.1224 (2)0.44931 (19)0.0225 (4)
C120.5813 (3)1.2185 (2)0.34659 (19)0.0219 (4)
H120.49841.31890.36800.026*
C130.6067 (2)1.1701 (2)0.21448 (18)0.0186 (4)
H130.54281.23820.14570.022*
C140.6528 (3)1.1784 (3)0.5928 (2)0.0324 (5)
H14A0.53531.26310.60580.049*
H14B0.76591.22070.60830.049*
H14C0.64261.08790.65760.049*
O10.81397 (19)0.36984 (15)0.16234 (13)0.0220 (3)
H10.780 (3)0.308 (3)0.108 (2)0.026*
O20.75791 (19)1.09033 (14)0.05454 (13)0.0235 (3)
Cl10.99046 (7)0.58148 (5)0.34839 (5)0.02638 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (9)0.0155 (8)0.0175 (9)0.0062 (7)0.0020 (7)0.0008 (7)
C20.0189 (9)0.0175 (9)0.0138 (9)0.0020 (7)0.0013 (7)0.0027 (7)
C30.0182 (8)0.0122 (8)0.0215 (9)0.0023 (7)0.0055 (7)0.0035 (7)
C40.0195 (9)0.0163 (9)0.0191 (9)0.0066 (7)0.0029 (7)0.0017 (7)
C50.0188 (9)0.0182 (9)0.0157 (9)0.0037 (7)0.0015 (7)0.0012 (7)
C60.0176 (9)0.0162 (8)0.0156 (9)0.0029 (7)0.0034 (7)0.0020 (7)
C70.0174 (9)0.0164 (9)0.0196 (9)0.0051 (7)0.0010 (7)0.0025 (7)
C80.0188 (8)0.0157 (8)0.0188 (9)0.0078 (7)0.0015 (7)0.0027 (7)
C90.0202 (9)0.0167 (9)0.0203 (9)0.0053 (7)0.0008 (7)0.0033 (7)
C100.0236 (9)0.0219 (9)0.0203 (10)0.0077 (8)0.0047 (7)0.0002 (7)
C110.0224 (9)0.0277 (10)0.0203 (10)0.0114 (8)0.0019 (7)0.0082 (8)
C120.0221 (9)0.0171 (9)0.0266 (10)0.0040 (8)0.0006 (8)0.0079 (8)
C130.0189 (9)0.0160 (8)0.0217 (10)0.0045 (7)0.0029 (7)0.0023 (7)
C140.0344 (11)0.0406 (12)0.0239 (11)0.0101 (10)0.0013 (9)0.0137 (9)
O10.0331 (8)0.0122 (6)0.0218 (7)0.0071 (6)0.0003 (6)0.0035 (5)
O20.0368 (8)0.0146 (6)0.0192 (7)0.0063 (6)0.0012 (6)0.0000 (5)
Cl10.0371 (3)0.0229 (3)0.0189 (3)0.0084 (2)0.00578 (19)0.00673 (18)
Geometric parameters (Å, º) top
C1—C21.374 (2)C8—C131.400 (2)
C1—C61.400 (2)C9—C101.389 (3)
C1—H20.9500C9—H90.9500
C2—C31.400 (2)C10—C111.393 (3)
C2—Cl11.7349 (17)C10—H100.9500
C3—O11.346 (2)C11—C121.394 (3)
C3—C41.393 (2)C11—C141.507 (3)
C4—C51.388 (2)C12—C131.377 (3)
C4—H40.9500C12—H120.9500
C5—C61.395 (2)C13—H130.9500
C5—H50.9500C14—H14A0.9800
C6—C71.480 (2)C14—H14B0.9800
C7—O21.236 (2)C14—H14C0.9800
C7—C81.482 (2)O1—H10.78 (2)
C8—C91.395 (2)
C2—C1—C6120.31 (16)C13—C8—C7117.82 (15)
C2—C1—H2119.8C10—C9—C8119.97 (17)
C6—C1—H2119.8C10—C9—H9120.0
C1—C2—C3121.09 (16)C8—C9—H9120.0
C1—C2—Cl1120.04 (14)C9—C10—C11121.24 (17)
C3—C2—Cl1118.87 (13)C9—C10—H10119.4
O1—C3—C4124.00 (16)C11—C10—H10119.4
O1—C3—C2117.39 (16)C10—C11—C12118.31 (17)
C4—C3—C2118.60 (15)C10—C11—C14120.88 (18)
C5—C4—C3120.55 (16)C12—C11—C14120.80 (17)
C5—C4—H4119.7C13—C12—C11120.97 (17)
C3—C4—H4119.7C13—C12—H12119.5
C4—C5—C6120.45 (16)C11—C12—H12119.5
C4—C5—H5119.8C12—C13—C8120.71 (17)
C6—C5—H5119.8C12—C13—H13119.6
C5—C6—C1118.97 (15)C8—C13—H13119.6
C5—C6—C7122.40 (16)C11—C14—H14A109.5
C1—C6—C7118.42 (15)C11—C14—H14B109.5
O2—C7—C6118.64 (15)H14A—C14—H14B109.5
O2—C7—C8119.70 (15)C11—C14—H14C109.5
C6—C7—C8121.65 (15)H14A—C14—H14C109.5
C9—C8—C13118.79 (16)H14B—C14—H14C109.5
C9—C8—C7123.28 (16)C3—O1—H1110.8 (17)
C6—C1—C2—C30.8 (3)C1—C6—C7—C8160.64 (15)
C6—C1—C2—Cl1179.11 (12)O2—C7—C8—C9144.16 (17)
C1—C2—C3—O1177.04 (16)C6—C7—C8—C937.0 (2)
Cl1—C2—C3—O13.0 (2)O2—C7—C8—C1332.0 (2)
C1—C2—C3—C41.7 (3)C6—C7—C8—C13146.81 (16)
Cl1—C2—C3—C4178.26 (13)C13—C8—C9—C101.1 (2)
O1—C3—C4—C5177.62 (16)C7—C8—C9—C10175.03 (16)
C2—C3—C4—C51.0 (3)C8—C9—C10—C110.8 (3)
C3—C4—C5—C60.5 (3)C9—C10—C11—C120.4 (3)
C4—C5—C6—C11.4 (3)C9—C10—C11—C14178.65 (17)
C4—C5—C6—C7173.28 (16)C10—C11—C12—C131.3 (3)
C2—C1—C6—C50.7 (3)C14—C11—C12—C13177.77 (17)
C2—C1—C6—C7174.16 (15)C11—C12—C13—C81.0 (3)
C5—C6—C7—O2154.18 (17)C9—C8—C13—C120.3 (3)
C1—C6—C7—O220.5 (2)C7—C8—C13—C12176.10 (15)
C5—C6—C7—C824.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.78 (2)1.93 (2)2.6418 (17)150 (2)
C9—H9···O1ii0.952.483.375 (2)157
C13—H13···Cg1iii0.952.593.3908 (17)142
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+1, y+2, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBasavaraju, Y. B. & Devaraju (2002). Indian J. Heterocyl. Chem. 11, 229–232.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Sayed, M., Müller, H., Rheinwald, G., Lang, H. & Spange, S. (2001). J. Phys. Org. Chem. 14, 247–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhanum, S. A., Mahendra, M., Shashikantha, S., Doreswarmy, B. H., Sridhar, M. A. & Shashidara Prasad, J. (2005). Acta Cryst. E61, o3615–o3617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSieron, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889–o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds