metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chloro­methyl­di­pyridine­palladium(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: gareth.owen@bris.ac.uk

(Received 20 September 2005; accepted 14 November 2005; online 19 November 2005)

The title compound, [Pd(CH3)Cl(C5H5N)2], has been synthesized by the reaction of [PdMeCl(COD)] (COD is 1,5-cyclo­octa­diene) with pyridine in dichloro­methane; it is square-planar. The crystal structure features dipole–dipole and π stacking interactions.

Comment

trans-[Pd(pyridine)2(Me)Cl], (I)[link], was prepared by addition of an excess of pyridine to [PdMeCl(COD)] (COD is 1,5-cyclo­octa­diene). Fig. 1[link] shows the mol­ecular geometry in the crystal structure and the atom-labelling scheme. The crystal structure comprises ordered individual square-planar mol­ecules of trans-[Pd(pyridine)2(Me)Cl] in a general position; the torsion angles C2—N1—Pd1—C1 and C7—N2—Pd1—C1 are 60.31 (13) and 54.71 (13)°, respectively. The angle between the planes of the pyridine rings is 67.33 (5)°.

[Scheme 1]

Selected geometric parameters are given in Table 1[link]. The bond lengths are in the usual range for PdII—C,Cl,N (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The mol­ecules in the crystal structure are packed in pairs with a Pd⋯Pd distance of 3.7731 (3) Å. In these pairs, the methyl ligand sits above the chloride ligand and vice versa in each case, which may reflect a dipole–dipole inter­action between the two mol­ecules (see Fig. 2[link]). Some π stacking [inter­planar distance of 3.403 (3) Å] occurs between the pyridine rings in adjacent pairs (see Fig. 3[link]), with the rings offset by about one ring width.

The crystal structure is not isostructural with either [M(pyridine)2Cl2] where M = Pd (Viossat et al., 1993[Viossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84-85.]) or Pt (Colamarino & Orioli, 1975[Colamarino, P. & Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656-1659.]).

[Figure 1]
Figure 1
The molecular structure with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level, with H atoms represented as spheres of arbitrary size.
[Figure 2]
Figure 2
Pair of mol­ecules within the crystal structure. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The π stacking in the crystal structure.

Experimental

A round-bottomed flask was charged with [PdMeCl(COD)] (0.100 g, 0.378 mmol) and CH2Cl2 (20 ml). Pyridine (0.15 ml, 1.833 mmol) was added to the solution and the mixture was stirred for 1 h. Hexane (50 ml) was added to the mixture and the volume was reduced to ca 20 ml. The resulting white solid was isolated by filtration, washed with two portions of diethyl ether (2 × 20 ml) and dried under vacuum to give a white solid (1.030 g, 0.327 mmol, 87%). A pale-yellow crystal of irregular shape was selected. IR (cm−1, powder film): 1603 (s, pyridine). 1H NMR (CDCl3): δ 8.80 (m, 4H, o-pyridine), 7.69 (m, 2H, p-pyridine), 7.27 (m, 4H, m-pyridine), 0.73 (s, 3H, Pd—CH3).

Crystal data
  • [Pd(CH3)Cl(C5H5N)2]

  • Mr = 315.08

  • Monoclinic, C 2/c

  • a = 13.2867 (9) Å

  • b = 11.9185 (8) Å

  • c = 16.2352 (10) Å

  • β = 109.5030 (10)°

  • V = 2423.5 (3) Å3

  • Z = 8

  • Dx = 1.727 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 157 reflections

  • θ = 2.4–27.5°

  • μ = 1.72 mm−1

  • T = 173 (2) K

  • Irregular block, pale yellow

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.583, Tmax = 0.710

  • 12619 measured reflections

  • 2785 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 27.5°

  • h = −17 → 16

  • k = −15 → 15

  • l = −19 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.29

  • 2785 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0245P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Pd1—N1 2.0441 (13)
Pd1—C1 2.0457 (17)
Pd1—N2 2.0484 (13)
Pd1—Cl2 2.4612 (4)
N1—Pd1—C1 90.58 (6)
N1—Pd1—N2 177.92 (5)
C1—Pd1—N2 88.24 (6)
N1—Pd1—Cl2 90.15 (4)
C1—Pd1—Cl2 178.55 (5)
N2—Pd1—Cl2 90.99 (4)
Cl2—Pd1—N1—C6 56.97 (12)
C1—Pd1—N1—C2 60.31 (13)

H atoms were treated as riding, with C—H distances of 0.95 and 0.98Å and with Uiso(H) values of 1.2 and 1.5 times Ueq(C) for aromatic and methyl H atoms, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.054) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.054) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

trans-Chloromethyldipyridinepalladium(II) top
Crystal data top
[Pd(CH3)Cl(C5H5N)2]F(000) = 1248
Mr = 315.08Dx = 1.727 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 157 reflections
a = 13.2867 (9) Åθ = 2.4–27.5°
b = 11.9185 (8) ŵ = 1.72 mm1
c = 16.2352 (10) ÅT = 173 K
β = 109.503 (1)°Irregular block, pale yellow
V = 2423.5 (3) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.2 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.583, Tmax = 0.710l = 1921
12619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.062581 (9)0.008712 (9)0.372793 (8)0.01997 (6)
Cl20.23773 (3)0.04033 (3)0.36210 (3)0.02563 (10)
N10.10037 (11)0.17528 (11)0.37603 (8)0.0223 (3)
N20.02377 (11)0.15749 (10)0.37380 (8)0.0217 (3)
C10.08206 (13)0.04720 (14)0.38455 (10)0.0246 (3)
H1A0.13940.02200.33220.037*
H1B0.08720.12860.39100.037*
H1C0.08880.00950.43610.037*
C20.10611 (14)0.24128 (14)0.44480 (11)0.0278 (4)
H20.08540.21130.49090.033*
C30.14110 (14)0.35124 (14)0.45058 (13)0.0339 (4)
H30.14600.39530.50050.041*
C40.16875 (15)0.39606 (14)0.38265 (14)0.0365 (4)
H40.19260.47150.38520.044*
C50.16141 (14)0.33025 (14)0.31124 (13)0.0330 (4)
H50.17910.35980.26350.040*
C60.12756 (13)0.21961 (13)0.31028 (11)0.0271 (4)
H60.12350.17380.26140.032*
C70.06616 (13)0.20216 (13)0.31811 (11)0.0249 (3)
H70.11470.15470.27640.030*
C80.09049 (14)0.31500 (13)0.31948 (12)0.0301 (4)
H80.15460.34430.27920.036*
C90.01998 (15)0.38495 (14)0.38043 (12)0.0332 (4)
H90.03510.46260.38260.040*
C100.07253 (14)0.33933 (14)0.43770 (12)0.0311 (4)
H100.12190.38520.48020.037*
C110.09239 (14)0.22639 (14)0.43250 (11)0.0260 (4)
H110.15660.19580.47160.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02057 (9)0.01871 (8)0.02094 (9)0.00136 (4)0.00736 (6)0.00087 (4)
Cl20.0216 (2)0.0274 (2)0.0272 (2)0.00200 (15)0.00724 (16)0.00500 (15)
N10.0211 (7)0.0210 (6)0.0253 (7)0.0023 (5)0.0087 (6)0.0027 (5)
N20.0200 (7)0.0218 (6)0.0243 (7)0.0001 (5)0.0086 (5)0.0008 (5)
C10.0240 (8)0.0251 (8)0.0260 (8)0.0010 (6)0.0100 (7)0.0030 (6)
C20.0301 (9)0.0269 (8)0.0281 (9)0.0009 (7)0.0120 (7)0.0032 (7)
C30.0327 (10)0.0262 (8)0.0441 (11)0.0033 (7)0.0143 (8)0.0117 (7)
C40.0312 (10)0.0202 (8)0.0626 (13)0.0029 (7)0.0215 (9)0.0034 (8)
C50.0313 (10)0.0287 (8)0.0452 (11)0.0007 (7)0.0213 (8)0.0063 (7)
C60.0271 (9)0.0278 (8)0.0280 (9)0.0005 (7)0.0114 (7)0.0007 (7)
C70.0215 (8)0.0251 (8)0.0274 (8)0.0002 (6)0.0075 (7)0.0020 (6)
C80.0240 (9)0.0272 (8)0.0382 (10)0.0047 (7)0.0093 (8)0.0035 (7)
C90.0336 (10)0.0221 (8)0.0481 (11)0.0015 (7)0.0192 (8)0.0015 (7)
C100.0310 (10)0.0265 (8)0.0368 (10)0.0074 (7)0.0125 (8)0.0079 (7)
C110.0245 (9)0.0280 (8)0.0251 (8)0.0011 (6)0.0077 (7)0.0006 (6)
Geometric parameters (Å, º) top
Pd1—N12.0441 (13)C4—C51.376 (3)
Pd1—C12.0457 (17)C4—H40.9500
Pd1—N22.0484 (13)C5—C61.392 (2)
Pd1—Cl22.4612 (4)C5—H50.9500
N1—C61.344 (2)C6—H60.9500
N1—C21.347 (2)C7—C81.385 (2)
N2—C71.344 (2)C7—H70.9500
N2—C111.354 (2)C8—C91.390 (2)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.381 (2)
C1—H1C0.9800C9—H90.9500
C2—C31.383 (2)C10—C111.380 (2)
C2—H20.9500C10—H100.9500
C3—C41.381 (3)C11—H110.9500
C3—H30.9500
N1—Pd1—C190.58 (6)C5—C4—C3119.31 (16)
N1—Pd1—N2177.92 (5)C5—C4—H4120.3
C1—Pd1—N288.24 (6)C3—C4—H4120.3
N1—Pd1—Cl290.15 (4)C4—C5—C6118.77 (17)
C1—Pd1—Cl2178.55 (5)C4—C5—H5120.6
N2—Pd1—Cl290.99 (4)C6—C5—H5120.6
C6—N1—C2118.22 (14)N1—C6—C5122.36 (16)
C6—N1—Pd1119.36 (10)N1—C6—H6118.8
C2—N1—Pd1122.27 (11)C5—C6—H6118.8
C7—N2—C11118.14 (14)N2—C7—C8122.24 (15)
C7—N2—Pd1123.18 (10)N2—C7—H7118.9
C11—N2—Pd1118.68 (11)C8—C7—H7118.9
Pd1—C1—H1A109.5C7—C8—C9119.23 (16)
Pd1—C1—H1B109.5C7—C8—H8120.4
H1A—C1—H1B109.5C9—C8—H8120.4
Pd1—C1—H1C109.5C10—C9—C8118.67 (15)
H1A—C1—H1C109.5C10—C9—H9120.7
H1B—C1—H1C109.5C8—C9—H9120.7
N1—C2—C3122.29 (17)C11—C10—C9119.22 (16)
N1—C2—H2118.9C11—C10—H10120.4
C3—C2—H2118.9C9—C10—H10120.4
C4—C3—C2119.03 (17)N2—C11—C10122.49 (16)
C4—C3—H3120.5N2—C11—H11118.8
C2—C3—H3120.5C10—C11—H11118.8
C1—Pd1—N1—C6124.28 (13)C3—C4—C5—C60.9 (3)
Cl2—Pd1—N1—C656.97 (12)C2—N1—C6—C50.2 (2)
C1—Pd1—N1—C260.31 (13)Pd1—N1—C6—C5175.38 (13)
Cl2—Pd1—N1—C2118.44 (13)C4—C5—C6—N11.0 (3)
C1—Pd1—N2—C754.71 (13)C11—N2—C7—C80.4 (2)
Cl2—Pd1—N2—C7126.52 (12)Pd1—N2—C7—C8179.50 (13)
C1—Pd1—N2—C11126.19 (13)N2—C7—C8—C90.1 (3)
Cl2—Pd1—N2—C1152.58 (12)C7—C8—C9—C100.2 (3)
C6—N1—C2—C31.5 (2)C8—C9—C10—C110.3 (3)
Pd1—N1—C2—C3173.95 (13)C7—N2—C11—C100.9 (2)
N1—C2—C3—C41.6 (3)Pd1—N2—C11—C10179.97 (14)
C2—C3—C4—C50.3 (3)C9—C10—C11—N20.8 (3)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART (Version 5.054) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColamarino, P. & Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656–1659.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationViossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84–85.  CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds