organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-(4-nitro­phen­yl)-1-phenyl-1,7-di­hydro-6H-pyrazolo[3,4-b]thia­zolo[5,4-e]pyridine-6-thione–di­methyl­formamide (1/1)

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química, Universidad de Nariño, Cuidad Universitaria, Torobajo, AA 1175 Pasto, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 25 October 2005; accepted 28 October 2005; online 5 November 2005)

The title compound is a stoichiometric solvate, C20H13N5O2S2·C3H7NO, in which the two components are linked by an N—H⋯O hydrogen bond. The heterocyclic mol­ecules are linked into chains by a combination of a C—H⋯S=C hydrogen bond and a ππ stacking inter­action.

Comment

With the aim of preparing new classes of fused thia­zolo systems, we have synthesized a novel series of 5-aryl­methyl­ene-2-thioxothia­zolidin-4-ones (Delgado et al., 2005[Delgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477-o482.]) as inter­mediates for cyclo­condensation reactions. We report here the structure of 3-methyl-4-(4-nitro­phen­yl)-1-phenyl-1,7-dihydro-6H-pyrazolo[3,4-b]thia­zolo[5,4-e]pyridin-6-thione, formed by the reaction of 5-(4-nitro­benzyl­iden)-2-thi­oxo­thia­zolidin-4-one with 5-amino-3-methyl-1-phenyl­pyrazole, and crystallized as its dimethyl­formamide solvate, (I)[link].

[Scheme 1]

The title compound (Fig. 1[link]) is a stoichiometric solvate in which the two independent components are linked by an almost linear N—H⋯O hydrogen bond (Table 2[link]).

Within the heterocyclic component, the bond distances (Table 1[link]) indicate electronic delocalization within the pyridine ring, with strong bond fixation in the pyrazole ring. The dihedral angle between the unsubstituted phenyl ring, C11–C16, and the pyrazole ring is only 6.1 (2)°, and this near planarity may be associated with the two intra­molecular C—H⋯N contacts (Table 2[link]). On the other hand, the nitrated phenyl ring, C41–C46, makes a dihedral angle of 57.7 (2)° with the pyridine ring, thus precluding the development of quinonoid forms such as (II).

There are two weak inter­molecular inter­actions between the heterocyclic mol­ecules, which may be of structural significance. Aryl atom C46 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the thione atom S6 in the mol­ecule at ([{1\over 2}] + x, [{1\over 2}]y, [{1\over 2}] + z), thereby forming a C(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [101] direction and generated by the n-glide plane at y = 0.25 (Fig. 2[link]). This chain is reinforced by a ππ stacking inter­action between the unsubstituted phenyl ring in the mol­ecule at (x, y, z) and the pyridine ring in the mol­ecule at ([{1\over 2}] + x, [{1\over 2}]y, [{1\over 2}] + z); these rings are nearly parallel, with a dihedral angle between them of only 5.8 (2)°. The ring-centroid separation is 3.545 (2) Å and the inter­planar spacing is ca 3.41 Å, corresponding to a ring-centroid offset of ca 0.97 Å. Two [101] chains pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
The independent components of (I)[link], showing displacement ellipsoids drawn at the 30% probability level. For the sake of clarity, only the major orientation of the dimethyl­formamide component is shown, with only one orientation of the methyl groups. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of (I)[link], showing the formation of a [101] chain built from C—H⋯S=C hydrogen bonds (dashed lines) and ππ stacking inter­actions. For the sake of clarity, the solvent mol­ecules and the H atoms not involved in the motif shown have been omitted.

Experimental

A solution containing equimolar quantities (1 mmol of each component) of 5-amino-3-methyl-1-phenyl­pyrazole and 5-(4-nitro­benzyl­iden)-2-thioxothia­zolidin-4-one in dimethyl­formamide (DMF; 3 ml) was heated under reflux for 6 h. The reaction mixture was cooled, and ethanol was added before the combined solvents were removed under reduced pressure. The resulting solid product was recrystallized from DMF to yield orange crystals suitable for single-crystal X-ray diffraction. Yield 90%; m.p. 530 K. MS (70 eV) m/z (%) 421 (13, M++2); 420 (28, M++1); 419 (100, M+); 372 (6).

Crystal data
  • C20H13N5O2S2·C3H7NO

  • Mr = 492.57

  • Monoclinic, P 21 /n

  • a = 9.3023 (2) Å

  • b = 25.5447 (7) Å

  • c = 10.3794 (2) Å

  • β = 113.7660 (13)°

  • V = 2257.25 (9) Å3

  • Z = 4

  • Dx = 1.449 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5163 reflections

  • θ = 3.4–27.6°

  • μ = 0.28 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.62 × 0.44 × 0.22 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.848, Tmax = 0.942

  • 25526 measured reflections

  • 5163 independent reflections

  • 4088 reflections with I > 2σ(I)

  • Rint = 0.004

  • θmax = 27.6°

  • h = −12 → 12

  • k = −32 → 33

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.04

  • 5163 reflections

  • 315 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0667P)2 + 2.3558P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

N1—N2 1.383 (3)
N2—C3 1.322 (3)
C3—C3A 1.433 (3)
C3A—C4 1.408 (3)
C4—C4A 1.387 (3)
C4A—S5 1.745 (2)
S5—C6 1.749 (2)
C6—N7 1.350 (3)
N7—C7A 1.380 (3)
C7A—N8 1.328 (3)
N8—C8A 1.339 (3)
C8A—N1 1.373 (3)
C3A—C8A 1.412 (3)
C4A—C7A 1.414 (3)
C6—S6 1.656 (2)
N2—N1—C11—C12 3.8 (3)
C8A—N1—C11—C12 −174.1 (2)
N2—N1—C11—C16 −177.4 (2)
C8A—N1—C11—C16 4.8 (4)
C3A—C4—C41—C42 128.2 (2)
C4A—C4—C41—C42 −56.1 (3)
C3A—C4—C41—C46 −56.6 (3)
C4A—C4—C41—C46 119.1 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O21 0.88 1.84 2.711 (3) 170
C12—H12⋯N2 0.95 2.41 2.758 (4) 102
C16—H16⋯N8 0.95 2.32 2.975 (4) 126
C46—H46⋯S6i 0.95 2.80 3.743 (3) 176
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

All H atoms were located in difference maps and subsequently treated as riding atoms with C—H = 0.95 (CH) or 0.98 Å (CH3), and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. It was apparent from an early stage that the methyl groups of the dimethyl­formamide component were disordered over two sets of sites, corresponding to two conformations of this mol­ecule. This disorder was modelled using common sites for the N—CHO fragment in the two conformations and two distinct sets of sites for the methyl C atoms; the refined values of the site occupancy factors were 0.598 (8) and 0.402 (8). In addition, it was necessary to model each of the methyl groups using six half-occupancy H-atom sites, offset from one another by 60°. The crystals of (I)[link] were very fragile, and attempts to cut small fragments from larger crystals consistently led to the shattering of the crystals. The highest peak in the difference map is located 1.05 Å from one of the methyl H atoms in the minor orientation of the disordered solvent component.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

3-Methyl-4-(4-nitrophenyl)-1-phenyl-1,7-dihydro-6H- pyrazolo[3,4-b]thiazolo[5,4-e]pyridine-6- thione–dimethylformamide (1/1) top
Crystal data top
C20H13N5O2S2·C3H7NOF(000) = 1024
Mr = 492.57Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5163 reflections
a = 9.3023 (2) Åθ = 3.4–27.6°
b = 25.5447 (7) ŵ = 0.28 mm1
c = 10.3794 (2) ÅT = 120 K
β = 113.7660 (13)°Block, yellow
V = 2257.25 (9) Å30.62 × 0.44 × 0.22 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5163 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode4088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.004
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3233
Tmin = 0.848, Tmax = 0.942l = 1313
25526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0667P)2 + 2.3558P]
where P = (Fo2 + 2Fc2)/3
5163 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 1.12 e Å3
4 restraintsΔρmin = 0.80 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S50.04959 (6)0.23186 (2)0.42860 (6)0.02374 (15)
S60.02305 (7)0.11493 (2)0.43299 (7)0.03246 (17)
O410.3219 (3)0.46091 (10)0.3239 (3)0.0649 (7)
O420.1921 (3)0.48677 (8)0.5375 (3)0.0534 (6)
N10.6937 (2)0.29852 (7)0.6336 (2)0.0238 (4)
N20.6898 (2)0.35265 (8)0.6311 (2)0.0266 (4)
N70.2870 (2)0.17113 (7)0.4987 (2)0.0236 (4)
N80.5055 (2)0.22780 (7)0.57145 (19)0.0225 (4)
N440.2077 (3)0.45932 (9)0.4352 (3)0.0416 (6)
C30.5410 (3)0.36700 (9)0.5849 (2)0.0245 (5)
C3A0.4412 (2)0.32185 (9)0.5548 (2)0.0221 (5)
C40.2784 (2)0.31267 (9)0.5036 (2)0.0206 (4)
C4A0.2353 (2)0.26033 (9)0.4831 (2)0.0212 (4)
C60.1294 (3)0.16877 (9)0.4549 (2)0.0242 (5)
C7A0.3511 (2)0.22072 (9)0.5187 (2)0.0216 (4)
C8A0.5441 (2)0.27860 (9)0.5853 (2)0.0213 (4)
C110.8420 (2)0.27248 (9)0.6862 (2)0.0236 (5)
C120.9776 (3)0.30312 (10)0.7410 (3)0.0296 (5)
C131.1232 (3)0.27921 (10)0.7969 (3)0.0314 (5)
C141.1366 (3)0.22527 (10)0.7992 (2)0.0293 (5)
C151.0010 (3)0.19517 (10)0.7431 (2)0.0289 (5)
C160.8536 (3)0.21845 (10)0.6862 (3)0.0272 (5)
C310.4970 (3)0.42329 (10)0.5684 (3)0.0317 (5)
C410.1576 (2)0.35366 (8)0.4808 (2)0.0214 (4)
C420.0288 (3)0.35766 (9)0.3520 (2)0.0264 (5)
C430.0918 (3)0.39259 (9)0.3358 (3)0.0307 (5)
C440.0803 (3)0.42273 (9)0.4488 (3)0.0285 (5)
C450.0474 (3)0.42075 (10)0.5768 (3)0.0319 (5)
C460.1674 (3)0.38572 (9)0.5925 (3)0.0277 (5)
O210.4894 (3)0.08967 (9)0.5501 (2)0.0591 (6)
N210.6802 (3)0.03981 (10)0.5281 (3)0.0533 (7)
C220.5487 (4)0.06737 (13)0.4825 (4)0.0596 (9)
C23A0.7141 (10)0.0072 (3)0.4277 (10)0.059 (2)0.598 (8)
C24A0.7980 (6)0.0502 (3)0.6634 (5)0.0647 (17)0.598 (8)
C23B0.7698 (16)0.0199 (5)0.4515 (16)0.059 (2)0.402 (8)
C24B0.7343 (11)0.0154 (4)0.6705 (6)0.0647 (17)0.402 (8)
H70.34350.14260.50890.028*
H120.96980.34020.73990.036*
H131.21540.30010.83430.038*
H141.23700.20900.83840.035*
H151.00910.15810.74360.035*
H160.76160.19750.64770.033*
H220.49420.06980.38310.071*
H31A0.46720.43410.64490.048*
H31B0.40810.42870.47780.048*
H31C0.58670.44420.57170.048*
H420.02350.33650.27500.032*
H430.18020.39550.24850.037*
H450.05310.44280.65230.038*
H460.25630.38360.67960.033*
H23A0.81360.01130.47690.088*0.299 (4)
H23B0.72200.02940.35380.088*0.299 (4)
H23C0.62930.01830.38530.088*0.299 (4)
H23D0.62970.01120.33380.088*0.299 (4)
H23E0.72120.02960.45680.088*0.299 (4)
H23F0.81400.01810.42540.088*0.299 (4)
H24A0.88720.02660.68170.097*0.299 (4)
H24B0.75520.04450.73450.097*0.299 (4)
H24C0.83300.08660.66780.097*0.299 (4)
H24D0.76310.07850.70760.097*0.299 (4)
H24E0.89510.06060.65480.097*0.299 (4)
H24F0.81720.01860.72150.097*0.299 (4)
H23G0.86960.00550.51830.088*0.201 (4)
H23H0.79050.04850.39840.088*0.201 (4)
H23I0.70950.00760.38640.088*0.201 (4)
H23J0.71010.02550.35040.088*0.201 (4)
H23K0.78930.01760.47030.088*0.201 (4)
H23L0.87020.03850.48230.088*0.201 (4)
H24G0.73900.02270.66170.097*0.201 (4)
H24H0.66050.02410.71300.097*0.201 (4)
H24I0.83890.02870.73010.097*0.201 (4)
H24J0.75330.04280.74150.097*0.201 (4)
H24K0.83180.00400.69020.097*0.201 (4)
H24L0.65340.00860.67310.097*0.201 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0136 (2)0.0285 (3)0.0263 (3)0.0002 (2)0.0052 (2)0.0016 (2)
S60.0229 (3)0.0303 (3)0.0376 (4)0.0063 (2)0.0053 (3)0.0021 (3)
O410.0474 (13)0.0704 (16)0.0770 (17)0.0356 (12)0.0251 (13)0.0123 (13)
O420.0570 (13)0.0305 (10)0.0963 (18)0.0005 (9)0.0552 (13)0.0114 (11)
N10.0151 (8)0.0274 (10)0.0281 (10)0.0005 (7)0.0079 (8)0.0013 (8)
N20.0201 (9)0.0290 (10)0.0322 (11)0.0019 (8)0.0119 (8)0.0018 (8)
N70.0165 (9)0.0267 (10)0.0244 (10)0.0002 (7)0.0050 (8)0.0012 (8)
N80.0155 (8)0.0292 (10)0.0222 (10)0.0009 (7)0.0070 (7)0.0010 (8)
N440.0386 (13)0.0280 (11)0.0730 (18)0.0075 (10)0.0379 (13)0.0064 (12)
C30.0193 (10)0.0287 (12)0.0268 (12)0.0021 (9)0.0107 (9)0.0014 (9)
C3A0.0172 (10)0.0297 (12)0.0199 (11)0.0007 (8)0.0080 (9)0.0028 (9)
C40.0166 (10)0.0270 (11)0.0182 (10)0.0012 (8)0.0071 (8)0.0027 (8)
C4A0.0139 (9)0.0305 (12)0.0177 (10)0.0019 (8)0.0048 (8)0.0020 (8)
C60.0193 (10)0.0298 (12)0.0201 (11)0.0007 (9)0.0045 (9)0.0005 (9)
C7A0.0186 (10)0.0270 (11)0.0182 (10)0.0015 (8)0.0064 (8)0.0009 (8)
C8A0.0149 (9)0.0293 (12)0.0201 (11)0.0008 (8)0.0073 (8)0.0017 (9)
C110.0139 (9)0.0353 (12)0.0223 (11)0.0011 (9)0.0079 (8)0.0037 (9)
C120.0189 (11)0.0353 (13)0.0334 (13)0.0019 (9)0.0094 (10)0.0028 (10)
C130.0154 (10)0.0442 (15)0.0317 (13)0.0025 (10)0.0066 (10)0.0015 (11)
C140.0158 (10)0.0446 (14)0.0258 (12)0.0052 (9)0.0066 (9)0.0055 (10)
C150.0218 (11)0.0352 (13)0.0297 (13)0.0031 (10)0.0106 (10)0.0041 (10)
C160.0179 (10)0.0354 (13)0.0284 (12)0.0008 (9)0.0095 (9)0.0020 (10)
C310.0243 (11)0.0298 (13)0.0423 (15)0.0012 (9)0.0147 (11)0.0047 (11)
C410.0166 (10)0.0237 (11)0.0257 (11)0.0010 (8)0.0102 (9)0.0019 (9)
C420.0249 (11)0.0256 (11)0.0265 (12)0.0023 (9)0.0082 (9)0.0019 (9)
C430.0225 (11)0.0286 (12)0.0370 (14)0.0034 (9)0.0079 (10)0.0027 (10)
C440.0237 (11)0.0219 (11)0.0470 (15)0.0015 (9)0.0216 (11)0.0028 (10)
C450.0368 (13)0.0292 (12)0.0383 (14)0.0047 (10)0.0239 (12)0.0074 (10)
C460.0255 (11)0.0322 (12)0.0263 (12)0.0029 (9)0.0115 (10)0.0031 (10)
O210.0623 (14)0.0545 (14)0.0632 (15)0.0273 (11)0.0280 (12)0.0024 (11)
N210.0391 (14)0.0408 (14)0.082 (2)0.0051 (11)0.0266 (14)0.0017 (13)
C220.072 (2)0.0513 (19)0.067 (2)0.0275 (17)0.0407 (19)0.0256 (17)
C23A0.059 (6)0.044 (4)0.101 (5)0.012 (3)0.062 (5)0.026 (3)
C24A0.040 (3)0.069 (4)0.064 (3)0.010 (2)0.002 (2)0.008 (3)
C23B0.059 (6)0.044 (4)0.101 (5)0.012 (3)0.062 (5)0.026 (3)
C24B0.040 (3)0.069 (4)0.064 (3)0.010 (2)0.002 (2)0.008 (3)
Geometric parameters (Å, º) top
N1—N21.383 (3)C44—N441.470 (3)
N2—C31.322 (3)N44—O411.215 (3)
C3—C3A1.433 (3)N44—O421.231 (3)
C3A—C41.408 (3)C45—C461.387 (3)
C4—C4A1.387 (3)C45—H450.95
C4A—S51.745 (2)C46—H460.95
S5—C61.749 (2)N7—H70.88
C6—N71.350 (3)O21—C221.198 (4)
N7—C7A1.380 (3)N21—C221.323 (4)
C7A—N81.328 (3)N21—C24A1.415 (4)
N8—C8A1.339 (3)N21—C23B1.454 (5)
C8A—N11.373 (3)N21—C23A1.464 (4)
C3A—C8A1.412 (3)N21—C24B1.492 (5)
C4A—C7A1.414 (3)C22—H220.95
C6—S61.656 (2)C23A—H23A0.98
N1—C111.427 (3)C23A—H23B0.98
C11—C161.384 (3)C23A—H23C0.98
C11—C121.396 (3)C23A—H23D0.98
C12—C131.382 (3)C23A—H23E0.98
C12—H120.95C23A—H23F0.98
C13—C141.383 (4)C24A—H24A0.98
C13—H130.95C24A—H24B0.98
C14—C151.389 (3)C24A—H24C0.98
C14—H140.95C24A—H24D0.98
C15—C161.389 (3)C24A—H24E0.98
C15—H150.95C24A—H24F0.98
C16—H160.95C23B—H23G0.98
C3—C311.486 (3)C23B—H23H0.98
C31—H31A0.98C23B—H23I0.98
C31—H31B0.98C23B—H23J0.98
C31—H31C0.98C23B—H23K0.98
C4—C411.484 (3)C23B—H23L0.98
C41—C461.392 (3)C24B—H24G0.98
C41—C421.393 (3)C24B—H24H0.98
C42—C431.390 (3)C24B—H24I0.98
C42—H420.95C24B—H24J0.98
C43—C441.371 (4)C24B—H24K0.98
C43—H430.95C24B—H24L0.98
C44—C451.381 (4)
C8A—N1—N2110.42 (17)N21—C23A—H23A109.5
C8A—N1—C11130.41 (19)N21—C23A—H23B109.5
N2—N1—C11119.14 (17)H23A—C23A—H23B109.5
C16—C11—C12120.1 (2)N21—C23A—H23C109.5
C16—C11—N1121.87 (19)H23A—C23A—H23C109.5
C12—C11—N1118.0 (2)H23B—C23A—H23C109.5
C13—C12—C11119.7 (2)N21—C23A—H23D109.5
C13—C12—H12120.2H23A—C23A—H23D141.1
C11—C12—H12120.2H23B—C23A—H23D56.3
C12—C13—C14120.9 (2)H23C—C23A—H23D56.3
C12—C13—H13119.6N21—C23A—H23E109.5
C14—C13—H13119.6H23A—C23A—H23E56.3
C13—C14—C15119.0 (2)H23B—C23A—H23E141.1
C13—C14—H14120.5H23C—C23A—H23E56.3
C15—C14—H14120.5H23D—C23A—H23E109.5
C16—C15—C14121.0 (2)N21—C23A—H23F109.5
C16—C15—H15119.5H23A—C23A—H23F56.3
C14—C15—H15119.5H23B—C23A—H23F56.3
C11—C16—C15119.4 (2)H23C—C23A—H23F141.1
C11—C16—H16120.3H23D—C23A—H23F109.5
C15—C16—H16120.3H23E—C23A—H23F109.5
C3—N2—N1107.43 (18)N21—C24A—H24A109.5
N2—C3—C3A110.3 (2)N21—C24A—H24B109.5
N2—C3—C31120.6 (2)H24A—C24A—H24B109.5
C3A—C3—C31129.0 (2)N21—C24A—H24C109.5
C3—C31—H31A109.5H24A—C24A—H24C109.5
C3—C31—H31B109.5H24B—C24A—H24C109.5
H31A—C31—H31B109.5N21—C24A—H24D109.5
C3—C31—H31C109.5H24A—C24A—H24D141.1
H31A—C31—H31C109.5H24B—C24A—H24D56.3
H31B—C31—H31C109.5H24C—C24A—H24D56.3
C4—C3A—C8A118.9 (2)N21—C24A—H24E109.5
C4—C3A—C3136.0 (2)H24A—C24A—H24E56.3
C8A—C3A—C3105.07 (18)H24B—C24A—H24E141.1
C4A—C4—C3A114.8 (2)H24C—C24A—H24E56.3
C4A—C4—C41120.13 (19)H24D—C24A—H24E109.5
C3A—C4—C41125.0 (2)N21—C24A—H24F109.5
C46—C41—C42119.9 (2)H24A—C24A—H24F56.3
C46—C41—C4119.4 (2)H24B—C24A—H24F56.3
C42—C41—C4120.5 (2)H24C—C24A—H24F141.1
C43—C42—C41120.2 (2)H24D—C24A—H24F109.5
C43—C42—H42119.9H24E—C24A—H24F109.5
C41—C42—H42119.9N21—C23B—H23G109.5
C44—C43—C42118.4 (2)N21—C23B—H23H109.5
C44—C43—H43120.8H23G—C23B—H23H109.5
C42—C43—H43120.8N21—C23B—H23I109.5
C43—C44—C45122.8 (2)H23G—C23B—H23I109.5
C43—C44—N44119.5 (2)H23H—C23B—H23I109.5
C45—C44—N44117.6 (2)N21—C23B—H23J109.5
O41—N44—O42123.7 (2)H23G—C23B—H23J141.1
O41—N44—C44118.4 (2)H23H—C23B—H23J56.3
O42—N44—C44117.9 (3)H23I—C23B—H23J56.3
C44—C45—C46118.5 (2)N21—C23B—H23K109.5
C44—C45—H45120.8H23G—C23B—H23K56.3
C46—C45—H45120.8H23H—C23B—H23K141.1
C45—C46—C41120.1 (2)H23I—C23B—H23K56.3
C45—C46—H46119.9H23J—C23B—H23K109.5
C41—C46—H46119.9N21—C23B—H23L109.5
C4—C4A—C7A120.46 (19)H23G—C23B—H23L56.3
C4—C4A—S5129.67 (17)H23H—C23B—H23L56.3
C7A—C4A—S5109.67 (16)H23I—C23B—H23L141.1
C4A—S5—C691.77 (10)H23J—C23B—H23L109.5
N7—C6—S6126.22 (18)H23K—C23B—H23L109.5
N7—C6—S5110.28 (16)N21—C24B—H24G109.5
S6—C6—S5123.47 (13)N21—C24B—H24H109.5
C6—N7—C7A115.86 (19)H24G—C24B—H24H109.5
C6—N7—H7121.2N21—C24B—H24I109.5
C7A—N7—H7122.8H24G—C24B—H24I109.5
N8—C7A—N7121.15 (19)H24H—C24B—H24I109.5
N8—C7A—C4A126.4 (2)N21—C24B—H24J109.5
N7—C7A—C4A112.37 (18)H24G—C24B—H24J141.1
C7A—N8—C8A112.04 (18)H24H—C24B—H24J56.3
N8—C8A—N1126.0 (2)H24I—C24B—H24J56.3
N8—C8A—C3A127.33 (19)N21—C24B—H24K109.5
N1—C8A—C3A106.72 (19)H24G—C24B—H24K56.3
C22—N21—C24A119.3 (4)H24H—C24B—H24K141.1
C22—N21—C23B129.9 (8)H24I—C24B—H24K56.3
C22—N21—C23A118.8 (5)H24J—C24B—H24K109.5
C24A—N21—C23A120.7 (5)N21—C24B—H24L109.5
C22—N21—C24B118.1 (4)H24G—C24B—H24L56.3
C23B—N21—C24B110.9 (8)H24H—C24B—H24L56.3
O21—C22—N21128.4 (4)H24I—C24B—H24L141.1
O21—C22—H22115.8H24J—C24B—H24L109.5
N21—C22—H22115.8H24K—C24B—H24L109.5
N2—N1—C11—C123.8 (3)C43—C44—C45—C461.7 (4)
C8A—N1—C11—C12174.1 (2)N44—C44—C45—C46178.8 (2)
N2—N1—C11—C16177.4 (2)C44—C45—C46—C410.1 (3)
C8A—N1—C11—C164.8 (4)C42—C41—C46—C451.6 (3)
C16—C11—C12—C130.9 (4)C4—C41—C46—C45173.7 (2)
N1—C11—C12—C13178.0 (2)C3A—C4—C4A—C7A2.8 (3)
C11—C12—C13—C140.1 (4)C41—C4—C4A—C7A173.28 (19)
C12—C13—C14—C150.5 (4)C3A—C4—C4A—S5177.18 (17)
C13—C14—C15—C160.4 (4)C41—C4—C4A—S51.1 (3)
C12—C11—C16—C151.0 (3)C4—C4A—S5—C6174.6 (2)
N1—C11—C16—C15177.8 (2)C7A—C4A—S5—C60.21 (17)
C14—C15—C16—C110.3 (4)C4A—S5—C6—N71.54 (18)
C8A—N1—N2—C31.2 (2)C4A—S5—C6—S6176.62 (16)
C11—N1—N2—C3177.02 (19)S6—C6—N7—C7A175.52 (17)
N1—N2—C3—C3A0.2 (3)S5—C6—N7—C7A2.6 (2)
N1—N2—C3—C31179.3 (2)C6—N7—C7A—N8175.0 (2)
N2—C3—C3A—C4179.4 (2)C6—N7—C7A—C4A2.5 (3)
C31—C3—C3A—C40.5 (4)C4—C4A—C7A—N80.8 (3)
N2—C3—C3A—C8A0.8 (3)S5—C4A—C7A—N8176.17 (18)
C31—C3—C3A—C8A178.1 (2)C4—C4A—C7A—N7176.54 (19)
C8A—C3A—C4—C4A2.5 (3)S5—C4A—C7A—N71.1 (2)
C3—C3A—C4—C4A176.0 (2)N7—C7A—N8—C8A178.76 (19)
C8A—C3A—C4—C41173.4 (2)C4A—C7A—N8—C8A1.7 (3)
C3—C3A—C4—C418.1 (4)C7A—N8—C8A—N1178.4 (2)
C3A—C4—C41—C42128.2 (2)C7A—N8—C8A—C3A2.1 (3)
C4A—C4—C41—C4256.1 (3)N2—N1—C8A—N8178.7 (2)
C3A—C4—C41—C4656.6 (3)C11—N1—C8A—N83.3 (4)
C4A—C4—C41—C46119.1 (2)N2—N1—C8A—C3A1.8 (2)
C46—C41—C42—C431.7 (3)C11—N1—C8A—C3A176.3 (2)
C4—C41—C42—C43173.5 (2)C4—C3A—C8A—N80.0 (3)
C41—C42—C43—C440.2 (3)C3—C3A—C8A—N8178.9 (2)
C42—C43—C44—C451.5 (4)C4—C3A—C8A—N1179.59 (19)
C42—C43—C44—N44178.9 (2)C3—C3A—C8A—N11.5 (2)
C43—C44—N44—O411.6 (4)C24A—N21—C22—O2124.7 (6)
C45—C44—N44—O41178.9 (2)C23B—N21—C22—O21168.1 (6)
C43—C44—N44—O42178.2 (2)C23A—N21—C22—O21167.7 (4)
C45—C44—N44—O421.3 (3)C24B—N21—C22—O2125.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O210.881.842.711 (3)170
C12—H12···N20.952.412.758 (4)102
C16—H16···N80.952.322.975 (4)126
C46—H46···S6i0.952.803.743 (3)176
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. PD and SC thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) and Universidad de Nariño for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDelgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds