metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-iodo-1κI:2κI-tris­­(tri-m-tolyl­phosphine)-1κ2P,P′:2κP′′-dicopper(I): a new polymorph

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales, and bDepartment of Chemistry, King Fahd University of Petroleum and Minerals, PO Box 5048, Dhahran 31261, Saudi Arabia
*Correspondence e-mail: acsbd@yahoo.com

(Received 28 July 2005; accepted 9 November 2005; online 16 November 2005)

The structure of the title compound, [Cu2I2(C21H21P)3], was redetermined at low temperature (150 K) and shown to be a new triclinic polymorph.

Comment

The title compound, (I)[link], is a binuclear copper(I) complex, in which the Cu atoms are bridged by two I atoms. A total of three mol­ecules of tri-m-tolyl­phosphine are coordinated to the two copper centres. The structure of the same compound was reported by Akrivos et al. (1993[Akrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Mentzafos, D. & Terzis, A. (1993). Inorg. Chim. Acta, 206, 163-168.]) and shown also to be triclinic, space group P[\overline{1}]. This polymorph, (II), has a significantly longer c axis [24.635 Å compared to 19.0630 (3) Å for the present structure, (I)] and slightly smaller cell angles, considering the reduced cells of both polymorphs.

[Scheme 1]

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link] and selected bond distances and angles are given in Table 1[link]. In (I)[link], atom Cu1 is coordinated by one P atom (P1), and atom Cu2 is coordinated by two P atoms (P2 and P3). The copper centres are bridged by two I atoms. The intra­molecular Cu⋯Cu distance of 2.9551 (4) Å is decreased by ca 0.05 Å compared with that in (II). An inter­esting difference between the two polymorphs is that the Cu—I distances are inverted. That is, in (I)[link], the Cu1—I distances average 2.5544 (1) Å and the Cu2—I distances average 2.750 (1) Å. This is exactly the opposite situation in polymorph (II) where the corresponding average distances are 2.767 and 2.549 Å, respectively. The Cu—I—Cu angles are very similar. The dihedral angle between the Cu1/I1/I2 and Cu2/I1/I2 planes of 3.75 (12)° is smaller than the value of 8.56° in polymorph (II).

[Figure 1]
Figure 1
View of the mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Experimental

A suspension of tri-m-tolyl­phosphine (0.310 g, 1 mmol) and copper(I) iodide (0.382 g, 2 mmol) in 2-propanol (50 ml) was refluxed for 16 h. The resulting solution was filtered while hot. Slow evaporation of the solvent at room temperature gave colourless crystals of (I)[link].

Crystal data
  • [Cu2I2(C21H21P)3]

  • Mr = 1293.92

  • Triclinic, [P \overline 1]

  • a = 11.6770 (1) Å

  • b = 13.5461 (1) Å

  • c = 19.0630 (3) Å

  • α = 86.0220 (5)°

  • β = 86.1216 (5)°

  • γ = 72.6081 (5)°

  • V = 2867.07 (6) Å3

  • Z = 2

  • Dx = 1.499 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12975 reflections

  • θ = 2.9–27.5°

  • μ = 1.94 mm−1

  • T = 150 (2) K

  • Prism, colourless

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.690, Tmax = 0.749

  • 40258 measured reflections

  • 12975 independent reflections

  • 11475 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 27.6°

  • h = −15 → 15

  • k = −17 → 17

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.03

  • 12975 reflections

  • 640 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0251P)2 + 3.1211P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Cu1⋯Cu2 2.9551 (4)
Cu1—P1 2.2298 (7)
Cu2—P2 2.2687 (7)
Cu1—I1 2.5403 (3)
Cu1—I2 2.5481 (4)
Cu2—P3 2.2737 (7)
Cu2—I2 2.7454 (3)
Cu2—I1 2.7548 (3)
P1—Cu1—I1 126.33 (2)
P1—Cu1—I2 114.78 (2)
I1—Cu1—I2 118.859 (12)
P2—Cu2—P3 130.66 (2)
P2—Cu2—I2 109.470 (19)
P3—Cu2—I2 100.138 (19)
P2—Cu2—I1 102.441 (19)
P3—Cu2—I1 106.48 (2)
I2—Cu2—I1 105.603 (10)
Cu1—I1—Cu2 67.706 (10)
Cu1—I2—Cu2 67.750 (10)

The H atoms were placed in calculated positions (aromatic C—H = 0.95 Å and methyl C—H = 0.98 Å), and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). The deepest electron-density hole lies 0.86 Å from atom I2.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Di-µ-iodo-1κI:2κI-tris(tri-m-tolylphosphine)-1κ2P,P':2κP''-dicopper(I) top
Crystal data top
[Cu2I2(C21H21P)3]Z = 2
Mr = 1293.92F(000) = 1300
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.6770 (1) ÅCell parameters from 12975 reflections
b = 13.5461 (1) Åθ = 2.9–27.5°
c = 19.0630 (3) ŵ = 1.94 mm1
α = 86.0220 (5)°T = 150 K
β = 86.1216 (5)°Prism, colourless
γ = 72.6081 (5)°0.20 × 0.15 × 0.15 mm
V = 2867.07 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
12975 independent reflections
Radiation source: fine-focus sealed tube11475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.690, Tmax = 0.749k = 1717
40258 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0251P)2 + 3.1211P]
where P = (Fo2 + 2Fc2)/3
12975 reflections(Δ/σ)max = 0.002
640 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 1.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.02400 (3)0.68868 (2)0.222661 (17)0.02206 (7)
Cu20.18389 (3)0.47977 (2)0.259583 (15)0.01785 (7)
I10.227543 (14)0.621073 (12)0.158303 (8)0.02103 (5)
I20.043049 (14)0.570632 (12)0.315865 (8)0.02136 (5)
P10.11002 (6)0.84307 (5)0.20347 (3)0.01869 (13)
P20.18148 (5)0.34616 (4)0.19479 (3)0.01582 (12)
P30.29469 (5)0.48396 (5)0.35232 (3)0.01645 (12)
C10.2436 (2)0.83248 (18)0.16363 (13)0.0198 (5)
C20.3266 (2)0.7964 (2)0.20524 (15)0.0283 (6)
H20.31440.78070.25400.034*
C30.4274 (3)0.7826 (2)0.17687 (16)0.0320 (6)
C40.4430 (2)0.8056 (2)0.10510 (16)0.0298 (6)
H40.51180.79770.08500.036*
C50.3608 (2)0.8396 (2)0.06292 (15)0.0277 (6)
H50.37250.85380.01400.033*
C60.2601 (2)0.8534 (2)0.09170 (14)0.0239 (5)
H60.20320.87680.06250.029*
C70.0631 (2)0.94051 (19)0.14778 (13)0.0212 (5)
C80.0591 (2)0.9217 (2)0.13164 (14)0.0231 (5)
H80.11360.85790.14730.028*
C90.1032 (2)0.9950 (2)0.09279 (14)0.0260 (5)
C100.0222 (3)1.0862 (2)0.06877 (14)0.0271 (6)
H100.05071.13580.04100.033*
C110.1000 (3)1.1064 (2)0.08466 (15)0.0301 (6)
H110.15451.16960.06810.036*
C120.1426 (2)1.0346 (2)0.12452 (15)0.0264 (6)
H120.22621.04930.13620.032*
C130.1705 (2)0.91254 (19)0.28297 (13)0.0209 (5)
C140.2815 (3)0.9893 (2)0.28606 (14)0.0281 (6)
H140.33081.00250.24680.034*
C150.3212 (3)1.0467 (2)0.34530 (15)0.0300 (6)
C160.2471 (3)1.0253 (2)0.40261 (15)0.0329 (6)
H160.27241.06370.44360.039*
C170.1380 (3)0.9494 (2)0.40034 (15)0.0341 (7)
H170.08890.93610.43970.041*
C180.0991 (2)0.8920 (2)0.34097 (14)0.0269 (6)
H180.02420.83910.34000.032*
C190.1394 (2)0.24248 (18)0.24624 (13)0.0180 (5)
C200.2018 (2)0.20238 (19)0.30726 (13)0.0213 (5)
H200.25920.23290.32180.026*
C210.1811 (2)0.11864 (19)0.34683 (14)0.0243 (5)
C220.0925 (3)0.0782 (2)0.32641 (15)0.0269 (6)
H220.07640.02170.35330.032*
C230.0276 (3)0.1189 (2)0.26755 (16)0.0287 (6)
H230.03320.09110.25480.034*
C240.0515 (2)0.20046 (19)0.22717 (14)0.0243 (5)
H240.00770.22770.18640.029*
C250.3255 (2)0.27565 (18)0.15097 (13)0.0185 (5)
C260.3856 (2)0.33232 (19)0.10718 (13)0.0226 (5)
H260.35160.40530.10160.027*
C270.4941 (2)0.2855 (2)0.07115 (14)0.0250 (5)
C280.5417 (2)0.1781 (2)0.08010 (14)0.0268 (6)
H280.61530.14410.05580.032*
C290.4840 (2)0.1204 (2)0.12348 (14)0.0265 (6)
H290.51850.04750.12920.032*
C300.3752 (2)0.16838 (19)0.15912 (14)0.0234 (5)
H300.33520.12830.18870.028*
C310.0775 (2)0.37619 (17)0.12307 (13)0.0182 (5)
C320.0362 (2)0.44460 (19)0.13600 (13)0.0222 (5)
H320.05460.47720.17960.027*
C330.1240 (2)0.4663 (2)0.08607 (14)0.0255 (6)
C340.0950 (3)0.4191 (2)0.02232 (15)0.0277 (6)
H340.15380.43270.01210.033*
C350.0187 (3)0.3524 (2)0.00824 (14)0.0275 (6)
H350.03750.32140.03590.033*
C360.1053 (2)0.33065 (19)0.05824 (13)0.0229 (5)
H360.18310.28490.04830.027*
C370.2461 (2)0.60925 (19)0.39297 (13)0.0197 (5)
C380.2003 (2)0.6222 (2)0.46267 (14)0.0253 (5)
H380.19510.56350.49160.030*
C390.1622 (2)0.7206 (2)0.49025 (15)0.0294 (6)
C400.1715 (2)0.8049 (2)0.44737 (16)0.0305 (6)
H400.14610.87190.46560.037*
C410.2171 (2)0.7934 (2)0.37836 (16)0.0288 (6)
H410.22360.85210.34990.035*
C420.2533 (2)0.69572 (19)0.35087 (14)0.0236 (5)
H420.28300.68800.30330.028*
C430.2905 (2)0.39208 (18)0.42685 (13)0.0194 (5)
C440.3925 (2)0.33842 (19)0.46361 (13)0.0222 (5)
H440.46810.34780.44900.027*
C450.3844 (3)0.2713 (2)0.52159 (14)0.0269 (6)
C460.2734 (3)0.2609 (2)0.54365 (14)0.0297 (6)
H460.26660.21730.58400.036*
C470.1710 (3)0.3134 (2)0.50753 (15)0.0315 (6)
H470.09520.30540.52320.038*
C480.1800 (2)0.3773 (2)0.44865 (14)0.0254 (5)
H480.11080.41110.42310.031*
C490.4546 (2)0.46600 (18)0.33277 (13)0.0197 (5)
C500.5121 (2)0.4002 (2)0.27961 (14)0.0225 (5)
H500.46660.36860.25400.027*
C510.6352 (2)0.3798 (2)0.26323 (15)0.0271 (6)
C520.6989 (2)0.4300 (2)0.29944 (16)0.0312 (6)
H520.78210.41870.28800.037*
C530.6430 (2)0.4965 (2)0.35200 (17)0.0323 (6)
H530.68800.53030.37610.039*
C540.5215 (2)0.5139 (2)0.36954 (15)0.0271 (6)
H540.48390.55800.40630.033*
C550.5157 (3)0.7432 (4)0.2231 (2)0.0585 (11)
H55A0.47220.68210.25160.088*
H55B0.57080.72440.19370.088*
H55C0.56160.79740.25420.088*
C560.2361 (3)0.9739 (3)0.07822 (19)0.0426 (8)
H56A0.25631.03930.07590.064*
H56B0.25960.94070.03320.064*
H56C0.27920.92790.11600.064*
C570.4407 (3)1.1296 (3)0.34772 (19)0.0551 (10)
H57A0.48221.13010.30460.083*
H57B0.42781.19720.35140.083*
H57C0.48991.11530.38870.083*
C580.2519 (3)0.0731 (2)0.41054 (17)0.0416 (8)
H58A0.32130.01520.39690.062*
H58B0.20070.04810.44590.062*
H58C0.27960.12630.43030.062*
C590.5570 (3)0.3484 (3)0.02395 (18)0.0385 (7)
H59A0.51000.37580.01750.058*
H59B0.63680.30440.00900.058*
H59C0.56540.40590.04960.058*
C600.2461 (3)0.5430 (2)0.10116 (18)0.0379 (7)
H60A0.23860.59240.13440.057*
H60B0.30160.50580.12160.057*
H60C0.27700.58030.05720.057*
C610.1116 (3)0.7333 (3)0.56531 (17)0.0474 (9)
H61A0.17300.74110.59530.071*
H61B0.08740.67210.58210.071*
H61C0.04150.79500.56730.071*
C620.4954 (3)0.2123 (3)0.55996 (18)0.0446 (8)
H62A0.48020.22190.61060.067*
H62B0.56260.23840.54290.067*
H62C0.51550.13850.55130.067*
C630.6979 (3)0.3029 (3)0.20892 (18)0.0413 (8)
H63A0.75590.32970.18010.062*
H63B0.63840.29230.17870.062*
H63C0.74020.23690.23270.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01968 (15)0.01962 (15)0.02568 (17)0.00387 (12)0.00322 (12)0.00026 (12)
Cu20.01795 (14)0.01681 (14)0.01847 (15)0.00368 (11)0.00283 (11)0.00348 (11)
I10.02303 (9)0.01757 (8)0.02112 (8)0.00433 (6)0.00092 (6)0.00102 (6)
I20.01693 (8)0.02201 (8)0.02323 (9)0.00336 (6)0.00141 (6)0.00133 (6)
P10.0156 (3)0.0181 (3)0.0212 (3)0.0033 (2)0.0020 (2)0.0004 (2)
P20.0165 (3)0.0140 (3)0.0158 (3)0.0024 (2)0.0021 (2)0.0013 (2)
P30.0150 (3)0.0169 (3)0.0170 (3)0.0035 (2)0.0018 (2)0.0030 (2)
C10.0179 (11)0.0183 (11)0.0217 (12)0.0026 (9)0.0019 (9)0.0031 (9)
C20.0273 (14)0.0367 (15)0.0240 (14)0.0139 (12)0.0036 (11)0.0000 (11)
C30.0280 (14)0.0401 (16)0.0310 (15)0.0146 (13)0.0012 (12)0.0036 (12)
C40.0227 (13)0.0302 (14)0.0357 (16)0.0038 (11)0.0075 (11)0.0092 (12)
C50.0280 (14)0.0292 (14)0.0245 (13)0.0046 (11)0.0069 (11)0.0040 (11)
C60.0236 (13)0.0235 (12)0.0229 (13)0.0042 (10)0.0002 (10)0.0033 (10)
C70.0247 (12)0.0196 (11)0.0186 (12)0.0053 (10)0.0012 (10)0.0016 (9)
C80.0221 (12)0.0207 (12)0.0261 (13)0.0051 (10)0.0005 (10)0.0035 (10)
C90.0287 (14)0.0273 (13)0.0234 (13)0.0101 (11)0.0011 (11)0.0046 (10)
C100.0400 (16)0.0219 (12)0.0215 (13)0.0133 (12)0.0008 (11)0.0012 (10)
C110.0353 (15)0.0201 (12)0.0323 (15)0.0036 (11)0.0056 (12)0.0007 (11)
C120.0242 (13)0.0219 (12)0.0297 (14)0.0017 (11)0.0033 (11)0.0011 (10)
C130.0203 (12)0.0206 (12)0.0229 (13)0.0078 (10)0.0025 (10)0.0009 (10)
C140.0285 (14)0.0285 (14)0.0231 (13)0.0015 (11)0.0049 (11)0.0006 (11)
C150.0320 (15)0.0255 (13)0.0272 (14)0.0010 (12)0.0017 (11)0.0018 (11)
C160.0426 (17)0.0374 (15)0.0214 (14)0.0157 (14)0.0031 (12)0.0080 (11)
C170.0341 (15)0.0475 (17)0.0236 (14)0.0151 (14)0.0070 (12)0.0036 (12)
C180.0221 (13)0.0346 (14)0.0247 (13)0.0093 (11)0.0032 (10)0.0007 (11)
C190.0188 (11)0.0151 (11)0.0189 (12)0.0030 (9)0.0008 (9)0.0028 (9)
C200.0250 (12)0.0214 (12)0.0182 (12)0.0075 (10)0.0030 (10)0.0016 (9)
C210.0296 (14)0.0202 (12)0.0203 (12)0.0034 (11)0.0010 (10)0.0011 (10)
C220.0324 (14)0.0193 (12)0.0283 (14)0.0085 (11)0.0068 (11)0.0008 (10)
C230.0274 (14)0.0253 (13)0.0368 (16)0.0121 (11)0.0038 (11)0.0030 (11)
C240.0259 (13)0.0212 (12)0.0266 (13)0.0071 (11)0.0068 (10)0.0004 (10)
C250.0180 (11)0.0191 (11)0.0171 (11)0.0024 (9)0.0034 (9)0.0041 (9)
C260.0215 (12)0.0204 (12)0.0236 (13)0.0025 (10)0.0004 (10)0.0039 (10)
C270.0192 (12)0.0332 (14)0.0230 (13)0.0075 (11)0.0010 (10)0.0048 (11)
C280.0172 (12)0.0347 (14)0.0219 (13)0.0039 (11)0.0012 (10)0.0087 (11)
C290.0257 (13)0.0213 (12)0.0253 (13)0.0051 (11)0.0039 (11)0.0032 (10)
C300.0245 (13)0.0198 (12)0.0228 (13)0.0013 (10)0.0031 (10)0.0013 (10)
C310.0233 (12)0.0133 (10)0.0178 (11)0.0048 (9)0.0040 (9)0.0005 (9)
C320.0244 (13)0.0221 (12)0.0193 (12)0.0043 (10)0.0052 (10)0.0022 (9)
C330.0237 (13)0.0220 (12)0.0297 (14)0.0044 (11)0.0087 (11)0.0022 (10)
C340.0335 (15)0.0241 (13)0.0260 (14)0.0074 (11)0.0144 (11)0.0028 (10)
C350.0401 (16)0.0248 (13)0.0173 (12)0.0078 (12)0.0059 (11)0.0035 (10)
C360.0283 (13)0.0181 (11)0.0203 (12)0.0030 (10)0.0037 (10)0.0028 (9)
C370.0138 (11)0.0225 (12)0.0229 (12)0.0035 (9)0.0049 (9)0.0052 (10)
C380.0227 (13)0.0267 (13)0.0241 (13)0.0021 (11)0.0025 (10)0.0067 (10)
C390.0234 (13)0.0326 (14)0.0288 (14)0.0006 (11)0.0058 (11)0.0136 (11)
C400.0223 (13)0.0234 (13)0.0435 (17)0.0013 (11)0.0092 (12)0.0155 (12)
C410.0287 (14)0.0204 (12)0.0376 (16)0.0058 (11)0.0095 (12)0.0035 (11)
C420.0221 (12)0.0231 (12)0.0264 (13)0.0063 (10)0.0050 (10)0.0041 (10)
C430.0211 (12)0.0173 (11)0.0184 (12)0.0025 (10)0.0026 (9)0.0040 (9)
C440.0214 (12)0.0225 (12)0.0217 (12)0.0037 (10)0.0029 (10)0.0032 (10)
C450.0314 (14)0.0244 (13)0.0221 (13)0.0026 (11)0.0063 (11)0.0015 (10)
C460.0398 (16)0.0301 (14)0.0198 (13)0.0118 (12)0.0029 (11)0.0026 (11)
C470.0294 (14)0.0389 (16)0.0279 (15)0.0134 (13)0.0007 (11)0.0005 (12)
C480.0225 (12)0.0295 (13)0.0242 (13)0.0076 (11)0.0035 (10)0.0018 (10)
C490.0175 (11)0.0187 (11)0.0220 (12)0.0040 (9)0.0018 (9)0.0003 (9)
C500.0180 (12)0.0247 (12)0.0246 (13)0.0057 (10)0.0019 (10)0.0026 (10)
C510.0170 (12)0.0336 (14)0.0286 (14)0.0046 (11)0.0002 (10)0.0023 (11)
C520.0167 (12)0.0423 (16)0.0342 (16)0.0080 (12)0.0018 (11)0.0026 (12)
C530.0216 (13)0.0373 (15)0.0413 (17)0.0115 (12)0.0054 (12)0.0081 (13)
C540.0214 (13)0.0298 (14)0.0298 (14)0.0054 (11)0.0015 (11)0.0088 (11)
C550.046 (2)0.104 (3)0.044 (2)0.051 (2)0.0043 (16)0.003 (2)
C560.0286 (15)0.0477 (19)0.052 (2)0.0152 (14)0.0056 (14)0.0049 (15)
C570.054 (2)0.050 (2)0.0401 (19)0.0180 (18)0.0011 (16)0.0104 (16)
C580.060 (2)0.0352 (16)0.0309 (16)0.0160 (16)0.0163 (15)0.0131 (13)
C590.0325 (16)0.0418 (17)0.0397 (18)0.0117 (14)0.0107 (13)0.0016 (14)
C600.0269 (15)0.0383 (16)0.0429 (18)0.0019 (13)0.0136 (13)0.0050 (14)
C610.055 (2)0.0480 (19)0.0313 (17)0.0004 (17)0.0033 (15)0.0199 (15)
C620.0409 (18)0.0473 (19)0.0396 (18)0.0045 (15)0.0161 (15)0.0151 (15)
C630.0239 (14)0.053 (2)0.0442 (19)0.0048 (14)0.0050 (13)0.0191 (15)
Geometric parameters (Å, º) top
Cu1—Cu22.9551 (4)C30—H300.9500
Cu1—P12.2298 (7)C31—C321.391 (3)
Cu2—P22.2687 (7)C31—C361.395 (3)
Cu1—I12.5403 (3)C32—C331.399 (3)
Cu1—I22.5481 (4)C32—H320.9500
Cu1—Cu22.9551 (4)C33—C341.387 (4)
Cu2—P32.2737 (7)C33—C601.514 (4)
Cu2—I22.7454 (3)C34—C351.385 (4)
Cu2—I12.7548 (3)C34—H340.9500
P1—C71.824 (3)C35—C361.390 (4)
P1—C131.827 (3)C35—H350.9500
P1—C11.827 (3)C36—H360.9500
P2—C191.825 (3)C37—C421.394 (4)
P2—C311.833 (2)C37—C381.401 (4)
P2—C251.844 (2)C38—C391.401 (4)
P3—C491.826 (3)C38—H380.9500
P3—C371.830 (2)C39—C401.384 (4)
P3—C431.831 (3)C39—C611.512 (4)
C1—C21.391 (4)C40—C411.387 (4)
C1—C61.395 (4)C40—H400.9500
C2—C31.394 (4)C41—C421.391 (4)
C2—H20.9500C41—H410.9500
C3—C41.394 (4)C42—H420.9500
C3—C551.505 (5)C43—C481.396 (4)
C4—C51.375 (4)C43—C441.401 (3)
C4—H40.9500C44—C451.399 (4)
C5—C61.397 (4)C44—H440.9500
C5—H50.9500C45—C461.380 (4)
C6—H60.9500C45—C621.511 (4)
C7—C81.389 (4)C46—C471.394 (4)
C7—C121.398 (3)C46—H460.9500
C8—C91.396 (4)C47—C481.387 (4)
C8—H80.9500C47—H470.9500
C9—C101.383 (4)C48—H480.9500
C9—C561.502 (4)C49—C501.395 (3)
C10—C111.387 (4)C49—C541.401 (4)
C10—H100.9500C50—C511.399 (4)
C11—C121.380 (4)C50—H500.9500
C11—H110.9500C51—C521.388 (4)
C12—H120.9500C51—C631.511 (4)
C13—C181.393 (4)C52—C531.388 (4)
C13—C141.399 (4)C52—H520.9500
C14—C151.389 (4)C53—C541.388 (4)
C14—H140.9500C53—H530.9500
C15—C161.400 (4)C54—H540.9500
C15—C571.507 (4)C55—H55A0.9800
C16—C171.378 (4)C55—H55B0.9800
C16—H160.9500C55—H55C0.9800
C17—C181.390 (4)C56—H56A0.9800
C17—H170.9500C56—H56B0.9800
C18—H180.9500C56—H56C0.9800
C19—C241.392 (4)C57—H57A0.9800
C19—C201.404 (3)C57—H57B0.9800
C20—C211.391 (4)C57—H57C0.9800
C20—H200.9500C58—H58A0.9800
C21—C221.394 (4)C58—H58B0.9800
C21—C581.505 (4)C58—H58C0.9800
C22—C231.385 (4)C59—H59A0.9800
C22—H220.9500C59—H59B0.9800
C23—C241.388 (4)C59—H59C0.9800
C23—H230.9500C60—H60A0.9800
C24—H240.9500C60—H60B0.9800
C25—C261.390 (4)C60—H60C0.9800
C25—C301.396 (3)C61—H61A0.9800
C26—C271.394 (4)C61—H61B0.9800
C26—H260.9500C61—H61C0.9800
C27—C281.396 (4)C62—H62A0.9800
C27—C591.501 (4)C62—H62B0.9800
C28—C291.378 (4)C62—H62C0.9800
C28—H280.9500C63—H63A0.9800
C29—C301.397 (4)C63—H63B0.9800
C29—H290.9500C63—H63C0.9800
P1—Cu1—I1126.33 (2)C32—C31—C36119.2 (2)
P1—Cu1—I2114.78 (2)C32—C31—P2117.46 (18)
I1—Cu1—I2118.859 (12)C36—C31—P2123.32 (19)
P1—Cu1—Cu2174.07 (2)C31—C32—C33121.3 (2)
I1—Cu1—Cu259.603 (9)C31—C32—H32119.3
I2—Cu1—Cu259.302 (9)C33—C32—H32119.3
P2—Cu2—P3130.66 (2)C34—C33—C32118.5 (2)
P2—Cu2—I2109.470 (19)C34—C33—C60121.4 (2)
P3—Cu2—I2100.138 (19)C32—C33—C60120.0 (2)
P2—Cu2—I1102.441 (19)C35—C34—C33120.7 (2)
P3—Cu2—I1106.48 (2)C35—C34—H34119.6
I2—Cu2—I1105.603 (10)C33—C34—H34119.6
P2—Cu2—Cu1118.613 (19)C34—C35—C36120.5 (2)
P3—Cu2—Cu1110.716 (19)C34—C35—H35119.8
I2—Cu2—Cu152.948 (9)C36—C35—H35119.8
I1—Cu2—Cu152.691 (9)C35—C36—C31119.8 (2)
Cu1—I1—Cu267.706 (10)C35—C36—H36120.1
Cu1—I2—Cu267.750 (10)C31—C36—H36120.1
C7—P1—C13102.16 (11)C42—C37—C38119.3 (2)
C7—P1—C1104.81 (12)C42—C37—P3117.19 (19)
C13—P1—C1103.52 (11)C38—C37—P3123.5 (2)
C7—P1—Cu1118.29 (8)C37—C38—C39120.8 (3)
C13—P1—Cu1114.52 (8)C37—C38—H38119.6
C1—P1—Cu1111.95 (8)C39—C38—H38119.6
C19—P2—C31102.78 (11)C40—C39—C38118.7 (3)
C19—P2—C25102.26 (11)C40—C39—C61121.3 (3)
C31—P2—C25102.94 (11)C38—C39—C61120.1 (3)
C19—P2—Cu2113.61 (8)C39—C40—C41121.3 (2)
C31—P2—Cu2116.89 (8)C39—C40—H40119.3
C25—P2—Cu2116.38 (8)C41—C40—H40119.3
C49—P3—C37102.41 (11)C40—C41—C42119.8 (3)
C49—P3—C43104.20 (11)C40—C41—H41120.1
C37—P3—C43103.00 (11)C42—C41—H41120.1
C49—P3—Cu2116.33 (8)C41—C42—C37120.1 (3)
C37—P3—Cu2112.46 (8)C41—C42—H42119.9
C43—P3—Cu2116.65 (8)C37—C42—H42119.9
C2—C1—C6119.4 (2)C48—C43—C44119.0 (2)
C2—C1—P1119.05 (19)C48—C43—P3118.13 (18)
C6—C1—P1121.4 (2)C44—C43—P3122.8 (2)
C1—C2—C3121.4 (3)C45—C44—C43120.9 (3)
C1—C2—H2119.3C45—C44—H44119.6
C3—C2—H2119.3C43—C44—H44119.6
C2—C3—C4118.2 (3)C46—C45—C44119.0 (2)
C2—C3—C55120.3 (3)C46—C45—C62120.7 (3)
C4—C3—C55121.5 (3)C44—C45—C62120.4 (3)
C5—C4—C3121.2 (3)C45—C46—C47120.9 (3)
C5—C4—H4119.4C45—C46—H46119.5
C3—C4—H4119.4C47—C46—H46119.5
C4—C5—C6120.3 (3)C48—C47—C46119.9 (3)
C4—C5—H5119.9C48—C47—H47120.0
C6—C5—H5119.9C46—C47—H47120.0
C1—C6—C5119.5 (3)C47—C48—C43120.2 (2)
C1—C6—H6120.2C47—C48—H48119.9
C5—C6—H6120.2C43—C48—H48119.9
C8—C7—C12119.0 (2)C50—C49—C54119.2 (2)
C8—C7—P1117.51 (19)C50—C49—P3117.99 (19)
C12—C7—P1123.4 (2)C54—C49—P3122.79 (19)
C7—C8—C9121.2 (2)C49—C50—C51121.3 (2)
C7—C8—H8119.4C49—C50—H50119.3
C9—C8—H8119.4C51—C50—H50119.3
C10—C9—C8118.6 (3)C52—C51—C50118.3 (3)
C10—C9—C56121.5 (3)C52—C51—C63120.9 (2)
C8—C9—C56119.9 (3)C50—C51—C63120.8 (3)
C9—C10—C11121.0 (3)C53—C52—C51121.1 (3)
C9—C10—H10119.5C53—C52—H52119.4
C11—C10—H10119.5C51—C52—H52119.4
C12—C11—C10120.1 (2)C54—C53—C52120.3 (3)
C12—C11—H11120.0C54—C53—H53119.8
C10—C11—H11120.0C52—C53—H53119.8
C11—C12—C7120.2 (3)C53—C54—C49119.7 (3)
C11—C12—H12119.9C53—C54—H54120.1
C7—C12—H12119.9C49—C54—H54120.1
C18—C13—C14119.3 (2)C3—C55—H55A109.5
C18—C13—P1117.98 (19)C3—C55—H55B109.5
C14—C13—P1122.60 (19)H55A—C55—H55B109.5
C15—C14—C13121.5 (2)C3—C55—H55C109.5
C15—C14—H14119.3H55A—C55—H55C109.5
C13—C14—H14119.3H55B—C55—H55C109.5
C14—C15—C16118.1 (3)C9—C56—H56A109.5
C14—C15—C57120.9 (3)C9—C56—H56B109.5
C16—C15—C57121.0 (3)H56A—C56—H56B109.5
C17—C16—C15120.9 (3)C9—C56—H56C109.5
C17—C16—H16119.5H56A—C56—H56C109.5
C15—C16—H16119.5H56B—C56—H56C109.5
C16—C17—C18120.6 (3)C15—C57—H57A109.5
C16—C17—H17119.7C15—C57—H57B109.5
C18—C17—H17119.7H57A—C57—H57B109.5
C17—C18—C13119.6 (3)C15—C57—H57C109.5
C17—C18—H18120.2H57A—C57—H57C109.5
C13—C18—H18120.2H57B—C57—H57C109.5
C24—C19—C20119.1 (2)C21—C58—H58A109.5
C24—C19—P2123.49 (19)C21—C58—H58B109.5
C20—C19—P2117.40 (19)H58A—C58—H58B109.5
C21—C20—C19121.1 (2)C21—C58—H58C109.5
C21—C20—H20119.5H58A—C58—H58C109.5
C19—C20—H20119.5H58B—C58—H58C109.5
C20—C21—C22118.5 (2)C27—C59—H59A109.5
C20—C21—C58120.9 (3)C27—C59—H59B109.5
C22—C21—C58120.7 (3)H59A—C59—H59B109.5
C23—C22—C21121.1 (2)C27—C59—H59C109.5
C23—C22—H22119.4H59A—C59—H59C109.5
C21—C22—H22119.4H59B—C59—H59C109.5
C22—C23—C24120.0 (3)C33—C60—H60A109.5
C22—C23—H23120.0C33—C60—H60B109.5
C24—C23—H23120.0H60A—C60—H60B109.5
C23—C24—C19120.2 (2)C33—C60—H60C109.5
C23—C24—H24119.9H60A—C60—H60C109.5
C19—C24—H24119.9H60B—C60—H60C109.5
C26—C25—C30119.1 (2)C39—C61—H61A109.5
C26—C25—P2118.06 (18)C39—C61—H61B109.5
C30—C25—P2122.8 (2)H61A—C61—H61B109.5
C25—C26—C27122.1 (2)C39—C61—H61C109.5
C25—C26—H26119.0H61A—C61—H61C109.5
C27—C26—H26119.0H61B—C61—H61C109.5
C26—C27—C28117.7 (3)C45—C62—H62A109.5
C26—C27—C59121.1 (3)C45—C62—H62B109.5
C28—C27—C59121.2 (2)H62A—C62—H62B109.5
C29—C28—C27121.2 (2)C45—C62—H62C109.5
C29—C28—H28119.4H62A—C62—H62C109.5
C27—C28—H28119.4H62B—C62—H62C109.5
C28—C29—C30120.5 (2)C51—C63—H63A109.5
C28—C29—H29119.8C51—C63—H63B109.5
C30—C29—H29119.8H63A—C63—H63B109.5
C25—C30—C29119.5 (3)C51—C63—H63C109.5
C25—C30—H30120.3H63A—C63—H63C109.5
C29—C30—H30120.3H63B—C63—H63C109.5
 

Acknowledgements

ZSS acknowledges King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for financial support.

References

First citationAkrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Mentzafos, D. & Terzis, A. (1993). Inorg. Chim. Acta, 206, 163–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds