organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Methyl-D-lyxono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it

(Received 24 November 2005; accepted 5 December 2005; online 10 December 2005)

The title compound, C6H10O5, has been crystallized for the first time, allowing the stereochemistry at C-2 and the ring size of the lactone to be firmly established.

Comment

The Kiliani ascension of ketoses (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) provides ready access to a new class of branched carbohydrate scaffolds (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]; Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc.]) with branched carbon chains. Although saccharinic acids, which are 2-C-methyl aldonic acids, are formed in very low yields from treatment of aldoses or ketoses with aqueous calcium hydroxide (Whistler & BeMiller, 1963[Whistler, R. L. & BeMiller, J. N. (1963). Methods Carbohydr. Chem. 2, 484-485.]), it has been shown that significantly higher yields may be obtained from the reaction of lime with ketoses (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]) derived from the Amadori rearrangement (Hodge, 1955[Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.]). D-Galactose reacted with dibenzyl­amine to form the Amadori ketose, (2) (Grunnagel & Haas, 1969[Grunnagel, R. & Haas, H. J. (1969). Annalen, 721, 234-235.]), in which the α-configuration at the anomeric position of the pyran­ose ring has been proved by X-ray crystallographic analysis (Harding et al., 2005[Harding, C. C., Cowley, A. R., Watkin, D. J., Punzo, F., Hotchkiss, D. J. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1475-o1477.]). Treatment of (2) with aqueous calcium hydroxide allowed the isolation of a mixture of two epimeric lactones.

[Scheme 1]

The structure of the minor isomer was confirmed as 2-C-methyl-D-xylono-1,4-lactone, (3), by an X-ray structure of its 3,5-acetonide (Watkin et al., 2005[Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302-o3303.]). The major product, 2-C-methyl-D-lyxono-1,4-lactone, (4), initially isolated as an oil, slowly crystallized, allowing the relative configuration at C-2 and the ring size of the lyxonolactone to be unambiguously assigned by X-ray crystallographic analysis.

Racemic lactone (4) has only been obtained as an oil (Lopez et al., 1984[Lopez, A. F. J., Izquierdo, C. I. & Portal, A. M. D. (1984). Carbohydr. Res. 129, 99-109.]); the enanti­omer of (4) has been prepared in low yield from L-sorbose (Ishizu et al., 1972[Ishizu, A., Yoshida, K. & Yamazaki, N. (1972). Carbohydr. Res. 23, 23-29.]). The absolute configuration of (4) was determined from the use of D-galactose (1) as the starting material.

[Figure 1]
Figure 1
The molecular structure of (4), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2]
Figure 2
Packing diagram of (4), viewed down the c axis. Hydrogen bonds are displayed with dashed lines.

Experimental

The lactone (4) {m.p. 379–380K, [α]D23 +70.4 (c 0.87 in acetone)} was crystallized by dissolving it in acetone and allowing the slow evaporation of the solvent until colourless block-shaped crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

Crystal data
  • C6H10O5

  • Mr = 162.14

  • Monoclinic, C 2

  • a = 18.6680 (5) Å

  • b = 5.8280 (2) Å

  • c = 6.3943 (2) Å

  • β = 92.2219 (14)°

  • V = 695.16 (4) Å3

  • Z = 4

  • Dx = 1.549 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1011 reflections

  • θ = 5–30°

  • μ = 0.14 mm−1

  • T = 120 K

  • Block, colourless

  • 0.70 × 0.60 × 0.50 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.92, Tmax = 0.93

  • 1943 measured reflections

  • 1087 independent reflections

  • 1073 reflections with I > 2σ(I)

  • Rint = 0.010

  • θmax = 30.0°

  • h = −25 → 26

  • k = −7 → 8

  • l = −8 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.04

  • 1087 reflections

  • 101 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.33P] where P = (Fo2,0) + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), equation 22

  • Extinction coefficient: 4.90 (3) × 102

Table 1
Selected geometric parameters (Å, °)[link]

C1—C2 1.5382 (16)
C1—C5 1.5342 (17)
C1—O10 1.4329 (14)
C1—C11 1.5150 (18)
C2—C3 1.5448 (19)
C2—O9 1.4163 (14)
C3—O4 1.4652 (15)
C3—C7 1.5098 (18)
O4—C5 1.3553 (15)
C5—O6 1.2027 (15)
C7—O8 1.4327 (16)
C2—C1—C5 100.95 (9)
C2—C1—O10 112.80 (9)
C5—C1—O10 107.55 (10)
C2—C1—C11 114.56 (10)
C5—C1—C11 113.52 (10)
O10—C1—C11 107.29 (9)
C1—C2—C3 104.94 (10)
C1—C2—O9 115.82 (10)
C3—C2—O9 114.94 (10)
C2—C3—O4 103.36 (9)
C2—C3—C7 117.44 (10)
O4—C3—C7 109.87 (11)
C3—O4—C5 112.01 (10)
C1—C5—O4 110.53 (10)
C1—C5—O6 128.09 (11)
O4—C5—O6 121.36 (12)
C3—C7—O8 110.46 (10)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O8 0.81 1.90 2.6770 (13) 159
O8—H8⋯O9i 0.88 1.82 2.6906 (14) 172
O9—H9⋯O10ii 0.86 1.93 2.7547 (13) 160
Symmetry codes: (i) x, y+1, z; (ii) -x+1, y, -z+1.

In the absence of significant anomalous scattering, Friedel pairs were merged. H atoms were located in a difference density map. Those attached to C atoms were repositioned geometrically. H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å and O—H = 0.82 Å) and isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(parent atom)], after which their positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The Kiliani ascension of ketoses (Hotchkiss et al., 2004; Soengas et al., 2005) provides ready access to a new class of branched carbohydrate scaffolds (Lichtenthaler & Peters, 2004; Bols, 1996) with branched carbon chains. Although saccharinic acids - which are 2-C-methyl aldonic acids - are formed in very low yields from treatment of aldoses or ketoses with aqueous calcium hydroxide (Whistler & BeMiller, 1963), it has been shown that significantly higher yields may be obtained from the reaction of lime with ketoses (Hotchkiss et al., 2006) derived from the Amadori rearrangement (Hodge, 1955). d-Galactose reacted with dibenzylamine to form the Amadori ketose (2) (Grunnagel & Haas, 1969), in which the α-configuration at the anomeric position of the pyranose ring has been proved by X-ray crystallographic analysis (Harding et al., 2005). Treatment of (2) with aqueous calcium hydroxide allowed the isolation of a mixture of two epimeric lactones.

Table 1.

The structure of the minor isomer was confirmed as 2-C-methyl-d-xylono-1,4-lactone (3) by an X-ray structure of its 3,5-acetonide (Watkin et al., 2005). The major product 2-C-methyl-d-lyxono-1,4-lactone (4), initially isolated as an oil, slowly crystallized allowing the relative configuration at C-2 and the ring size of the lyxonolactone to be unambiguously assigned by X-ray crystallographic analysis.

Figure 1.

Racemic lactone (4) has only been obtained as an oil (Lopez et al., 1984); the enantiomer of (4) has been prepared in low yield from l-sorbose (Ishizu et al., 1982 or 1972). The absolute configuration of (4) is determined from the use of d-galactose (1) as the starting material.

Figure 2.

Experimental top

The lactone (4) (m.p. 379–380 K, [α]D23 +70.4 (c 0.87 in acetone)) was crystallized by dissolving it in acetone and allowing the slow evaporation of the solvent until colourless block-shaped crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

Refinement top

Because the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Friedel pairs of reflections. H atoms were seen in a difference density synthesis. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.96–0.98, O—H = 0.81–0.88 Å), after which they were refined as riding, with U(H) = 1.2Ueq(C) for those bonded to carbon, and U(H) = 0.05 Å2 for the hydroxy group.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (4), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of (4), viewed down the c axis. Hydrogen bonds are displayed with dashed lines.
2-C-Methyl-D-lyxono-1,4-lactone top
Crystal data top
C6H10O5F(000) = 344
Mr = 162.14Dx = 1.549 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1011 reflections
a = 18.6680 (5) Åθ = 5–30°
b = 5.8280 (2) ŵ = 0.14 mm1
c = 6.3943 (2) ÅT = 120 K
β = 92.2219 (14)°Block, colourless
V = 695.16 (4) Å30.70 × 0.60 × 0.50 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω scansθmax = 30.0°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2526
Tmin = 0.92, Tmax = 0.93k = 78
1943 measured reflectionsl = 89
1087 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(F2) + (0.03P)2 + 0.33P]
where P = (Fo2,0) + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.000363
S = 1.04Δρmax = 0.22 e Å3
1087 reflectionsΔρmin = 0.16 e Å3
101 parametersExtinction correction: Larson (1970), equation 22
1 restraintExtinction coefficient: 490 (30)
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H10O5V = 695.16 (4) Å3
Mr = 162.14Z = 4
Monoclinic, C2Mo Kα radiation
a = 18.6680 (5) ŵ = 0.14 mm1
b = 5.8280 (2) ÅT = 120 K
c = 6.3943 (2) Å0.70 × 0.60 × 0.50 mm
β = 92.2219 (14)°
Data collection top
Nonius KappaCCD
diffractometer
1087 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1073 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.93Rint = 0.010
1943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.061H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
1087 reflectionsΔρmin = 0.16 e Å3
101 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62534 (6)0.0653 (2)0.62746 (18)0.0118
C20.62752 (6)0.1232 (2)0.39310 (18)0.0118
C30.66213 (6)0.0885 (2)0.29245 (19)0.0134
O40.70639 (5)0.18637 (17)0.46441 (13)0.0153
C50.68912 (6)0.0998 (2)0.65261 (19)0.0139
O60.72080 (5)0.1571 (2)0.81146 (15)0.0203
C70.61246 (7)0.2698 (2)0.20044 (19)0.0160
O80.56415 (5)0.34812 (16)0.35384 (15)0.0177
O90.56175 (5)0.19459 (17)0.29616 (14)0.0136
O100.56216 (4)0.05895 (18)0.67885 (13)0.0138
C110.63081 (7)0.2712 (2)0.7718 (2)0.0161
H210.66250.24650.37260.0110*
H310.69240.03330.18310.0132*
H710.64210.39720.15760.0166*
H720.58770.20390.07870.0164*
H1110.63120.21520.91530.0203*
H1120.67290.36060.74800.0211*
H1130.58710.36290.74580.0206*
H100.55350.15900.59350.0169*
H80.56100.49760.34500.0229*
H90.53010.09090.31590.0174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0105 (5)0.0117 (6)0.0132 (5)0.0010 (4)0.0008 (4)0.0004 (4)
C20.0109 (5)0.0117 (5)0.0129 (5)0.0003 (4)0.0003 (4)0.0008 (5)
C30.0143 (5)0.0141 (6)0.0118 (5)0.0018 (5)0.0012 (4)0.0007 (5)
O40.0148 (4)0.0181 (5)0.0132 (4)0.0051 (4)0.0012 (3)0.0002 (4)
C50.0116 (5)0.0155 (6)0.0147 (5)0.0011 (5)0.0021 (4)0.0006 (5)
O60.0181 (4)0.0271 (6)0.0154 (4)0.0064 (4)0.0016 (3)0.0016 (4)
C70.0210 (6)0.0135 (6)0.0134 (5)0.0012 (5)0.0015 (4)0.0010 (5)
O80.0217 (5)0.0109 (5)0.0209 (4)0.0011 (4)0.0054 (3)0.0021 (4)
O90.0116 (4)0.0115 (4)0.0174 (4)0.0003 (3)0.0015 (3)0.0023 (3)
O100.0124 (4)0.0140 (4)0.0152 (4)0.0011 (4)0.0026 (3)0.0005 (4)
C110.0176 (6)0.0147 (6)0.0160 (5)0.0006 (5)0.0007 (4)0.0039 (5)
Geometric parameters (Å, º) top
C1—C21.5382 (16)C5—O61.2027 (15)
C1—C51.5342 (17)C7—O81.4327 (16)
C1—O101.4329 (14)C7—H710.972
C1—C111.5150 (18)C7—H720.969
C2—C31.5448 (19)O8—H80.875
C2—O91.4163 (14)O9—H90.858
C2—H210.983O10—H100.811
C3—O41.4652 (15)C11—H1110.974
C3—C71.5098 (18)C11—H1120.960
C3—H310.971C11—H1130.984
O4—C51.3553 (15)
C2—C1—C5100.95 (9)C1—C5—O4110.53 (10)
C2—C1—O10112.80 (9)C1—C5—O6128.09 (11)
C5—C1—O10107.55 (10)O4—C5—O6121.36 (12)
C2—C1—C11114.56 (10)C3—C7—O8110.46 (10)
C5—C1—C11113.52 (10)C3—C7—H71107.3
O10—C1—C11107.29 (9)O8—C7—H71109.2
C1—C2—C3104.94 (10)C3—C7—H72107.6
C1—C2—O9115.82 (10)O8—C7—H72112.5
C3—C2—O9114.94 (10)H71—C7—H72109.6
C1—C2—H21109.5C7—O8—H8108.4
C3—C2—H21103.8C2—O9—H9108.6
O9—C2—H21107.2C1—O10—H10110.7
C2—C3—O4103.36 (9)C1—C11—H111107.8
C2—C3—C7117.44 (10)C1—C11—H112111.7
O4—C3—C7109.87 (11)H111—C11—H112110.7
C2—C3—H31107.5C1—C11—H113106.9
O4—C3—H31110.0H111—C11—H113108.5
C7—C3—H31108.5H112—C11—H113110.9
C3—O4—C5112.01 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O80.811.902.6770 (13)159
O8—H8···O9i0.881.822.6906 (14)172
O9—H9···O10ii0.861.932.7547 (13)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H10O5
Mr162.14
Crystal system, space groupMonoclinic, C2
Temperature (K)120
a, b, c (Å)18.6680 (5), 5.8280 (2), 6.3943 (2)
β (°) 92.2219 (14)
V3)695.16 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.70 × 0.60 × 0.50
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.92, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
1943, 1087, 1073
Rint0.010
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.04
No. of reflections1087
No. of parameters101
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
C1—C21.5382 (16)C3—O41.4652 (15)
C1—C51.5342 (17)C3—C71.5098 (18)
C1—O101.4329 (14)O4—C51.3553 (15)
C1—C111.5150 (18)C5—O61.2027 (15)
C2—C31.5448 (19)C7—O81.4327 (16)
C2—O91.4163 (14)
C2—C1—C5100.95 (9)C2—C3—O4103.36 (9)
C2—C1—O10112.80 (9)C2—C3—C7117.44 (10)
C5—C1—O10107.55 (10)O4—C3—C7109.87 (11)
C2—C1—C11114.56 (10)C3—O4—C5112.01 (10)
C5—C1—C11113.52 (10)C1—C5—O4110.53 (10)
O10—C1—C11107.29 (9)C1—C5—O6128.09 (11)
C1—C2—C3104.94 (10)O4—C5—O6121.36 (12)
C1—C2—O9115.82 (10)C3—C7—O8110.46 (10)
C3—C2—O9114.94 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O80.811.902.6770 (13)159
O8—H8···O9i0.881.822.6906 (14)172
O9—H9···O10ii0.861.932.7547 (13)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA England

Acknowledgements

Financial support from EPSRC (to DH) is acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc.  Google Scholar
First citationGrunnagel, R. & Haas, H. J. (1969). Annalen, 721, 234–235.  Google Scholar
First citationHarding, C. C., Cowley, A. R., Watkin, D. J., Punzo, F., Hotchkiss, D. J. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1475–o1477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationIshizu, A., Yoshida, K. & Yamazaki, N. (1972). Carbohydr. Res. 23, 23–29.  CrossRef CAS Web of Science Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationLopez, A. F. J., Izquierdo, C. I. & Portal, A. M. D. (1984). Carbohydr. Res. 129, 99–109.  CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar
First citationWhistler, R. L. & BeMiller, J. N. (1963). Methods Carbohydr. Chem. 2, 484–485.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds