organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,5,5′-Tetra­kis(tri­fluoro­meth­yl)biphen­yl

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: d.s.yufit@durham.ac.uk

(Received 30 November 2005; accepted 5 December 2005; online 10 December 2005)

The title compound, C16H6F12, has been obtained as a by-product of the reaction between 2,5-bis­(trifluoro­meth­yl)phenyllithium and zinc(II) chloride. The asymmetric unit contains two independent mol­ecules with a similar almost perpendic­ular conformation of the biphenyl fragments.

Comment

As a part of our ongoing studies into the reactions between lithia­ted trifluoro­methyl-substituted aromatic compounds and main group halides (Batsanov et al., 2001[Batsanov, A. S., Cornet, S. M., Crowe, L. A., Dillon, K. B., Harris, R. K., Hazendonk, P. & Roden, M. D. (2001). Eur. J. Inorg. Chem. pp. 1729-1737.]; Batsanov et al., 2002[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622-4628.]; Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]; Cornet et al., 2003[Cornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395-4405.]; Cornet et al., 2005[Cornet, S. M., Dillon, K. B. & Goeta, A. E. (2005). Inorg. Chim. Acta, 358, 844-848.]), we have reacted lithia­ted 1,4-bis­(trifluoro­meth­yl)benzene (ArLi) with zinc(II) chloride in diethyl ether solution. A few crystals were isolated from the reaction mixture and X-ray analysis proved them to be a by-product of the reaction, 2,5,2′,5′-tetra­kis(trifluoro­meth­yl)biphenyl (I)[link], probably formed via a radical reaction.

[Scheme 1]

The structures of the two mol­ecules in the asymmetric unit of (I)[link] are shown in Fig. 1[link], while selected bond distances and angles are listed in Table 1[link]. The asymmetric unit contains two crystallographically independent mol­ecules, both of them adopting a similar perpendicular conformation of the biphenyl fragment and differing slightly in the orientation of CF3 groups (Fig. 2[link]). The perpendicular conformation, with an absolute value of the torsion angle around the central C–C bond close to 90°, is typical for 2,2′-substituted biphenyls [see, for example, Leser & Rabinovich (1978[Leser, J. & Rabinovich, D. (1978). Acta Cryst. B34, 2260-2263.], and references therein) and Nieger et al. (1998[Nieger, M., Hupfer H. & Bolte, M. (1998). Acta Cryst. C54, 656-659.])]. The lengths of the central C–C bonds in (I)[link] [1.498 (2) and 1.499 (2) Å] are well within the range of the central bond lengths in substituted biphenyls (Bahl et al., 1996[Bahl, A., Grahn, W. & Jones, P. G. (1996). Acta Cryst. C52, 2014-2017.]; Shimada et al., 2003[Shimada, S., Yamazaki, O., Tanaka, T., Rao, M. L. N., Suzuki, Y. & Tanaka, M. (2003). Angew. Chem. Int. Ed. Engl. 42, 1845-1848.]). The geometrical parameters of the CF3 groups are also entirely comparable with those described in the literature for other CF3-substituted benzene derivatives (Lynch et al., 1992[Lynch, V. M., Kampa, J. J., Lagow, R. J. & Davis, B. E. (1992). Acta Cryst. C48, 1339-1341.]; Couldwell & Penfold, 1976[Couldwell, M. H. & Penfold, B. R. (1976). J. Cryst. Mol. Struct. 6, 59-64.]; Baenziger et al., 1995[Baenziger, N. C., Burton, D. J. & Tortelli, V. (1995). Acta Cryst. C51, 1663-1665.]).

The packing of the mol­ecules of (I)[link] in the crystal structure is determined by a number of short C–H⋯F and F⋯F inter­actions, which link mol­ecules in a three-dimensional network (Fig. 3[link]). The role of such inter­actions in crystal engineering has been discussed recently by Reichenbächer et al. (2005[Reichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22-30.]). The shortest contacts of each type are H34⋯F27(1 + x, y, z) 2.52 (2) and F24⋯F32(−x, 1 − y, 1 − z) 2.788 (2) Å.

[Figure 1]
Figure 1
The two independent mol­ecules of (I)[link], with the minor component of the disordered F atoms omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Least-squares fit of the two independent mol­ecules. The minor components of the disordered F atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing of the mol­ecules of (I)[link] in the crystal structure, viewed along the b axis. Dashed lines correspond to short H⋯F and F⋯F inter­molecular contacts.

Experimental

A solution of ZnCl2 (3.07 g, 22.5 mmol) in diethyl ether was added via a cannula, with stirring, to a solution of ArLi (22.5 mmol) in diethyl ether at 195 K. ArLi was prepared in situ from ArH (5.3 g, 24.8 mmol) and n-BuLi (22.5 mmol from a 1.6 M solution in hexa­ne) in diethyl ether at 195 K. The mixture was allowed to warm to room temperature, and most of the solvent was removed in vacuo. A liquid layer above an oily layer was produced. The liquid layer was separated, and left in a tube at room temperature to see whether crystals would form. Crystals of (I)[link] were observed on the following day and were isolated. The title compound, (I)[link], was also characterized by 19F NMR spectroscopy, giving the expected two singlets in a 1:1 ratio at −59.2 and −63.9 p.p.m., assigned to the CF3 groups ortho and meta to the ring junction, respectively, and by elemental analysis (Found, C, 43.7, H, 1.38%; C16H6F12 requires C, 45.1, H, 1.42%). All manipulations of air- and/or moisture-sensitive compounds were performed either under an inert atmosphere of dry nitro­gen or in vacuo, using standard Schlenk and cannula techniques, or in a nitro­gen-filled glovebox. 19F NMR spectra were recorded on a Varian Unity 300 Fourier-transform spectrometer at 282.2 MHz; chemical shifts were measured relative to external CFCl3.

Crystal data
  • C16H6F12

  • Mr = 426.21

  • Triclinic, [P \overline 1]

  • a = 7.4296 (2) Å

  • b = 14.3048 (4) Å

  • c = 15.1315 (4) Å

  • α = 79.73 (1)°

  • β = 77.21 (1)°

  • γ = 76.39 (1)°

  • V = 1510.6 (1) Å3

  • Z = 4

  • Dx = 1.874 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6646 reflections

  • θ = 2.2–31.0°

  • μ = 0.21 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.36 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART 6000 CCD diffractometer

  • ω scans

  • Absorption correction: none

  • 14596 measured reflections

  • 8297 independent reflections

  • 6387 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 29.5°

  • h = −10 → 10

  • k = −19 → 19

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.05

  • 8297 reflections

  • 558 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.09P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

C1—C9 1.498 (2)
C21—C29 1.499 (2)
C6—C1—C2 118.26 (13)
C6—C1—C9 117.08 (13)
C2—C1—C9 124.53 (13)
C14—C9—C10 118.70 (13)
C14—C9—C1 117.35 (13)
C10—C9—C1 123.69 (13)
C26—C21—C22 118.54 (13)
C26—C21—C29 117.99 (13)
C22—C21—C29 123.17 (13)
C34—C29—C30 118.16 (14)
C34—C29—C21 116.95 (13)
C30—C29—C21 124.79 (13)
C2—C1—C9—C14 85.42 (18)
C22—C21—C29—C34 −79.54 (19)

One of the CF3 groups (F24–F26) is severely disordered and has been modelled by several sets of F atoms with partial occupancy (site-occupancy factors 0.4:0.3:0.3). These atoms were refined isotropically. H atom parameters were refined freely [C—H = 0.91 (3)–0.97 (2) Å].

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL (Version 6.10), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL (Version 6.10), Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL (Version 6.10), Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our ongoing studies into the reactions between lithiated trifluoromethyl-substituted aromatic compounds and main group halides (Batsanov et al., 2001; Batsanov et al., 2002; Batsanov et al., 2003; Cornet et al., 2003; Cornet et al., 2005), we have reacted lithiated 1,4-bis(trifluoromethyl)benzene (ArLi) with zinc(II) chloride in diethyl ether solution. A few crystals were isolated from the reaction mixture and X-ray analysis proved them to be a by-product of the reaction, 2,5,2,,5,-tetrakis(trifluoromethyl)biphenyl (I), probably formed via a radical reaction.

The structures of the two molecules in the asymmetric unit of (I) are shown in Fig. 1, while selected bond distances and angles are listed in Table 1. The crystal contains two crystallographically independent molecules per asymmetric unit, both of them adopting a similar perpendicular conformation of the biphenyl fragment and differing slightly in the orientation of CF3 groups (Fig. 2). The perpendicular conformation, with an absolute value of the torsion angle around the central C–C bond close to 90°, is typical for 2,2,-substituted biphenyls (see, for example Leser & Rabinovich, 1978 and references within; Nieger et al., 1998). The lengths of the central C–C bonds in (I) [1.498 (2) and 1.499 (2) Å] are well in the range of the central bond lengths in substituted biphenyls (Bahl et al., 1996; Shimada et al., 2003). The geometrical parameters of CF3 groups are also entirely comparable with those described in the literature for other CF3-substituted benzene derivatives (Lynch et al., 1992; Couldwell & Penfold, 1976; Baenziger et al., 1995).

The packing of the molecules of (I) in the crystal is determined by a number of short C–H···F and F···F interactions, which link molecules in a three-dimensional network (Fig. 3). The role of such interactions in crystal engineering has been discussed recently by Reichenbächer et al. (2005). The shortest contacts of each type are H34···F27(1 + x, y, z) 2.52 (2) and F24···F32(−x, 1 − y, 1 − z) 2.788 (2) Å.

Experimental top

A solution of ZnCl2 (3.07 g, 22.5 mmol) in diethyl ether was added via cannula, with stirring, to a solution of ArLi (22.5 mmol) in diethyl ether at 195 K. ArLi was prepared in situ from ArH (5.3 g, 24.8 mmol) and n-BuLi (22.5 mmol from a 1.6 M solution in hexane) in diethyl ether at −78° C. The mixture was allowed to warm to room temperature, and most of the solvent was removed in vacuo. A liquid layer above an oily layer was produced. The liquid layer was separated, and left in a tube at room temperature to see whether crystals would form. Crystals of (I) were observed on the following day and were isolated. The title compound, (I), was also characterized by 19F NMR spectroscopy, giving the expected two singlets in a 1:1 ratio at −59.2 and −63.9 p.p.m., assigned to the CF3 groups ortho and meta to the ring junction, respectively, and by elemental analysis (Found, C, 43.7, H, 1.38%; C16H6F12 requires C, 45.1, H, 1.42%). All manipulations of air- and/or moisture-sensitive compounds were performed either under an inert atmosphere of dry nitrogen or in vacuo, using standard Schlenk and cannula techniques, or in a nitrogen-filled glovebox. 19F NMR spectra were recorded on a Varian Unity 300 Fourier-transform spectrometer at 282.2 MHz; chemical shifts were measured relative to external CFCl3.

Refinement top

One of the CF3-groups (F24–F26) is severely disordered and has been modelled by several sets of F-atoms with partial occupancy. These atoms were refined isotropically.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), with the minor component of the disordered F atoms omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Overlap of the two independent molecules. Disordered F atoms are omitted for clarity.
[Figure 3] Fig. 3. Packing of the molecules of (I) in the crystal, viewed along the b axis. Dashed lines correspond to short H···F and F···F intermolecular contacts.
2,2',5,5'-Tetrakis(trifluoromethyl)biphenyl top
Crystal data top
C16H6F12Z = 4
Mr = 426.21F(000) = 840
Triclinic, P1Dx = 1.874 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4296 (2) ÅCell parameters from 6646 reflections
b = 14.3048 (4) Åθ = 2.2–31.0°
c = 15.1315 (4) ŵ = 0.21 mm1
α = 79.73 (1)°T = 120 K
β = 77.21 (1)°Block, colourless
γ = 76.39 (1)°0.36 × 0.32 × 0.24 mm
V = 1510.6 (1) Å3
Data collection top
Bruker SMART CCD 6000
diffractometer
6387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 29.5°, θmin = 1.4°
ω scansh = 1010
14596 measured reflectionsk = 1919
8297 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.161All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.09P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
8297 reflections(Δ/σ)max = 0.001
558 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C16H6F12γ = 76.39 (1)°
Mr = 426.21V = 1510.6 (1) Å3
Triclinic, P1Z = 4
a = 7.4296 (2) ÅMo Kα radiation
b = 14.3048 (4) ŵ = 0.21 mm1
c = 15.1315 (4) ÅT = 120 K
α = 79.73 (1)°0.36 × 0.32 × 0.24 mm
β = 77.21 (1)°
Data collection top
Bruker SMART CCD 6000
diffractometer
6387 reflections with I > 2σ(I)
14596 measured reflectionsRint = 0.033
8297 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161All H-atom parameters refined
S = 1.05Δρmax = 0.86 e Å3
8297 reflectionsΔρmin = 0.49 e Å3
558 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

One of the CF3-groups is severely disordered.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F11.10437 (15)0.71425 (8)0.07710 (9)0.0371 (3)
F20.94316 (17)0.77359 (9)0.02873 (8)0.0387 (3)
F30.84579 (15)0.81778 (8)0.10442 (9)0.0344 (3)
F40.38913 (16)0.43902 (8)0.11119 (8)0.0327 (3)
F50.5047 (2)0.38635 (9)0.23298 (8)0.0453 (3)
F60.65920 (18)0.34254 (8)0.10462 (11)0.0466 (3)
F70.32362 (15)0.86682 (7)0.29303 (7)0.0273 (2)
F80.31604 (16)0.72235 (8)0.27430 (7)0.0300 (2)
F90.58185 (14)0.76499 (8)0.25602 (7)0.0279 (2)
F100.41727 (18)0.85770 (8)0.19164 (7)0.0348 (3)
F110.4192 (2)1.00196 (9)0.17434 (8)0.0411 (3)
F120.15851 (16)0.95277 (11)0.14289 (8)0.0461 (3)
F210.18170 (16)0.27611 (8)0.22043 (7)0.0300 (2)
F220.16117 (17)0.13289 (8)0.20441 (7)0.0299 (2)
F230.09013 (15)0.23801 (8)0.24520 (7)0.0303 (2)
F240.1072 (4)0.13992 (18)0.68768 (16)0.0249 (5)*0.50
F250.3588 (4)0.0570 (3)0.63625 (19)0.0195 (6)*0.40
F260.0686 (5)0.0009 (2)0.6733 (2)0.0308 (8)*0.40
F24A0.0625 (4)0.12488 (19)0.69245 (17)0.0306 (6)*0.50
F25A0.3549 (6)0.0895 (4)0.6347 (3)0.0318 (11)*0.30
F26A0.1285 (8)0.0147 (3)0.6646 (2)0.0129 (6)*0.30
F25B0.3470 (6)0.0249 (3)0.6370 (3)0.0302 (10)*0.30
F26B0.1969 (8)0.0233 (3)0.6535 (3)0.0382 (12)*0.30
F270.60254 (15)0.31200 (9)0.44845 (10)0.0448 (3)
F280.41380 (18)0.24118 (10)0.53853 (8)0.0432 (3)
F290.36502 (19)0.20147 (9)0.40477 (10)0.0449 (3)
F300.10254 (19)0.58030 (9)0.40298 (8)0.0412 (3)
F310.16418 (19)0.55415 (9)0.26486 (9)0.0450 (3)
F320.07548 (19)0.66232 (8)0.31026 (12)0.0532 (4)
C10.6279 (2)0.67624 (10)0.09371 (10)0.0161 (3)
C20.8238 (2)0.65870 (11)0.08771 (10)0.0183 (3)
C30.9269 (2)0.56457 (12)0.10235 (11)0.0216 (3)
C40.8380 (2)0.48609 (12)0.12217 (11)0.0225 (3)
C50.6450 (2)0.50273 (11)0.12671 (10)0.0195 (3)
C60.5400 (2)0.59670 (11)0.11386 (10)0.0176 (3)
C70.9284 (2)0.74106 (12)0.06075 (11)0.0226 (3)
C80.5487 (2)0.41801 (12)0.14445 (12)0.0248 (3)
C90.5066 (2)0.77423 (10)0.07366 (10)0.0156 (3)
C100.3977 (2)0.82988 (10)0.14128 (10)0.0163 (3)
C110.2750 (2)0.91651 (11)0.11829 (11)0.0196 (3)
C120.2583 (2)0.94814 (11)0.02764 (11)0.0198 (3)
C130.3652 (2)0.89272 (11)0.03962 (10)0.0173 (3)
C140.4896 (2)0.80703 (11)0.01743 (10)0.0171 (3)
C150.4058 (2)0.79644 (11)0.24083 (10)0.0188 (3)
C160.3403 (2)0.92585 (12)0.13717 (11)0.0208 (3)
C210.0055 (2)0.22761 (10)0.42391 (10)0.0165 (3)
C220.1031 (2)0.16977 (11)0.35574 (10)0.0187 (3)
C230.2186 (2)0.08049 (12)0.37777 (11)0.0225 (3)
C240.2397 (2)0.04787 (12)0.46767 (11)0.0226 (3)
C250.1442 (2)0.10517 (11)0.53520 (10)0.0185 (3)
C260.0276 (2)0.19384 (11)0.51427 (10)0.0178 (3)
C270.0878 (2)0.20360 (11)0.25687 (11)0.0217 (3)
C280.1760 (2)0.07114 (12)0.63168 (11)0.0220 (3)
C290.1060 (2)0.32824 (11)0.40372 (10)0.0170 (3)
C300.3034 (2)0.35338 (11)0.41677 (10)0.0187 (3)
C310.3950 (2)0.44957 (12)0.40006 (11)0.0219 (3)
C320.2927 (2)0.52315 (12)0.37192 (11)0.0229 (3)
C330.0974 (2)0.49846 (11)0.36024 (10)0.0197 (3)
C340.0051 (2)0.40239 (11)0.37479 (10)0.0185 (3)
C350.4206 (2)0.27667 (12)0.45118 (12)0.0242 (3)
C360.0198 (2)0.57498 (12)0.33458 (12)0.0244 (3)
H31.055 (3)0.5554 (16)0.0990 (15)0.027 (5)*
H40.906 (3)0.4240 (17)0.1318 (15)0.031 (6)*
H60.409 (3)0.6068 (15)0.1194 (14)0.022 (5)*
H110.206 (3)0.9520 (16)0.1636 (16)0.028 (5)*
H120.175 (3)1.0073 (16)0.0137 (14)0.022 (5)*
H140.562 (3)0.7703 (15)0.0652 (15)0.024 (5)*
H230.279 (4)0.0440 (19)0.3322 (18)0.043 (7)*
H240.322 (3)0.0114 (17)0.4790 (15)0.028 (5)*
H260.036 (3)0.2320 (16)0.5626 (15)0.026 (5)*
H310.526 (3)0.4667 (18)0.4048 (16)0.038 (6)*
H320.353 (3)0.5905 (16)0.3605 (15)0.029 (5)*
H340.130 (3)0.3863 (15)0.3643 (14)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0197 (5)0.0337 (6)0.0579 (8)0.0088 (4)0.0152 (5)0.0081 (5)
F20.0429 (7)0.0452 (7)0.0281 (6)0.0215 (5)0.0069 (5)0.0122 (5)
F30.0295 (5)0.0239 (5)0.0513 (7)0.0118 (4)0.0003 (5)0.0094 (5)
F40.0339 (6)0.0240 (5)0.0461 (7)0.0102 (4)0.0203 (5)0.0015 (5)
F50.0717 (9)0.0406 (7)0.0332 (6)0.0345 (6)0.0187 (6)0.0115 (5)
F60.0427 (7)0.0207 (5)0.0806 (10)0.0021 (5)0.0129 (6)0.0214 (6)
F70.0386 (6)0.0212 (5)0.0201 (5)0.0013 (4)0.0068 (4)0.0061 (4)
F80.0426 (6)0.0250 (5)0.0241 (5)0.0175 (4)0.0034 (4)0.0031 (4)
F90.0241 (5)0.0358 (6)0.0214 (5)0.0010 (4)0.0094 (4)0.0007 (4)
F100.0542 (7)0.0265 (5)0.0228 (5)0.0008 (5)0.0143 (5)0.0044 (4)
F110.0718 (9)0.0316 (6)0.0268 (6)0.0280 (6)0.0160 (5)0.0099 (5)
F120.0239 (5)0.0807 (10)0.0277 (6)0.0012 (6)0.0124 (4)0.0022 (6)
F210.0415 (6)0.0235 (5)0.0228 (5)0.0100 (4)0.0018 (4)0.0021 (4)
F220.0452 (6)0.0219 (5)0.0207 (5)0.0000 (4)0.0071 (4)0.0061 (4)
F230.0291 (5)0.0365 (6)0.0229 (5)0.0021 (4)0.0109 (4)0.0023 (4)
F270.0215 (5)0.0410 (7)0.0691 (9)0.0108 (5)0.0163 (5)0.0154 (6)
F280.0437 (7)0.0565 (8)0.0303 (6)0.0255 (6)0.0123 (5)0.0188 (5)
F290.0476 (7)0.0343 (6)0.0562 (8)0.0237 (5)0.0070 (6)0.0153 (6)
F300.0596 (8)0.0418 (7)0.0346 (6)0.0287 (6)0.0208 (6)0.0020 (5)
F310.0546 (8)0.0417 (7)0.0410 (7)0.0287 (6)0.0110 (6)0.0114 (5)
F320.0459 (7)0.0172 (5)0.0966 (12)0.0076 (5)0.0286 (7)0.0129 (6)
C10.0174 (6)0.0141 (6)0.0162 (6)0.0013 (5)0.0041 (5)0.0015 (5)
C20.0176 (6)0.0179 (7)0.0187 (7)0.0027 (5)0.0038 (5)0.0010 (5)
C30.0171 (7)0.0216 (7)0.0243 (7)0.0009 (6)0.0057 (6)0.0023 (6)
C40.0249 (7)0.0154 (7)0.0251 (8)0.0030 (6)0.0080 (6)0.0026 (6)
C50.0248 (7)0.0144 (7)0.0203 (7)0.0027 (5)0.0081 (6)0.0023 (5)
C60.0182 (6)0.0145 (7)0.0201 (7)0.0013 (5)0.0064 (5)0.0015 (5)
C70.0171 (7)0.0227 (8)0.0269 (8)0.0050 (6)0.0047 (6)0.0020 (6)
C80.0325 (8)0.0154 (7)0.0295 (8)0.0040 (6)0.0138 (7)0.0020 (6)
C90.0158 (6)0.0132 (6)0.0182 (7)0.0035 (5)0.0054 (5)0.0003 (5)
C100.0179 (6)0.0146 (6)0.0170 (6)0.0039 (5)0.0050 (5)0.0005 (5)
C110.0214 (7)0.0156 (7)0.0211 (7)0.0010 (5)0.0052 (5)0.0031 (6)
C120.0220 (7)0.0134 (7)0.0234 (7)0.0012 (5)0.0083 (6)0.0007 (5)
C130.0191 (6)0.0156 (7)0.0180 (7)0.0056 (5)0.0065 (5)0.0021 (5)
C140.0175 (6)0.0162 (7)0.0181 (7)0.0037 (5)0.0049 (5)0.0015 (5)
C150.0217 (7)0.0159 (7)0.0182 (7)0.0029 (5)0.0044 (5)0.0011 (5)
C160.0226 (7)0.0193 (7)0.0205 (7)0.0040 (6)0.0077 (6)0.0017 (6)
C210.0168 (6)0.0133 (6)0.0193 (7)0.0024 (5)0.0055 (5)0.0002 (5)
C220.0229 (7)0.0150 (7)0.0179 (7)0.0027 (5)0.0055 (5)0.0006 (5)
C230.0277 (8)0.0159 (7)0.0218 (7)0.0012 (6)0.0047 (6)0.0039 (6)
C240.0250 (7)0.0150 (7)0.0250 (8)0.0014 (6)0.0079 (6)0.0010 (6)
C250.0209 (7)0.0163 (7)0.0185 (7)0.0044 (5)0.0071 (5)0.0024 (5)
C260.0184 (6)0.0159 (7)0.0190 (7)0.0029 (5)0.0049 (5)0.0011 (5)
C270.0275 (8)0.0174 (7)0.0185 (7)0.0008 (6)0.0055 (6)0.0013 (6)
C280.0257 (7)0.0187 (7)0.0211 (7)0.0014 (6)0.0091 (6)0.0007 (6)
C290.0206 (7)0.0143 (6)0.0160 (6)0.0017 (5)0.0057 (5)0.0010 (5)
C300.0199 (7)0.0187 (7)0.0171 (6)0.0026 (5)0.0051 (5)0.0010 (5)
C310.0201 (7)0.0204 (7)0.0223 (7)0.0014 (6)0.0049 (6)0.0016 (6)
C320.0275 (8)0.0160 (7)0.0233 (7)0.0015 (6)0.0074 (6)0.0024 (6)
C330.0259 (7)0.0146 (7)0.0191 (7)0.0037 (6)0.0067 (6)0.0013 (5)
C340.0205 (7)0.0158 (7)0.0193 (7)0.0022 (5)0.0064 (5)0.0013 (5)
C350.0197 (7)0.0252 (8)0.0258 (8)0.0052 (6)0.0057 (6)0.0039 (6)
C360.0320 (8)0.0163 (7)0.0266 (8)0.0057 (6)0.0107 (6)0.0004 (6)
Geometric parameters (Å, º) top
F1—C71.3382 (18)C5—C61.391 (2)
F2—C71.340 (2)C5—C81.503 (2)
F3—C71.334 (2)C6—H60.93 (2)
F4—C81.3385 (19)C9—C141.398 (2)
F5—C81.329 (2)C9—C101.399 (2)
F6—C81.341 (2)C10—C111.394 (2)
F7—C151.3383 (18)C10—C151.507 (2)
F8—C151.3476 (17)C11—C121.389 (2)
F9—C151.3363 (18)C11—H110.92 (2)
F10—C161.3312 (19)C12—C131.389 (2)
F11—C161.3344 (19)C12—H120.95 (2)
F12—C161.3324 (19)C13—C141.388 (2)
F21—C271.3538 (19)C13—C161.506 (2)
F22—C271.3363 (18)C14—H140.96 (2)
F23—C271.3370 (19)C21—C261.399 (2)
F24—C281.348 (3)C21—C221.402 (2)
F25—C281.341 (3)C21—C291.499 (2)
F26—C281.404 (4)C22—C231.392 (2)
F24A—C281.323 (3)C22—C271.509 (2)
F25A—C281.426 (5)C23—C241.388 (2)
F26A—C281.337 (4)C23—H230.91 (3)
F25B—C281.300 (4)C24—C251.387 (2)
F26B—C281.312 (5)C24—H240.94 (2)
F27—C351.3341 (19)C25—C261.386 (2)
F28—C351.336 (2)C25—C281.506 (2)
F29—C351.324 (2)C26—H260.96 (2)
F30—C361.337 (2)C29—C341.393 (2)
F31—C361.347 (2)C29—C301.403 (2)
F32—C361.316 (2)C30—C311.390 (2)
C1—C61.397 (2)C30—C351.510 (2)
C1—C21.403 (2)C31—C321.393 (2)
C1—C91.498 (2)C31—H310.94 (2)
C2—C31.390 (2)C32—C331.389 (2)
C2—C71.509 (2)C32—H320.97 (2)
C3—C41.389 (2)C33—C341.387 (2)
C3—H30.92 (2)C33—C361.502 (2)
C4—C51.385 (2)C34—H340.96 (2)
C4—H40.92 (2)
C6—C1—C2118.26 (13)C26—C21—C22118.54 (13)
C6—C1—C9117.08 (13)C26—C21—C29117.99 (13)
C2—C1—C9124.53 (13)C22—C21—C29123.17 (13)
C3—C2—C1120.65 (14)C23—C22—C21120.60 (14)
C3—C2—C7118.52 (13)C23—C22—C27118.60 (14)
C1—C2—C7120.76 (13)C21—C22—C27120.79 (13)
C4—C3—C2120.54 (14)C24—C23—C22120.31 (15)
C4—C3—H3120.8 (14)C24—C23—H23121.0 (17)
C2—C3—H3118.7 (14)C22—C23—H23118.7 (17)
C5—C4—C3119.14 (14)C25—C24—C23119.23 (14)
C5—C4—H4120.5 (14)C25—C24—H24123.4 (14)
C3—C4—H4120.4 (14)C23—C24—H24117.4 (14)
C4—C5—C6120.79 (14)C26—C25—C24121.02 (14)
C4—C5—C8119.50 (14)C26—C25—C28120.31 (14)
C6—C5—C8119.71 (14)C24—C25—C28118.63 (14)
C5—C6—C1120.61 (14)C25—C26—C21120.29 (14)
C5—C6—H6119.8 (13)C25—C26—H26119.0 (13)
C1—C6—H6119.6 (13)C21—C26—H26120.7 (13)
F3—C7—F1106.47 (14)F22—C27—F23107.16 (13)
F3—C7—F2106.25 (14)F22—C27—F21106.08 (13)
F1—C7—F2106.52 (13)F23—C27—F21106.14 (13)
F3—C7—C2113.56 (13)F22—C27—C22112.33 (13)
F1—C7—C2112.10 (13)F23—C27—C22112.89 (13)
F2—C7—C2111.47 (14)F21—C27—C22111.78 (13)
F5—C8—F4107.07 (15)F25—C28—F2498.5 (2)
F5—C8—F6106.75 (15)F25—C28—F26121.3 (3)
F4—C8—F6106.30 (13)F24—C28—F26101.4 (2)
F5—C8—C5112.65 (13)F25—C28—C25111.41 (17)
F4—C8—C5112.47 (13)F24—C28—C25113.58 (16)
F6—C8—C5111.21 (14)F26—C28—C25109.75 (17)
C14—C9—C10118.70 (13)C34—C29—C30118.16 (14)
C14—C9—C1117.35 (13)C34—C29—C21116.95 (13)
C10—C9—C1123.69 (13)C30—C29—C21124.79 (13)
C11—C10—C9120.67 (13)C31—C30—C29120.69 (14)
C11—C10—C15118.36 (13)C31—C30—C35118.70 (14)
C9—C10—C15120.95 (13)C29—C30—C35120.60 (14)
C12—C11—C10120.17 (14)C30—C31—C32120.62 (14)
C12—C11—H11120.6 (14)C30—C31—H31121.3 (15)
C10—C11—H11119.2 (14)C32—C31—H31118.0 (15)
C11—C12—C13119.32 (14)C33—C32—C31118.72 (14)
C11—C12—H12118.6 (13)C33—C32—H32119.2 (13)
C13—C12—H12122.0 (13)C31—C32—H32122.1 (13)
C14—C13—C12120.86 (14)C34—C33—C32120.89 (14)
C14—C13—C16120.34 (14)C34—C33—C36117.95 (14)
C12—C13—C16118.78 (14)C32—C33—C36121.13 (14)
C13—C14—C9120.27 (14)C33—C34—C29120.91 (14)
C13—C14—H14119.2 (13)C33—C34—H34119.9 (13)
C9—C14—H14120.6 (13)C29—C34—H34119.2 (13)
F9—C15—F7106.89 (12)F29—C35—F27107.48 (15)
F9—C15—F8106.32 (13)F29—C35—F28106.43 (15)
F7—C15—F8106.40 (12)F27—C35—F28105.79 (14)
F9—C15—C10112.97 (12)F29—C35—C30113.27 (13)
F7—C15—C10112.27 (12)F27—C35—C30111.97 (14)
F8—C15—C10111.56 (12)F28—C35—C30111.44 (14)
F12—C16—F10107.07 (14)F32—C36—F30107.86 (15)
F12—C16—F11106.83 (14)F32—C36—F31106.93 (15)
F10—C16—F11106.05 (13)F30—C36—F31104.34 (15)
F12—C16—C13111.31 (13)F32—C36—C33113.86 (14)
F10—C16—C13113.17 (13)F30—C36—C33111.46 (14)
F11—C16—C13112.01 (13)F31—C36—C33111.83 (13)
C2—C1—C9—C1485.42 (18)C22—C21—C29—C3479.54 (19)

Experimental details

Crystal data
Chemical formulaC16H6F12
Mr426.21
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.4296 (2), 14.3048 (4), 15.1315 (4)
α, β, γ (°)79.73 (1), 77.21 (1), 76.39 (1)
V3)1510.6 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.36 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART CCD 6000
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14596, 8297, 6387
Rint0.033
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.05
No. of reflections8297
No. of parameters558
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.86, 0.49

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1998), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C91.498 (2)C21—C291.499 (2)
C6—C1—C2118.26 (13)C26—C21—C22118.54 (13)
C6—C1—C9117.08 (13)C26—C21—C29117.99 (13)
C2—C1—C9124.53 (13)C22—C21—C29123.17 (13)
C14—C9—C10118.70 (13)C34—C29—C30118.16 (14)
C14—C9—C1117.35 (13)C34—C29—C21116.95 (13)
C10—C9—C1123.69 (13)C30—C29—C21124.79 (13)
C2—C1—C9—C1485.42 (18)C22—C21—C29—C3479.54 (19)
 

Acknowledgements

DSY is grateful to the EPSRC (UK) for financial support.

References

First citationBaenziger, N. C., Burton, D. J. & Tortelli, V. (1995). Acta Cryst. C51, 1663–1665.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBahl, A., Grahn, W. & Jones, P. G. (1996). Acta Cryst. C52, 2014–2017.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBatsanov, A. S., Cornet, S. M., Crowe, L. A., Dillon, K. B., Harris, R. K., Hazendonk, P. & Roden, M. D. (2001). Eur. J. Inorg. Chem. pp. 1729–1737.  CrossRef Google Scholar
First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622–4628.  Web of Science CSD CrossRef Google Scholar
First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496–2502.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL (Version 6.10), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395–4405.  Web of Science CSD CrossRef Google Scholar
First citationCornet, S. M., Dillon, K. B. & Goeta, A. E. (2005). Inorg. Chim. Acta, 358, 844–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationCouldwell, M. H. & Penfold, B. R. (1976). J. Cryst. Mol. Struct. 6, 59–64.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeser, J. & Rabinovich, D. (1978). Acta Cryst. B34, 2260–2263.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLynch, V. M., Kampa, J. J., Lagow, R. J. & Davis, B. E. (1992). Acta Cryst. C48, 1339–1341.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieger, M., Hupfer H. & Bolte, M. (1998). Acta Cryst. C54, 656–659.  CrossRef IUCr Journals Google Scholar
First citationReichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShimada, S., Yamazaki, O., Tanaka, T., Rao, M. L. N., Suzuki, Y. & Tanaka, M. (2003). Angew. Chem. Int. Ed. Engl. 42, 1845–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds