organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2,5-anhydro-6-azido-3,6-dide­­oxy-D-xylo-hexonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cBiological Chemistry, Division of Biomedical Sciences, Imperial College, London SW7 2AZ, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 14 December 2005; accepted 15 December 2005; online 23 December 2005)

Determination of the crystal structure of the title isopropyl azido ester, C9H15N3O4, confirmed its relative stereochemistry and validated further work on the use of a derived sugar amino acid (SAA) as a peptidomimetic.

Comment

Sugar amino acids (SAAs) are carbohydrates which contain amine and acid groups; SAAs have been the focus of much inter­est as dipeptide isosteres, foldamers and library scaffolds (Hill et al., 2001[Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3893-4011.]; Gruner et al., 2002[Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.]; Schweizer, 2002[Schweizer, F. (2002). Angew. Chem. Int. Ed. 41, 231-253.]; Chakraborty, Srinivasu, Tapadar & Mohan, 2004[Chakraborty, T. K., Srinivasu, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.]; Trabocchi et al., 2005[Trabocchi, A., Guarna, F. & Guarna, A. (2005). Curr. Org. Chem. 9, 1127-1153.]). The preference for SAA oligomers (carbopeptoids) to adopt compact conformations as relatively short homooligomers will provide insight into the paradigm of protein folding. SAAs (2,5-O-cis configuration) structurally related to SAA (3)[link] have a high propensity to adopt repeating β-turn conformations (Hungerford et al., 2000[Hungerford, N. L., Claridge, T. D. W., Watterson, M. P. W., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3666-3679.]; Smith et al., 2003[Smith, M. D., Claridge, T. D. W., Sansom, M. S. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.]; Chakraborty, Srinivasu, Sakunthala et al., 2004[Chakraborty, T. K., Srinivasu, P., Sakunthala, S., Kumar, S. K. & Kunwar, A. C. (2004). Tetrahedron Lett. 45, 3573-3577.]). In contrast, some 2,5-O-trans SAAs have been shown to adopt helical conformations (Claridge et al., 1999[Claridge, T. D. W., Long, D. D., Hungerford, N. L., Aplin, R. T., Smith, M. D., Marquess, D. G. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2199-2202.]; Claridge et al., 2005[Claridge, T. D. W., Long, D. D., Baker, C. M., Odell, B., Grant, G. H., Edwards, A. A., Tranter, G. E., Fleet, G. W. J. & Smith, M. D. (2005). J. Org. Chem. 70, 2082-2090.]). The conformational complexity of these dipeptide isosteres is being further explored by preparation of structurally related analogues of the original SAA systems i.e. SAA (3)[link] and corresponding diastereoisomers (Watterson et al., 2003[Watterson, M. P., Edwards, A. A., Leach, J. A., Smith, M. D., Ichihara, O. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5853-5857.]).

[Scheme 1]

The X-ray crystal structure (Fig. 1[link]) firmly established the relative stereochemistry of the stereogenic centres in the title compound, (2)[link]. The absolute configuration of (2)[link] (see scheme[link]) is determined by the use of D-gulono-1,4-lactone as starting material.

The crystal packing consists of chains of mol­ecules linked by hydrogen bonds and lying parallel to the a axis (Fig. 2[link]). There are no unusual inter­molecular contacts.

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Projection of the title compound down the b axis, showing the hydrogen bonds (dashed lines) which link the mol­ecules into columns.

Experimental

The title compound, (2)[link], was prepared from the methyl azido ester (1)[link] in good yield by transesterficiation in acidic propan-2-ol, as described by Watterson et al. (2003[Watterson, M. P., Edwards, A. A., Leach, J. A., Smith, M. D., Ichihara, O. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5853-5857.]); subsequent deprotection by hydrolysis and hydrogenation afforded SAA (3)[link]. The sample of (2)[link] was crystallized from diethyl ether–hexane.

Crystal data
  • C9H15N3O4

  • Mr = 229.24

  • Orthorhombic, P 21 21 21

  • a = 5.4778 (7) Å

  • b = 11.0701 (13) Å

  • c = 18.2529 (15) Å

  • V = 1106.9 (2) Å3

  • Z = 4

  • Dx = 1.376 Mg m−3

  • Cu Kα radiation

  • Cell parameters from 22 reflections

  • θ = 21–44°

  • μ = 0.92 mm−1

  • T = 190 K

  • Block, colourless

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Enraf–Nonius Mach3 diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan(North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])Tmin = 0.58, Tmax = 0.69

  • 1335 measured reflections

  • 1335 independent reflections

  • 1329 reflections with I > 2σ(I)

  • θmax = 73.9°

  • h = 0 → 6

  • k = 0 → 13

  • l = 0 → 22

  • 3 standard reflections frequency: 60 min intensity decay: 2.2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 0.94

  • 1335 reflections

  • 146 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.07P)2 + 0.57P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), Equation 22

  • Extinction coefficient: 159 (14)

Table 1
Selected geometric parameters (Å, °)[link]

O1—C2 1.331 (3)
O1—C14 1.462 (3)
C2—O3 1.218 (3)
C2—C4 1.525 (3)
C4—O5 1.421 (3)
C4—C12 1.539 (3)
O5—C6 1.439 (3)
C6—C7 1.505 (3)
C6—C11 1.543 (3)
C7—N8 1.494 (3)
N8—N9 1.227 (3)
N9—N10 1.133 (3)
C11—C12 1.519 (3)
C11—O13 1.424 (3)
C14—C15 1.509 (3)
C14—C16 1.510 (4)
C2—O1—C14 116.44 (17)
O1—C2—O3 124.2 (2)
O1—C2—C4 111.63 (18)
O3—C2—C4 124.07 (19)
C2—C4—O5 109.68 (17)
C2—C4—C12 113.67 (18)
O5—C4—C12 104.84 (17)
C4—O5—C6 109.60 (16)
O5—C6—C7 111.26 (19)
O5—C6—C11 106.93 (16)
C7—C6—C11 112.91 (18)
C6—C7—N8 109.04 (19)
C7—N8—N9 113.4 (2)
N8—N9—N10 173.7 (3)
C6—C11—C12 102.52 (17)
C6—C11—O13 108.97 (17)
C12—C11—O13 110.87 (18)
C4—C12—C11 101.61 (18)
O1—C14—C15 106.30 (18)
O1—C14—C16 108.05 (19)
C15—C14—C16 113.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O3i 0.82 2.08 2.897 (2) 175
Symmetry code: (i) x+1, y, z.

Attempted refinement of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter gave an inconclusive result, in the absence of Friedel pairs and the presence of only weak anomalous scattering effects. The absolute configuration was assigned from the known configuration of the starting material. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å and O—H = 0.82 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which they were refined with riding constraints.

Data collection: CAD-4 EXPRESS, (Straver, 1992[Straver, L. H. (1992). CAD-4 EXPRESS. Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: RC93 (Watkin et al., 1994[Watkin, D. J., Prout, C. K. & Lilley, P. M. de Q. (1994). RC93. Chemical Crystallography Laboratory, Oxford, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Sugar amino acids (SAAs) are carbohydrates which contain amine and acid groups; SAAs have been the focus of much interest as dipeptide isosteres, foldamers and library scaffolds (Hill et al., 2001; Gruner et al., 2002; Schweizer, 2002; Chakraborty, Srinivasu, Tapadar & Mohan, 2004; Trabocchi et al., 2005). The preference for SAA oligomers (carbopeptoids) to adopt compact conformations as relatively short homooligomers will provide insight into the paradigm of protein folding. SAAs (2,5-O-cis configuration) structurally related to SAA (3) have a high propensity to adopt repeating β-turn conformations (Hungerford et al., 2000; Smith et al., 2003; Chakraborty, Srinivasu, Sakunthala et al., 2004). In contrast, some 2,5-O-trans SAAs have been shown to adopt helical conformations (Claridge et al., 1999; Claridge et al., 2005). The conformational complexity of these dipeptide isosteres is being further explored by preparation of structurally related analogues of the original SAA systems i.e. SAA (3) and corresponding diastereoisomers (Watterson et al., 2003).

The X-ray crystal structure (Fig. 1) firmly established the relative stereochemistry of the stereogenic centres in (2). The absolute configuration of (2) (see scheme) is determined by the use of D-gulono-1,4-lactone.

The crystal packing consists of chains of molecules linked by hydrogen bonds and lying parallel to the a axis (Fig. 2). There are no unusual intermolecular contacts.

Experimental top

The title compound, (2), was prepared from the methyl azido ester (1) in good yield by transesterficiation in acidic propan-2-ol, as described by Watterson et al. (2003); subsequent deprotection by hydrolysis and hydrogenation afforded SAA (3). The sample of (2) was crystallized from diethyl ether/hexane.

Refinement top

Attempted refinement of the Flack (1983) parameter gave an inconclusive result, in the absence of Friedel pairs and the presence of only weak anomalous scattering effects. The absolute configuration was assigned from the known configuration of the staring material. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å and O—H = 0.82 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which they were refined with riding constraints.

Computing details top

Data collection: CAD-4 EXPRESS, (Straver, 1992); cell refinement: CAD-4 EXPRESS; data reduction: RC93 (Watkin et al., 1994); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Projection of the title compound down the b axis, showing the hydrogen bond (dashed line) which links the molecules into columns.
Isopropyl 2,5-anhydro-6-azido-3,6-dideoxy-D-xylo-hexonate top
Crystal data top
C9H15N3O4Dx = 1.376 Mg m3
Mr = 229.24Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 22 reflections
a = 5.4778 (7) Åθ = 21–44°
b = 11.0701 (13) ŵ = 0.92 mm1
c = 18.2529 (15) ÅT = 190 K
V = 1106.9 (2) Å3Block, colourless
Z = 40.60 × 0.40 × 0.40 mm
F(000) = 488
Data collection top
Enraf-Nonius Mach3
diffractometer
Rint = 0.000
Graphite monochromatorθmax = 73.9°, θmin = 4.7°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.58, Tmax = 0.69l = 022
1335 measured reflections3 standard reflections every 60 min
1335 independent reflections intensity decay: 2.2%
1329 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(F2) + (0.07P)2 + 0.57P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.104(Δ/σ)max = 0.001
S = 0.94Δρmax = 0.25 e Å3
1335 reflectionsΔρmin = 0.17 e Å3
146 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 159 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H15N3O4V = 1106.9 (2) Å3
Mr = 229.24Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.4778 (7) ŵ = 0.92 mm1
b = 11.0701 (13) ÅT = 190 K
c = 18.2529 (15) Å0.60 × 0.40 × 0.40 mm
Data collection top
Enraf-Nonius Mach3
diffractometer
1329 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.58, Tmax = 0.693 standard reflections every 60 min
1335 measured reflections intensity decay: 2.2%
1335 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.94Δρmax = 0.25 e Å3
1335 reflectionsΔρmin = 0.17 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0131 (3)0.04582 (14)0.13732 (8)0.0286
C20.8763 (4)0.07207 (19)0.19548 (12)0.0265
O30.7238 (3)0.15214 (14)0.19695 (9)0.0327
C40.9240 (4)0.0150 (2)0.25865 (11)0.0260
O50.8152 (3)0.03051 (14)0.32375 (8)0.0283
C60.9954 (4)0.0942 (2)0.36612 (11)0.0265
C70.9236 (5)0.2241 (2)0.37739 (14)0.0347
N80.7043 (4)0.22905 (18)0.42600 (11)0.0370
N90.5797 (4)0.31992 (19)0.41699 (12)0.0358
N100.4495 (5)0.3992 (2)0.41294 (17)0.0538
C111.2409 (4)0.0802 (2)0.32561 (12)0.0273
C121.1963 (4)0.0296 (2)0.27753 (13)0.0291
O131.2826 (3)0.18508 (14)0.28216 (9)0.0319
C140.9818 (5)0.1232 (2)0.07308 (11)0.0319
C151.0604 (6)0.0491 (2)0.00784 (12)0.0430
C161.1340 (6)0.2355 (2)0.08420 (15)0.0458
H410.85780.09400.24600.0306*
H611.00540.05540.41400.0318*
H711.05400.26850.39920.0425*
H720.88140.26050.32970.0418*
H1111.37760.06810.35900.0315*
H1211.22590.10500.30450.0333*
H1221.29550.02770.23410.0346*
H1410.80560.14420.06750.0368*
H1511.03650.09770.03570.0639*
H1521.23310.03090.01410.0642*
H1530.96490.02520.00550.0642*
H1611.12110.28940.04300.0688*
H1621.30110.21490.08900.0694*
H1631.08450.28010.12740.0683*
H131.40260.17660.25600.0476*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (8)0.0367 (8)0.0259 (7)0.0027 (7)0.0025 (7)0.0002 (6)
C20.0200 (10)0.0311 (10)0.0285 (10)0.0031 (9)0.0022 (9)0.0033 (8)
O30.0252 (8)0.0400 (8)0.0330 (8)0.0063 (7)0.0068 (7)0.0024 (6)
C40.0210 (10)0.0289 (10)0.0279 (10)0.0023 (9)0.0029 (8)0.0010 (8)
O50.0174 (7)0.0401 (8)0.0274 (7)0.0041 (7)0.0043 (6)0.0021 (6)
C60.0200 (11)0.0351 (11)0.0242 (10)0.0004 (9)0.0003 (9)0.0020 (8)
C70.0251 (12)0.0370 (11)0.0421 (12)0.0031 (10)0.0117 (11)0.0067 (10)
N80.0306 (10)0.0408 (10)0.0396 (10)0.0029 (10)0.0132 (9)0.0015 (9)
N90.0243 (10)0.0402 (10)0.0430 (10)0.0049 (10)0.0035 (9)0.0087 (9)
N100.0306 (12)0.0486 (13)0.0823 (18)0.0056 (12)0.0026 (13)0.0082 (13)
C110.0155 (10)0.0370 (11)0.0295 (10)0.0030 (9)0.0008 (9)0.0015 (9)
C120.0222 (11)0.0335 (11)0.0317 (10)0.0053 (9)0.0048 (9)0.0039 (9)
O130.0225 (8)0.0357 (8)0.0375 (8)0.0018 (7)0.0091 (7)0.0008 (7)
C140.0299 (12)0.0424 (12)0.0235 (10)0.0058 (11)0.0024 (10)0.0027 (9)
C150.0497 (16)0.0508 (13)0.0284 (11)0.0106 (14)0.0050 (12)0.0012 (10)
C160.0517 (17)0.0447 (13)0.0410 (12)0.0036 (14)0.0114 (13)0.0049 (11)
Geometric parameters (Å, º) top
O1—C21.331 (3)C11—C121.519 (3)
O1—C141.462 (3)C11—O131.424 (3)
C2—O31.218 (3)C11—H1110.974
C2—C41.525 (3)C12—H1210.983
C4—O51.421 (3)C12—H1220.962
C4—C121.539 (3)O13—H130.817
C4—H410.975C14—C151.509 (3)
O5—C61.439 (3)C14—C161.510 (4)
C6—C71.505 (3)C14—H1410.998
C6—C111.543 (3)C15—H1510.969
C6—H610.976C15—H1520.974
C7—N81.494 (3)C15—H1530.976
C7—H710.954C16—H1610.962
C7—H720.986C16—H1620.947
N8—N91.227 (3)C16—H1630.968
N9—N101.133 (3)
C2—O1—C14116.44 (17)C6—C11—H111112.6
O1—C2—O3124.2 (2)C12—C11—H111112.0
O1—C2—C4111.63 (18)O13—C11—H111109.7
O3—C2—C4124.07 (19)C4—C12—C11101.61 (18)
C2—C4—O5109.68 (17)C4—C12—H121111.2
C2—C4—C12113.67 (18)C11—C12—H121111.4
O5—C4—C12104.84 (17)C4—C12—H122111.1
C2—C4—H41108.9C11—C12—H122111.6
O5—C4—H41111.1H121—C12—H122109.7
C12—C4—H41108.6C11—O13—H13111.1
C4—O5—C6109.60 (16)O1—C14—C15106.30 (18)
O5—C6—C7111.26 (19)O1—C14—C16108.05 (19)
O5—C6—C11106.93 (16)C15—C14—C16113.3 (2)
C7—C6—C11112.91 (18)O1—C14—H141109.4
O5—C6—H61107.7C15—C14—H141108.8
C7—C6—H61108.2C16—C14—H141110.9
C11—C6—H61109.7C14—C15—H151107.9
C6—C7—N8109.04 (19)C14—C15—H152107.3
C6—C7—H71110.7H151—C15—H152110.1
N8—C7—H71109.6C14—C15—H153109.9
C6—C7—H72109.3H151—C15—H153111.1
N8—C7—H72108.7H152—C15—H153110.5
H71—C7—H72109.5C14—C16—H161111.4
C7—N8—N9113.4 (2)C14—C16—H162110.4
N8—N9—N10173.7 (3)H161—C16—H162107.0
C6—C11—C12102.52 (17)C14—C16—H163112.0
C6—C11—O13108.97 (17)H161—C16—H163107.4
C12—C11—O13110.87 (18)H162—C16—H163108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O3i0.822.082.897 (2)175
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H15N3O4
Mr229.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)190
a, b, c (Å)5.4778 (7), 11.0701 (13), 18.2529 (15)
V3)1106.9 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.92
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerEnraf-Nonius Mach3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.58, 0.69
No. of measured, independent and
observed [I > 2σ(I)] reflections
1335, 1335, 1329
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 0.94
No. of reflections1335
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: CAD-4 EXPRESS, (Straver, 1992), CAD-4 EXPRESS, RC93 (Watkin et al., 1994), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
O1—C21.331 (3)C6—C111.543 (3)
O1—C141.462 (3)C7—N81.494 (3)
C2—O31.218 (3)N8—N91.227 (3)
C2—C41.525 (3)N9—N101.133 (3)
C4—O51.421 (3)C11—C121.519 (3)
C4—C121.539 (3)C11—O131.424 (3)
O5—C61.439 (3)C14—C151.509 (3)
C6—C71.505 (3)C14—C161.510 (4)
C2—O1—C14116.44 (17)C6—C7—N8109.04 (19)
O1—C2—O3124.2 (2)C7—N8—N9113.4 (2)
O1—C2—C4111.63 (18)N8—N9—N10173.7 (3)
O3—C2—C4124.07 (19)C6—C11—C12102.52 (17)
C2—C4—O5109.68 (17)C6—C11—O13108.97 (17)
C2—C4—C12113.67 (18)C12—C11—O13110.87 (18)
O5—C4—C12104.84 (17)C4—C12—C11101.61 (18)
C4—O5—C6109.60 (16)O1—C14—C15106.30 (18)
O5—C6—C7111.26 (19)O1—C14—C16108.05 (19)
O5—C6—C11106.93 (16)C15—C14—C16113.3 (2)
C7—C6—C11112.91 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O3i0.822.082.897 (2)175
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Financial support from the EPSRC to AAE and MPW is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChakraborty, T. K., Srinivasu, P., Sakunthala, S., Kumar, S. K. & Kunwar, A. C. (2004). Tetrahedron Lett. 45, 3573–3577.  Web of Science CrossRef CAS Google Scholar
First citationChakraborty, T. K., Srinivasu, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207.  Web of Science CrossRef CAS Google Scholar
First citationClaridge, T. D. W., Long, D. D., Baker, C. M., Odell, B., Grant, G. H., Edwards, A. A., Tranter, G. E., Fleet, G. W. J. & Smith, M. D. (2005). J. Org. Chem. 70, 2082–2090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClaridge, T. D. W., Long, D. D., Hungerford, N. L., Aplin, R. T., Smith, M. D., Marquess, D. G. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2199–2202.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3893–4011.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHungerford, N. L., Claridge, T. D. W., Watterson, M. P. W., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3666–3679.  Web of Science CrossRef Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchweizer, F. (2002). Angew. Chem. Int. Ed. 41, 231–253.  Web of Science CrossRef Google Scholar
First citationSmith, M. D., Claridge, T. D. W., Sansom, M. S. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStraver, L. H. (1992). CAD-4 EXPRESS. Nonius, Delft, The Netherlands.  Google Scholar
First citationTrabocchi, A., Guarna, F. & Guarna, A. (2005). Curr. Org. Chem. 9, 1127–1153.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Lilley, P. M. de Q. (1994). RC93. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatterson, M. P., Edwards, A. A., Leach, J. A., Smith, M. D., Ichihara, O. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5853–5857.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds