organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Azido­methyl-2-de­­oxy-3,4-O-iso­propyl­­idene-D-ribono-1,5-lactone

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it

(Received 25 November 2005; accepted 13 December 2005; online 21 December 2005)

X-ray crystallographic analysis firmly establishes the ribo stereochemistry and the unusual boat conformation of the title branched carbon chain lactone, C9H13N3O4, arising from an unexpected rearrangement in the nucleophilic substitution of a trifluoro­methane­sulfonate. There are two molecules in the asymmetric unit.

Comment

The Kiliani reaction of ketoses with cyanide (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) provides access to a novel class of carbohydrate scaffold which contains a branched carbon chain. Such sugar building blocks have hitherto been rare and difficult to prepare in large quanti­ties (Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc.]; Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]). However, naturally occurring ketoses restrict the branched carbon chain to a hydroxy­methyl group. A further class of branched carbohydrates is available from the Kiliani ascension on 1-deoxy­ketoses, themselves prepared by addition of organometallic reagents to sugar lactones. Thus, reaction of cyanide with a protected 1-de­oxy-D-ribulose allowed the isolation of the isopropyl­idene derivative of arabinono-1,5-lactone, (1) (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]), shown to crystallize in a boat conformation (Punzo, Watkin, Jenkinson & Fleet, 2005[Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o127-129.]).

[Scheme 1]

The value of protected sugar lactones such as (1) depends on being able to modify the tertiary alcohol functionality to other groups. Thus, the esterification of the free alcohol (1) with triflic anhydride in pyridine afforded the trifluoro­methane­sulfonate, (2), which on further reaction with sodium azide in dimethyl­formamide gave the ribo-azide, (3), as the major product in good yield, even though the overall reaction is a nucleophilic displacement at a very hindered position. It was possible that neighbouring group participation by an O atom might have been involved in the reaction but the X-ray crystal structure (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005[Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511-o512.]) showed that the reaction proceeded with inversion of configuration to give the ribonolactone (3) in a boat conformation, with the C2-methyl group in a hindered flag-pole position. A small quantity of a second crystalline azide, the title compound, (4), was also isolated.

X-ray crystal-structure analysis of (4) firmly establishes that the relative configuration of the azido­methyl branch at C2 is in a bowsprit conformation. The absolute configuration of (4) was determined by the use of D-erythronolactone as the starting material for the synthesis. Azides (3) and (4) are likely to be useful building blocks for the synthesis of novel branched prolines and pipecolic acids, respectively.

In Fig. 2[link], a pseudo-translational operator of the form (0.48 + x, 0.48 + y, +z) is clearly detecta­ble.

[Figure 1]
Figure 1
The asymmetric unit of (4), containing two mol­ecules, with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2]
Figure 2
A packing diagram of (4), viewed down the a axis.

Experimental

The title lactone, (4) {m.p. 365–367 K; [α]D23 −168.2% (c 1.0 in MeCN)}, was crystallized by dissolving it in ethyl acetate, adding cyclo­hexane and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

Crystal data
  • C9H13N3O4

  • Mr = 227.22

  • Monoclinic, P 21

  • a = 6.6145 (2) Å

  • b = 11.1194 (4) Å

  • c = 15.0252 (8) Å

  • β = 91.6306 (13)°

  • V = 1104.65 (8) Å3

  • Z = 4

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2605 reflections

  • θ = 5–30°

  • μ = 0.11 mm−1

  • T = 250 K

  • Plate, colourless

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.98, Tmax = 0.99

  • 5623 measured reflections

  • 3275 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.018

  • θmax = 29.9°

  • h = −9 → 9

  • k = −15 → 15

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.08

  • 3275 reflections

  • 290 parameters

  • H-atom parameters constrained

  • w = [1 − (FoFc)2/36σ2(F)]2/[38.7T0(x) + 61.9T1(x) + 38.9T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]; Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), eq. 22

  • Extinction coefficient: 1.0 (2) × 102

Table 1
Selected geometric parameters (Å, °)[link]

C5—C6 1.497 (6)
C21—C22 1.498 (6)
C2—C1—C6 111.9 (3)
C2—C1—O9 107.8 (3)
O9—C8—C11 111.4 (4)
C18—C17—C22 112.1 (3)
C18—C17—O25 107.6 (3)
C22—C17—O25 104.5 (3)
O20—C21—C22 110.4 (3)

In the absence of significant anomalous dispersion effects, Friedel pairs were merged before refinement. H atoms were seen in difference Fourier maps. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–98 Å and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which their positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])'; data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The Kiliani reaction of ketoses with cyanide (Hotchkiss et al., 2004; Soengas et al., 2005) provides access to a novel class of carbohydrate scaffold which contains a branched carbon chain. Such sugar building blocks have hitherto been rare and difficult to prepare in large quantities (Bols, 1996; Lichtenthaler & Peters, 2004). However, naturally occurring ketoses restrict the branched carbon chain to a hydroxymethyl group. A further class of branched carbohydrates is available from the Kiliani ascension on 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar lactones. Thus, reaction of cyanide with a protected 1-deoxy-D-ribulose allowed the isolation of the isopropylidene derivative of arabinono-1,5-lactone, (1) (Hotchkiss et al., 2006), shown to crystallize in a boat conformation (Punzo, Watkin, Jenkinson & Fleet, 2005).

The value of protected sugar lactones such as (1) depends on being able to modify the tertiary alcohol functionality to other groups. Thus, the esterification of the free alcohol (1) with triflic anhydride in pyridine afforded the trifluoromethanesulfonate, (2), which on further reaction with sodium azide in dimethylformamide gave the ribo-azide, (3), as the major product in good yield, even though the overall reaction is a nucleophilic displacement at a very hindered position. It was possible that neighbouring group participation by an O atom might have been involved in the reaction but the X-ray crystal structure (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005) showed that the reaction proceeded with inversion of configuration to give the ribonolactone (3) in a boat conformation, with the C2-methyl group in a hindered flag-pole position. A small quantity of a second crystalline azide, the title compound, (4), was also isolated.

X-ray crystal analysis of (4) firmly establishes that the relative configuration of the azidomethyl branch at C2 is in a bow–sprit conformation. The absolute configuration of (4) was determined by the use of D-erythronolactone as the starting material for the synthesis. Azides (3) and (4) are likely to be useful building blocks for the synthesis of novel branched prolines and pipecolic acids, respectively.

From Fig. 2, it seems evident that a pseudo-translational operator of the form (0.48 + x, 0.48 + y, +z) is clearly detectable.

Experimental top

The title lactone, (4) {m.p. 365–367 K; [α]D23 −168.2 (c 1.0 in MeCN)}, was crystallized by dissolving it in ethyl acetate, adding cyclohexane and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were merged before refinement. H atoms were seen in a difference Fourier maps. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–98 Å and Uiso(H) in the range 1.2–1.5 times Ueq of the adjacent atom], after which their positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997)'; data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (4), containing two molecules, with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2] Fig. 2. A packing diagram of (4), viewed down the a axis.
2-C-Azidomethyl-2-deoxy-3,4-O-isopropylidene-D-ribono-1,5-lactone top
Crystal data top
C9H13N3O4F(000) = 480
Mr = 227.22Dx = 1.366 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2605 reflections
a = 6.6145 (2) Åθ = 5–30°
b = 11.1194 (4) ŵ = 0.11 mm1
c = 15.0252 (8) ÅT = 250 K
β = 91.6306 (13)°Plate, colourless
V = 1104.65 (8) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 29.9°, θmin = 5.2°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 99
Tmin = 0.98, Tmax = 0.99k = 1515
5623 measured reflectionsl = 2121
3275 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982) w = 1/[A0T0(x) + A1T1(x) ··· + An-1Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = w[1-(δF/6σF)2]2, Ai are 38.7 61.9 38.9 16.8 3.80
wR(F2) = 0.129(Δ/σ)max = 0.000084
S = 1.08Δρmax = 0.54 e Å3
3275 reflectionsΔρmin = 0.52 e Å3
290 parametersExtinction correction: Larson (1970), eq. 22
1 restraintExtinction coefficient: 100 (20)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H13N3O4V = 1104.65 (8) Å3
Mr = 227.22Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.6145 (2) ŵ = 0.11 mm1
b = 11.1194 (4) ÅT = 250 K
c = 15.0252 (8) Å0.30 × 0.20 × 0.10 mm
β = 91.6306 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3275 independent reflections
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
1944 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.018
5623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 0.54 e Å3
3275 reflectionsΔρmin = 0.52 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1434 (5)0.4343 (3)0.2760 (2)0.0325
C20.1712 (5)0.3460 (3)0.3525 (2)0.0297
C30.2760 (5)0.2350 (4)0.3191 (3)0.0353
O40.4472 (4)0.2535 (3)0.27514 (19)0.0442
C50.5095 (6)0.3773 (4)0.2633 (3)0.0444
C60.3404 (5)0.4523 (3)0.2251 (3)0.0368
O70.2914 (4)0.4136 (3)0.13657 (17)0.0499
C80.0759 (6)0.4113 (4)0.1262 (3)0.0456
O90.0077 (4)0.3815 (3)0.21194 (17)0.0411
C100.0181 (8)0.3108 (6)0.0639 (4)0.0696
C110.0025 (9)0.5331 (6)0.0961 (4)0.0788
O120.2165 (5)0.1336 (3)0.3293 (2)0.0505
C130.0290 (5)0.3168 (4)0.3946 (2)0.0331
N140.0038 (5)0.2581 (3)0.4822 (2)0.0415
N150.0430 (5)0.1513 (3)0.4842 (2)0.0406
N160.0843 (6)0.0537 (4)0.4944 (3)0.0618
C170.5920 (5)0.9137 (3)0.2819 (2)0.0355
C180.6377 (5)0.8247 (3)0.3572 (2)0.0294
C190.7776 (5)0.7281 (4)0.3233 (2)0.0334
O200.9443 (4)0.7664 (3)0.28289 (19)0.0415
C210.9716 (6)0.8956 (4)0.2745 (3)0.0433
C220.7852 (6)0.9522 (4)0.2340 (3)0.0406
O230.7530 (4)0.9107 (3)0.14513 (18)0.0523
C240.5423 (6)0.8893 (4)0.1302 (3)0.0463
O250.4735 (4)0.8523 (3)0.21528 (18)0.0441
C260.5129 (8)0.7871 (5)0.0669 (3)0.0634
C270.4363 (9)1.0045 (5)0.1004 (4)0.0761
O280.7494 (4)0.6221 (3)0.3305 (2)0.0491
C290.4482 (5)0.7715 (4)0.3955 (2)0.0340
N300.4865 (5)0.7200 (3)0.4847 (2)0.0400
N310.5298 (5)0.6122 (3)0.4864 (2)0.0410
N320.5691 (6)0.5142 (4)0.4964 (3)0.0617
H110.09210.51060.29690.0389*
H210.26320.38320.39870.0360*
H510.55540.41150.32020.0528*
H520.61890.37700.22230.0525*
H610.38110.53770.22540.0434*
H1010.12950.30180.06480.1027*
H1020.05670.33080.00430.1030*
H1030.08360.23670.08320.1026*
H1110.14710.53210.09330.1182*
H1120.04250.59630.13750.1186*
H1130.04800.55180.03750.1189*
H1310.10060.39130.40340.0398*
H1320.11050.26630.35450.0404*
H1710.51670.98320.30480.0421*
H1810.70780.87010.40520.0353*
H2111.00780.92790.33260.0514*
H2121.08220.90700.23460.0509*
H2210.79771.03970.23400.0486*
H2610.37290.76310.06510.0936*
H2620.55050.81240.00850.0939*
H2630.59200.72020.08650.0938*
H2710.29350.99070.09350.1132*
H2720.45901.06790.14260.1141*
H2730.49151.02820.04410.1135*
H2910.34910.83800.40260.0408*
H2920.39310.71120.35560.0413*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (17)0.0298 (19)0.036 (2)0.0043 (15)0.0033 (14)0.0005 (15)
C20.0285 (16)0.0282 (18)0.0323 (19)0.0048 (14)0.0041 (14)0.0033 (15)
C30.0356 (18)0.031 (2)0.039 (2)0.0035 (16)0.0028 (16)0.0030 (16)
O40.0340 (13)0.0451 (17)0.0540 (18)0.0085 (13)0.0078 (12)0.0046 (14)
C50.0307 (18)0.053 (3)0.050 (3)0.0055 (18)0.0035 (16)0.002 (2)
C60.0354 (19)0.037 (2)0.038 (2)0.0065 (16)0.0005 (16)0.0010 (16)
O70.0409 (14)0.074 (2)0.0348 (15)0.0044 (15)0.0046 (11)0.0005 (15)
C80.0377 (19)0.066 (3)0.033 (2)0.001 (2)0.0015 (16)0.009 (2)
O90.0299 (12)0.062 (2)0.0315 (15)0.0020 (12)0.0035 (10)0.0011 (14)
C100.060 (3)0.104 (4)0.044 (3)0.006 (3)0.005 (2)0.012 (3)
C110.091 (4)0.084 (4)0.061 (3)0.020 (3)0.011 (3)0.025 (3)
O120.0572 (17)0.0309 (16)0.0637 (19)0.0017 (13)0.0062 (14)0.0032 (13)
C130.0315 (17)0.0350 (19)0.033 (2)0.0017 (15)0.0021 (14)0.0009 (16)
N140.0417 (17)0.046 (2)0.037 (2)0.0091 (16)0.0016 (14)0.0020 (16)
N150.0290 (17)0.050 (2)0.043 (2)0.0014 (15)0.0016 (13)0.0071 (17)
N160.061 (2)0.045 (2)0.079 (3)0.005 (2)0.003 (2)0.019 (2)
C170.0334 (17)0.036 (2)0.037 (2)0.0059 (17)0.0009 (15)0.0000 (17)
C180.0270 (16)0.0290 (18)0.0321 (19)0.0017 (14)0.0008 (14)0.0032 (15)
C190.0329 (18)0.032 (2)0.035 (2)0.0035 (16)0.0009 (15)0.0017 (16)
O200.0325 (12)0.0422 (16)0.0500 (17)0.0036 (12)0.0049 (12)0.0021 (14)
C210.0299 (18)0.050 (3)0.050 (2)0.0060 (18)0.0037 (16)0.001 (2)
C220.044 (2)0.037 (2)0.041 (2)0.0047 (17)0.0037 (16)0.0006 (17)
O230.0446 (15)0.077 (2)0.0355 (16)0.0063 (16)0.0059 (12)0.0007 (16)
C240.041 (2)0.066 (3)0.033 (2)0.004 (2)0.0007 (16)0.006 (2)
O250.0344 (13)0.067 (2)0.0306 (15)0.0025 (14)0.0033 (11)0.0039 (14)
C260.059 (3)0.091 (4)0.040 (3)0.001 (3)0.007 (2)0.005 (3)
C270.090 (4)0.080 (4)0.058 (3)0.021 (3)0.009 (3)0.022 (3)
O280.0510 (17)0.0323 (16)0.0645 (19)0.0053 (13)0.0083 (14)0.0022 (13)
C290.0303 (16)0.037 (2)0.035 (2)0.0009 (16)0.0028 (14)0.0018 (17)
N300.0403 (17)0.042 (2)0.038 (2)0.0027 (16)0.0026 (14)0.0006 (15)
N310.0418 (19)0.040 (2)0.041 (2)0.0056 (16)0.0027 (14)0.0025 (16)
N320.073 (3)0.046 (2)0.066 (3)0.005 (2)0.003 (2)0.013 (2)
Geometric parameters (Å, º) top
C1—C21.519 (5)C17—C181.526 (5)
C1—C61.543 (5)C17—C221.545 (5)
C1—O91.424 (4)C17—O251.427 (5)
C1—H110.969C17—H1710.987
C2—C31.508 (5)C18—C191.515 (5)
C2—C131.518 (5)C18—C291.514 (5)
C2—H210.999C18—H1810.986
C3—O41.343 (4)C19—O201.343 (4)
C3—O121.206 (5)C19—O281.198 (5)
O4—C51.449 (5)O20—C211.453 (5)
C5—C61.497 (6)C21—C221.498 (6)
C5—H510.976C21—H2110.968
C5—H520.964C21—H2120.968
C6—O71.426 (5)C22—O231.423 (5)
C6—H610.986C22—H2210.976
O7—C81.430 (4)O23—C241.426 (5)
C8—O91.416 (5)C24—O251.430 (5)
C8—C101.500 (7)C24—C261.492 (7)
C8—C111.516 (7)C24—C271.521 (7)
C10—H1010.982C26—H2610.963
C10—H1020.963C26—H2620.961
C10—H1030.972C26—H2630.951
C11—H1110.956C27—H2710.960
C11—H1120.979C27—H2720.958
C11—H1130.974C27—H2730.967
C13—N141.480 (5)C29—N301.473 (5)
C13—H1310.965C29—H2910.996
C13—H1320.975C29—H2920.964
N14—N151.228 (5)N30—N311.233 (5)
N15—N161.131 (5)N31—N321.130 (5)
C2—C1—C6111.9 (3)C18—C17—C22112.1 (3)
C2—C1—O9107.8 (3)C18—C17—O25107.6 (3)
C6—C1—O9104.1 (3)C22—C17—O25104.5 (3)
C2—C1—H11110.9C18—C17—H171109.9
C6—C1—H11110.8C22—C17—H171112.2
O9—C1—H11111.1O25—C17—H171110.3
C1—C2—C3108.9 (3)C17—C18—C19108.7 (3)
C1—C2—C13111.4 (3)C17—C18—C29112.7 (3)
C3—C2—C13112.2 (3)C19—C18—C29111.8 (3)
C1—C2—H21108.4C17—C18—H181106.8
C3—C2—H21107.0C19—C18—H181109.2
C13—C2—H21108.7C29—C18—H181107.4
C2—C3—O4116.1 (3)C18—C19—O20116.3 (3)
C2—C3—O12124.7 (3)C18—C19—O28124.7 (3)
O4—C3—O12119.2 (3)O20—C19—O28119.0 (3)
C3—O4—C5116.9 (3)C19—O20—C21117.3 (3)
O4—C5—C6111.4 (3)O20—C21—C22110.4 (3)
O4—C5—H51110.2O20—C21—H211108.5
C6—C5—H51109.2C22—C21—H211112.9
O4—C5—H52107.2O20—C21—H212106.4
C6—C5—H52108.8C22—C21—H212108.7
H51—C5—H52109.9H211—C21—H212109.7
C1—C6—C5111.7 (3)C17—C22—C21112.1 (3)
C1—C6—O7104.5 (3)C17—C22—O23104.1 (3)
C5—C6—O7109.7 (3)C21—C22—O23110.2 (3)
C1—C6—H61110.9C17—C22—H221110.3
C5—C6—H61109.5C21—C22—H221110.5
O7—C6—H61110.5O23—C22—H221109.4
C6—O7—C8107.8 (3)C22—O23—C24108.8 (3)
O7—C8—O9104.4 (3)O23—C24—O25104.0 (3)
O7—C8—C10108.5 (4)O23—C24—C26109.7 (4)
O9—C8—C10108.2 (4)O25—C24—C26108.2 (4)
O7—C8—C11110.4 (4)O23—C24—C27110.2 (4)
O9—C8—C11111.4 (4)O25—C24—C27110.5 (4)
C10—C8—C11113.6 (4)C26—C24—C27113.8 (4)
C1—O9—C8107.9 (3)C24—O25—C17107.9 (3)
C8—C10—H101107.7C24—C26—H261109.7
C8—C10—H102109.8C24—C26—H262109.0
H101—C10—H102109.1H261—C26—H262109.2
C8—C10—H103109.9C24—C26—H263109.8
H101—C10—H103110.1H261—C26—H263108.2
H102—C10—H103110.2H262—C26—H263111.0
C8—C11—H111109.6C24—C27—H271109.9
C8—C11—H112110.9C24—C27—H272111.2
H111—C11—H112108.8H271—C27—H272108.9
C8—C11—H113109.7C24—C27—H273107.8
H111—C11—H113109.3H271—C27—H273110.2
H112—C11—H113108.5H272—C27—H273108.9
C2—C13—N14110.9 (3)C18—C29—N30112.0 (3)
C2—C13—H131108.2C18—C29—H291107.8
N14—C13—H131108.4N30—C29—H291106.8
C2—C13—H132109.8C18—C29—H292109.7
N14—C13—H132111.1N30—C29—H292110.3
H131—C13—H132108.3H291—C29—H292110.1
C13—N14—N15114.7 (3)C29—N30—N31115.5 (3)
N14—N15—N16173.6 (5)N30—N31—N32173.5 (5)

Experimental details

Crystal data
Chemical formulaC9H13N3O4
Mr227.22
Crystal system, space groupMonoclinic, P21
Temperature (K)250
a, b, c (Å)6.6145 (2), 11.1194 (4), 15.0252 (8)
β (°) 91.6306 (13)
V3)1104.65 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5623, 3275, 1944
Rint0.018
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.08
No. of reflections3275
No. of parameters290
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997)', DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
C5—C61.497 (6)C21—C221.498 (6)
C2—C1—C6111.9 (3)C18—C17—O25107.6 (3)
C2—C1—O9107.8 (3)C22—C17—O25104.5 (3)
O9—C8—C11111.4 (4)O20—C21—C22110.4 (3)
C18—C17—C22112.1 (3)
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

Financial support (to FPC) provided by the Fundacao para a Ciencia e a Tecnologia, Portugal, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc.  Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o127–129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds