organic compounds
2-C-Azidomethyl-2-deoxy-3,4-O-isopropylidene-D-ribono-1,5-lactone
aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it
X-ray crystallographic analysis firmly establishes the ribo stereochemistry and the unusual boat conformation of the title branched carbon chain lactone, C9H13N3O4, arising from an unexpected rearrangement in the nucleophilic substitution of a trifluoromethanesulfonate. There are two molecules in the asymmetric unit.
Comment
The Kiliani reaction of et al., 2004; Soengas et al., 2005) provides access to a novel class of carbohydrate scaffold which contains a branched carbon chain. Such sugar building blocks have hitherto been rare and difficult to prepare in large quantities (Bols, 1996; Lichtenthaler & Peters, 2004). However, naturally occurring restrict the branched carbon chain to a hydroxymethyl group. A further class of branched is available from the Kiliani ascension on 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar Thus, reaction of cyanide with a protected 1-deoxy-D-ribulose allowed the isolation of the isopropylidene derivative of arabinono-1,5-lactone, (1) (Hotchkiss et al., 2006), shown to crystallize in a boat conformation (Punzo, Watkin, Jenkinson & Fleet, 2005).
with cyanide (HotchkissThe value of protected sugar ribo-azide, (3), as the major product in good yield, even though the overall reaction is a nucleophilic displacement at a very hindered position. It was possible that by an O atom might have been involved in the reaction but the X-ray (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005) showed that the reaction proceeded with inversion of configuration to give the ribonolactone (3) in a boat conformation, with the C2-methyl group in a hindered flag-pole position. A small quantity of a second crystalline azide, the title compound, (4), was also isolated.
such as (1) depends on being able to modify the tertiary alcohol functionality to other groups. Thus, the esterification of the free alcohol (1) with triflic anhydride in pyridine afforded the trifluoromethanesulfonate, (2), which on further reaction with sodium azide in dimethylformamide gave theX-ray crystal-structure analysis of (4) firmly establishes that the D-erythronolactone as the starting material for the synthesis. (3) and (4) are likely to be useful building blocks for the synthesis of novel branched prolines and pipecolic acids, respectively.
of the azidomethyl branch at C2 is in a bowsprit conformation. The of (4) was determined by the use ofIn Fig. 2, a pseudo-translational operator of the form (0.48 + x, 0.48 + y, +z) is clearly detectable.
Experimental
The title lactone, (4) {m.p. 365–367 K; [α]D23 −168.2% (c 1.0 in MeCN)}, was crystallized by dissolving it in ethyl acetate, adding cyclohexane and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.
Crystal data
|
Data collection
Refinement
|
In the absence of significant Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which their positions were refined with riding constraints.
effects, Friedel pairs were merged before H atoms were seen in difference Fourier maps. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–98 Å andData collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997)'; data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536805041632/lh2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock CRYSTALS_cif. DOI: 10.1107/S1600536805041632/lh2002Isup2.hkl
The title lactone, (4) {m.p. 365–367 K; [α]D23 −168.2 (c 1.0 in MeCN)}, was crystallized by dissolving it in ethyl acetate, adding cyclohexane and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.
In the absence of significant
effects, Friedel pairs were merged before H atoms were seen in a difference Fourier maps. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–98 Å and Uiso(H) in the range 1.2–1.5 times Ueq of the adjacent atom], after which their positions were refined with riding constraints.Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997)'; data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C9H13N3O4 | F(000) = 480 |
Mr = 227.22 | Dx = 1.366 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2605 reflections |
a = 6.6145 (2) Å | θ = 5–30° |
b = 11.1194 (4) Å | µ = 0.11 mm−1 |
c = 15.0252 (8) Å | T = 250 K |
β = 91.6306 (13)° | Plate, colourless |
V = 1104.65 (8) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Bruker Nonius KappaCCD area-detector diffractometer | 1944 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 29.9°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.98, Tmax = 0.99 | k = −15→15 |
5623 measured reflections | l = −21→21 |
3275 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.047 | Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982) w = 1/[A0T0(x) + A1T1(x) ··· + An-1Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = w[1-(δF/6σF)2]2, Ai are 38.7 61.9 38.9 16.8 3.80 |
wR(F2) = 0.129 | (Δ/σ)max = 0.000084 |
S = 1.08 | Δρmax = 0.54 e Å−3 |
3275 reflections | Δρmin = −0.52 e Å−3 |
290 parameters | Extinction correction: Larson (1970), eq. 22 |
1 restraint | Extinction coefficient: 100 (20) |
Primary atom site location: structure-invariant direct methods |
C9H13N3O4 | V = 1104.65 (8) Å3 |
Mr = 227.22 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.6145 (2) Å | µ = 0.11 mm−1 |
b = 11.1194 (4) Å | T = 250 K |
c = 15.0252 (8) Å | 0.30 × 0.20 × 0.10 mm |
β = 91.6306 (13)° |
Bruker Nonius KappaCCD area-detector diffractometer | 3275 independent reflections |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | 1944 reflections with I > 2σ(I) |
Tmin = 0.98, Tmax = 0.99 | Rint = 0.018 |
5623 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 1 restraint |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.54 e Å−3 |
3275 reflections | Δρmin = −0.52 e Å−3 |
290 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1434 (5) | 0.4343 (3) | 0.2760 (2) | 0.0325 | |
C2 | 0.1712 (5) | 0.3460 (3) | 0.3525 (2) | 0.0297 | |
C3 | 0.2760 (5) | 0.2350 (4) | 0.3191 (3) | 0.0353 | |
O4 | 0.4472 (4) | 0.2535 (3) | 0.27514 (19) | 0.0442 | |
C5 | 0.5095 (6) | 0.3773 (4) | 0.2633 (3) | 0.0444 | |
C6 | 0.3404 (5) | 0.4523 (3) | 0.2251 (3) | 0.0368 | |
O7 | 0.2914 (4) | 0.4136 (3) | 0.13657 (17) | 0.0499 | |
C8 | 0.0759 (6) | 0.4113 (4) | 0.1262 (3) | 0.0456 | |
O9 | 0.0077 (4) | 0.3815 (3) | 0.21194 (17) | 0.0411 | |
C10 | 0.0181 (8) | 0.3108 (6) | 0.0639 (4) | 0.0696 | |
C11 | −0.0025 (9) | 0.5331 (6) | 0.0961 (4) | 0.0788 | |
O12 | 0.2165 (5) | 0.1336 (3) | 0.3293 (2) | 0.0505 | |
C13 | −0.0290 (5) | 0.3168 (4) | 0.3946 (2) | 0.0331 | |
N14 | 0.0038 (5) | 0.2581 (3) | 0.4822 (2) | 0.0415 | |
N15 | −0.0430 (5) | 0.1513 (3) | 0.4842 (2) | 0.0406 | |
N16 | −0.0843 (6) | 0.0537 (4) | 0.4944 (3) | 0.0618 | |
C17 | 0.5920 (5) | 0.9137 (3) | 0.2819 (2) | 0.0355 | |
C18 | 0.6377 (5) | 0.8247 (3) | 0.3572 (2) | 0.0294 | |
C19 | 0.7776 (5) | 0.7281 (4) | 0.3233 (2) | 0.0334 | |
O20 | 0.9443 (4) | 0.7664 (3) | 0.28289 (19) | 0.0415 | |
C21 | 0.9716 (6) | 0.8956 (4) | 0.2745 (3) | 0.0433 | |
C22 | 0.7852 (6) | 0.9522 (4) | 0.2340 (3) | 0.0406 | |
O23 | 0.7530 (4) | 0.9107 (3) | 0.14513 (18) | 0.0523 | |
C24 | 0.5423 (6) | 0.8893 (4) | 0.1302 (3) | 0.0463 | |
O25 | 0.4735 (4) | 0.8523 (3) | 0.21528 (18) | 0.0441 | |
C26 | 0.5129 (8) | 0.7871 (5) | 0.0669 (3) | 0.0634 | |
C27 | 0.4363 (9) | 1.0045 (5) | 0.1004 (4) | 0.0761 | |
O28 | 0.7494 (4) | 0.6221 (3) | 0.3305 (2) | 0.0491 | |
C29 | 0.4482 (5) | 0.7715 (4) | 0.3955 (2) | 0.0340 | |
N30 | 0.4865 (5) | 0.7200 (3) | 0.4847 (2) | 0.0400 | |
N31 | 0.5298 (5) | 0.6122 (3) | 0.4864 (2) | 0.0410 | |
N32 | 0.5691 (6) | 0.5142 (4) | 0.4964 (3) | 0.0617 | |
H11 | 0.0921 | 0.5106 | 0.2969 | 0.0389* | |
H21 | 0.2632 | 0.3832 | 0.3987 | 0.0360* | |
H51 | 0.5554 | 0.4115 | 0.3202 | 0.0528* | |
H52 | 0.6189 | 0.3770 | 0.2223 | 0.0525* | |
H61 | 0.3811 | 0.5377 | 0.2254 | 0.0434* | |
H101 | −0.1295 | 0.3018 | 0.0648 | 0.1027* | |
H102 | 0.0567 | 0.3308 | 0.0043 | 0.1030* | |
H103 | 0.0836 | 0.2367 | 0.0832 | 0.1026* | |
H111 | −0.1471 | 0.5321 | 0.0933 | 0.1182* | |
H112 | 0.0425 | 0.5963 | 0.1375 | 0.1186* | |
H113 | 0.0480 | 0.5518 | 0.0375 | 0.1189* | |
H131 | −0.1006 | 0.3913 | 0.4034 | 0.0398* | |
H132 | −0.1105 | 0.2663 | 0.3545 | 0.0404* | |
H171 | 0.5167 | 0.9832 | 0.3048 | 0.0421* | |
H181 | 0.7078 | 0.8701 | 0.4052 | 0.0353* | |
H211 | 1.0078 | 0.9279 | 0.3326 | 0.0514* | |
H212 | 1.0822 | 0.9070 | 0.2346 | 0.0509* | |
H221 | 0.7977 | 1.0397 | 0.2340 | 0.0486* | |
H261 | 0.3729 | 0.7631 | 0.0651 | 0.0936* | |
H262 | 0.5505 | 0.8124 | 0.0085 | 0.0939* | |
H263 | 0.5920 | 0.7202 | 0.0865 | 0.0938* | |
H271 | 0.2935 | 0.9907 | 0.0935 | 0.1132* | |
H272 | 0.4590 | 1.0679 | 0.1426 | 0.1141* | |
H273 | 0.4915 | 1.0282 | 0.0441 | 0.1135* | |
H291 | 0.3491 | 0.8380 | 0.4026 | 0.0408* | |
H292 | 0.3931 | 0.7112 | 0.3556 | 0.0413* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0320 (17) | 0.0298 (19) | 0.036 (2) | 0.0043 (15) | −0.0033 (14) | −0.0005 (15) |
C2 | 0.0285 (16) | 0.0282 (18) | 0.0323 (19) | 0.0048 (14) | −0.0041 (14) | −0.0033 (15) |
C3 | 0.0356 (18) | 0.031 (2) | 0.039 (2) | 0.0035 (16) | −0.0028 (16) | −0.0030 (16) |
O4 | 0.0340 (13) | 0.0451 (17) | 0.0540 (18) | 0.0085 (13) | 0.0078 (12) | −0.0046 (14) |
C5 | 0.0307 (18) | 0.053 (3) | 0.050 (3) | −0.0055 (18) | 0.0035 (16) | −0.002 (2) |
C6 | 0.0354 (19) | 0.037 (2) | 0.038 (2) | −0.0065 (16) | 0.0005 (16) | 0.0010 (16) |
O7 | 0.0409 (14) | 0.074 (2) | 0.0348 (15) | −0.0044 (15) | 0.0046 (11) | −0.0005 (15) |
C8 | 0.0377 (19) | 0.066 (3) | 0.033 (2) | 0.001 (2) | −0.0015 (16) | 0.009 (2) |
O9 | 0.0299 (12) | 0.062 (2) | 0.0315 (15) | −0.0020 (12) | −0.0035 (10) | 0.0011 (14) |
C10 | 0.060 (3) | 0.104 (4) | 0.044 (3) | −0.006 (3) | −0.005 (2) | −0.012 (3) |
C11 | 0.091 (4) | 0.084 (4) | 0.061 (3) | 0.020 (3) | −0.011 (3) | 0.025 (3) |
O12 | 0.0572 (17) | 0.0309 (16) | 0.0637 (19) | 0.0017 (13) | 0.0062 (14) | −0.0032 (13) |
C13 | 0.0315 (17) | 0.0350 (19) | 0.033 (2) | 0.0017 (15) | −0.0021 (14) | −0.0009 (16) |
N14 | 0.0417 (17) | 0.046 (2) | 0.037 (2) | −0.0091 (16) | −0.0016 (14) | 0.0020 (16) |
N15 | 0.0290 (17) | 0.050 (2) | 0.043 (2) | −0.0014 (15) | 0.0016 (13) | 0.0071 (17) |
N16 | 0.061 (2) | 0.045 (2) | 0.079 (3) | −0.005 (2) | 0.003 (2) | 0.019 (2) |
C17 | 0.0334 (17) | 0.036 (2) | 0.037 (2) | 0.0059 (17) | 0.0009 (15) | 0.0000 (17) |
C18 | 0.0270 (16) | 0.0290 (18) | 0.0321 (19) | 0.0017 (14) | −0.0008 (14) | −0.0032 (15) |
C19 | 0.0329 (18) | 0.032 (2) | 0.035 (2) | 0.0035 (16) | −0.0009 (15) | −0.0017 (16) |
O20 | 0.0325 (12) | 0.0422 (16) | 0.0500 (17) | 0.0036 (12) | 0.0049 (12) | −0.0021 (14) |
C21 | 0.0299 (18) | 0.050 (3) | 0.050 (2) | −0.0060 (18) | 0.0037 (16) | 0.001 (2) |
C22 | 0.044 (2) | 0.037 (2) | 0.041 (2) | −0.0047 (17) | 0.0037 (16) | 0.0006 (17) |
O23 | 0.0446 (15) | 0.077 (2) | 0.0355 (16) | −0.0063 (16) | 0.0059 (12) | 0.0007 (16) |
C24 | 0.041 (2) | 0.066 (3) | 0.033 (2) | 0.004 (2) | 0.0007 (16) | 0.006 (2) |
O25 | 0.0344 (13) | 0.067 (2) | 0.0306 (15) | −0.0025 (14) | −0.0033 (11) | 0.0039 (14) |
C26 | 0.059 (3) | 0.091 (4) | 0.040 (3) | −0.001 (3) | −0.007 (2) | −0.005 (3) |
C27 | 0.090 (4) | 0.080 (4) | 0.058 (3) | 0.021 (3) | −0.009 (3) | 0.022 (3) |
O28 | 0.0510 (17) | 0.0323 (16) | 0.0645 (19) | 0.0053 (13) | 0.0083 (14) | −0.0022 (13) |
C29 | 0.0303 (16) | 0.037 (2) | 0.035 (2) | 0.0009 (16) | −0.0028 (14) | −0.0018 (17) |
N30 | 0.0403 (17) | 0.042 (2) | 0.038 (2) | −0.0027 (16) | 0.0026 (14) | 0.0006 (15) |
N31 | 0.0418 (19) | 0.040 (2) | 0.041 (2) | −0.0056 (16) | 0.0027 (14) | 0.0025 (16) |
N32 | 0.073 (3) | 0.046 (2) | 0.066 (3) | 0.005 (2) | 0.003 (2) | 0.013 (2) |
C1—C2 | 1.519 (5) | C17—C18 | 1.526 (5) |
C1—C6 | 1.543 (5) | C17—C22 | 1.545 (5) |
C1—O9 | 1.424 (4) | C17—O25 | 1.427 (5) |
C1—H11 | 0.969 | C17—H171 | 0.987 |
C2—C3 | 1.508 (5) | C18—C19 | 1.515 (5) |
C2—C13 | 1.518 (5) | C18—C29 | 1.514 (5) |
C2—H21 | 0.999 | C18—H181 | 0.986 |
C3—O4 | 1.343 (4) | C19—O20 | 1.343 (4) |
C3—O12 | 1.206 (5) | C19—O28 | 1.198 (5) |
O4—C5 | 1.449 (5) | O20—C21 | 1.453 (5) |
C5—C6 | 1.497 (6) | C21—C22 | 1.498 (6) |
C5—H51 | 0.976 | C21—H211 | 0.968 |
C5—H52 | 0.964 | C21—H212 | 0.968 |
C6—O7 | 1.426 (5) | C22—O23 | 1.423 (5) |
C6—H61 | 0.986 | C22—H221 | 0.976 |
O7—C8 | 1.430 (4) | O23—C24 | 1.426 (5) |
C8—O9 | 1.416 (5) | C24—O25 | 1.430 (5) |
C8—C10 | 1.500 (7) | C24—C26 | 1.492 (7) |
C8—C11 | 1.516 (7) | C24—C27 | 1.521 (7) |
C10—H101 | 0.982 | C26—H261 | 0.963 |
C10—H102 | 0.963 | C26—H262 | 0.961 |
C10—H103 | 0.972 | C26—H263 | 0.951 |
C11—H111 | 0.956 | C27—H271 | 0.960 |
C11—H112 | 0.979 | C27—H272 | 0.958 |
C11—H113 | 0.974 | C27—H273 | 0.967 |
C13—N14 | 1.480 (5) | C29—N30 | 1.473 (5) |
C13—H131 | 0.965 | C29—H291 | 0.996 |
C13—H132 | 0.975 | C29—H292 | 0.964 |
N14—N15 | 1.228 (5) | N30—N31 | 1.233 (5) |
N15—N16 | 1.131 (5) | N31—N32 | 1.130 (5) |
C2—C1—C6 | 111.9 (3) | C18—C17—C22 | 112.1 (3) |
C2—C1—O9 | 107.8 (3) | C18—C17—O25 | 107.6 (3) |
C6—C1—O9 | 104.1 (3) | C22—C17—O25 | 104.5 (3) |
C2—C1—H11 | 110.9 | C18—C17—H171 | 109.9 |
C6—C1—H11 | 110.8 | C22—C17—H171 | 112.2 |
O9—C1—H11 | 111.1 | O25—C17—H171 | 110.3 |
C1—C2—C3 | 108.9 (3) | C17—C18—C19 | 108.7 (3) |
C1—C2—C13 | 111.4 (3) | C17—C18—C29 | 112.7 (3) |
C3—C2—C13 | 112.2 (3) | C19—C18—C29 | 111.8 (3) |
C1—C2—H21 | 108.4 | C17—C18—H181 | 106.8 |
C3—C2—H21 | 107.0 | C19—C18—H181 | 109.2 |
C13—C2—H21 | 108.7 | C29—C18—H181 | 107.4 |
C2—C3—O4 | 116.1 (3) | C18—C19—O20 | 116.3 (3) |
C2—C3—O12 | 124.7 (3) | C18—C19—O28 | 124.7 (3) |
O4—C3—O12 | 119.2 (3) | O20—C19—O28 | 119.0 (3) |
C3—O4—C5 | 116.9 (3) | C19—O20—C21 | 117.3 (3) |
O4—C5—C6 | 111.4 (3) | O20—C21—C22 | 110.4 (3) |
O4—C5—H51 | 110.2 | O20—C21—H211 | 108.5 |
C6—C5—H51 | 109.2 | C22—C21—H211 | 112.9 |
O4—C5—H52 | 107.2 | O20—C21—H212 | 106.4 |
C6—C5—H52 | 108.8 | C22—C21—H212 | 108.7 |
H51—C5—H52 | 109.9 | H211—C21—H212 | 109.7 |
C1—C6—C5 | 111.7 (3) | C17—C22—C21 | 112.1 (3) |
C1—C6—O7 | 104.5 (3) | C17—C22—O23 | 104.1 (3) |
C5—C6—O7 | 109.7 (3) | C21—C22—O23 | 110.2 (3) |
C1—C6—H61 | 110.9 | C17—C22—H221 | 110.3 |
C5—C6—H61 | 109.5 | C21—C22—H221 | 110.5 |
O7—C6—H61 | 110.5 | O23—C22—H221 | 109.4 |
C6—O7—C8 | 107.8 (3) | C22—O23—C24 | 108.8 (3) |
O7—C8—O9 | 104.4 (3) | O23—C24—O25 | 104.0 (3) |
O7—C8—C10 | 108.5 (4) | O23—C24—C26 | 109.7 (4) |
O9—C8—C10 | 108.2 (4) | O25—C24—C26 | 108.2 (4) |
O7—C8—C11 | 110.4 (4) | O23—C24—C27 | 110.2 (4) |
O9—C8—C11 | 111.4 (4) | O25—C24—C27 | 110.5 (4) |
C10—C8—C11 | 113.6 (4) | C26—C24—C27 | 113.8 (4) |
C1—O9—C8 | 107.9 (3) | C24—O25—C17 | 107.9 (3) |
C8—C10—H101 | 107.7 | C24—C26—H261 | 109.7 |
C8—C10—H102 | 109.8 | C24—C26—H262 | 109.0 |
H101—C10—H102 | 109.1 | H261—C26—H262 | 109.2 |
C8—C10—H103 | 109.9 | C24—C26—H263 | 109.8 |
H101—C10—H103 | 110.1 | H261—C26—H263 | 108.2 |
H102—C10—H103 | 110.2 | H262—C26—H263 | 111.0 |
C8—C11—H111 | 109.6 | C24—C27—H271 | 109.9 |
C8—C11—H112 | 110.9 | C24—C27—H272 | 111.2 |
H111—C11—H112 | 108.8 | H271—C27—H272 | 108.9 |
C8—C11—H113 | 109.7 | C24—C27—H273 | 107.8 |
H111—C11—H113 | 109.3 | H271—C27—H273 | 110.2 |
H112—C11—H113 | 108.5 | H272—C27—H273 | 108.9 |
C2—C13—N14 | 110.9 (3) | C18—C29—N30 | 112.0 (3) |
C2—C13—H131 | 108.2 | C18—C29—H291 | 107.8 |
N14—C13—H131 | 108.4 | N30—C29—H291 | 106.8 |
C2—C13—H132 | 109.8 | C18—C29—H292 | 109.7 |
N14—C13—H132 | 111.1 | N30—C29—H292 | 110.3 |
H131—C13—H132 | 108.3 | H291—C29—H292 | 110.1 |
C13—N14—N15 | 114.7 (3) | C29—N30—N31 | 115.5 (3) |
N14—N15—N16 | 173.6 (5) | N30—N31—N32 | 173.5 (5) |
Experimental details
Crystal data | |
Chemical formula | C9H13N3O4 |
Mr | 227.22 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 250 |
a, b, c (Å) | 6.6145 (2), 11.1194 (4), 15.0252 (8) |
β (°) | 91.6306 (13) |
V (Å3) | 1104.65 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.98, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5623, 3275, 1944 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.701 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.129, 1.08 |
No. of reflections | 3275 |
No. of parameters | 290 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.52 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997)', DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.
C5—C6 | 1.497 (6) | C21—C22 | 1.498 (6) |
C2—C1—C6 | 111.9 (3) | C18—C17—O25 | 107.6 (3) |
C2—C1—O9 | 107.8 (3) | C22—C17—O25 | 104.5 (3) |
O9—C8—C11 | 111.4 (4) | O20—C21—C22 | 110.4 (3) |
C18—C17—C22 | 112.1 (3) |
Footnotes
‡Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.
Acknowledgements
Financial support (to FPC) provided by the Fundacao para a Ciencia e a Tecnologia, Portugal, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc. Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o127–129. Web of Science CSD CrossRef IUCr Journals Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
The Kiliani reaction of ketoses with cyanide (Hotchkiss et al., 2004; Soengas et al., 2005) provides access to a novel class of carbohydrate scaffold which contains a branched carbon chain. Such sugar building blocks have hitherto been rare and difficult to prepare in large quantities (Bols, 1996; Lichtenthaler & Peters, 2004). However, naturally occurring ketoses restrict the branched carbon chain to a hydroxymethyl group. A further class of branched carbohydrates is available from the Kiliani ascension on 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar lactones. Thus, reaction of cyanide with a protected 1-deoxy-D-ribulose allowed the isolation of the isopropylidene derivative of arabinono-1,5-lactone, (1) (Hotchkiss et al., 2006), shown to crystallize in a boat conformation (Punzo, Watkin, Jenkinson & Fleet, 2005).
The value of protected sugar lactones such as (1) depends on being able to modify the tertiary alcohol functionality to other groups. Thus, the esterification of the free alcohol (1) with triflic anhydride in pyridine afforded the trifluoromethanesulfonate, (2), which on further reaction with sodium azide in dimethylformamide gave the ribo-azide, (3), as the major product in good yield, even though the overall reaction is a nucleophilic displacement at a very hindered position. It was possible that neighbouring group participation by an O atom might have been involved in the reaction but the X-ray crystal structure (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005) showed that the reaction proceeded with inversion of configuration to give the ribonolactone (3) in a boat conformation, with the C2-methyl group in a hindered flag-pole position. A small quantity of a second crystalline azide, the title compound, (4), was also isolated.
X-ray crystal analysis of (4) firmly establishes that the relative configuration of the azidomethyl branch at C2 is in a bow–sprit conformation. The absolute configuration of (4) was determined by the use of D-erythronolactone as the starting material for the synthesis. Azides (3) and (4) are likely to be useful building blocks for the synthesis of novel branched prolines and pipecolic acids, respectively.
From Fig. 2, it seems evident that a pseudo-translational operator of the form (0.48 + x, 0.48 + y, +z) is clearly detectable.