organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hydr­­oxy-6,7-dimeth­­oxy-2-[(E)-1-(4-meth­oxy­phen­yl)methyl­­idene]-3,4-di­hydro-2H-napthalen-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 10 November 2005; accepted 8 December 2005; online 23 December 2005)

The title compound, C20H20O5, possesses normal geometrical parameters. O—H⋯O bonds and possible C—H⋯O inter­actions are present.

Comment

The title compound, commonly called 2(4-methoxy­benzyl­idene)-5-hydr­oxy-6,7-dimethoxy­tetral-1-one, (I)[link], prepared by the condensation of anisaldehyde with 5-hydr­oxy-6,7-dimethoxy­tetral-1-one, was found to be sensitive to aerial oxidation. Its crystal structure was determined in the hope of identifying structural features which might explain its ready oxidation.

[Scheme 1]

All the geometrical parameters for (I)[link] (Fig. 1[link] and Table 1[link]) lie within their expected ranges (Allen et al., 1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]). The six-membered C9–C14 ring adopts an envelope configuration, with C9 and C11–C14 approximately coplanar [r.m.s. deviation = 0.054 Å, maximum deviation = 0.0846 (10) for atom C14] and C10 in the flap position, displaced by 0.637 (2) Å from the mean plane. The dihedral angle between the C3 and C15 benzene rings is 66.90 (4)°. The terminal methyl groups are displaced from their attached benzene ring C-atom mean planes by 0.066 (3), 0.079 (3), and −1.113 (3) Å for atoms C1, C19, and C20, respectively.

Various O—H⋯O and possible C—H⋯O inter­actions exist in the crystal structure of (I)[link] (Table 2[link]). The O3—H1 group forms a bifurcated intra­molecular/inter­molecular hydrogen bond. The inter­molecular O—H⋯O connectivity results in chains of (I)[link] propagating along [010]. Pairs of inversion-symmetry-related C3-benzene rings inter­act by ππi [symmetry code: (i) [{3\over 2}]x, [{1\over 2}]y, 1 − z] stacking with a centroid separation of 3.6516 (9) Å and an inter­plane separation of 3.451 Å. Overall, we cannot observe any unusual structural features in (I)[link] that correlate with its sensitivity to oxidation.

[Figure 1]
Figure 1
View of (I)[link] (50% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). The dashed lines represent the O—H⋯O intra­molecular inter­action.
[Figure 2]
Figure 2
View showing crystal packing (all H atoms omitted except OH; pink circles used to represent the centroid of the C3 benzene ring).

Experimental

A stirred solution of 102 mg of 5-hydr­oxy-6,7-dimethoxy­tetral-1-one (Cooke & Robinson, 1970[Cooke, R. G. & Robinson, J. B. (1970). Aust. J. Chem. 23, 1695-1698.]) and 100 mg of 4-methoxy­benzaldehyde in ethanol (10 ml) was treated dropwise with concentrated sulfuric acid (1.2 ml) over a period of 10 min (slight exothermic reaction) and the pale-brown solution was left at room temperature for 5 d. The crystals that had formed were collected and washed with cold ethanol. Recrystallization from ethanol gave (I)[link] as pale-yellow needles (124 mg, 80%; m.p. 412–413 K) UV-vis: λmax 334 nm ( = 16,100); νmax (cm−1) 3312, 1654, 1600, 1578, 1252, 1167, 1120, 1009, 928, 824; 13C NMR (100 MHz): δ 21.27, 26.78, 55.33, 55.95, 61.06, 102.81, 113.92, 123.61, 128.51, 129.17, 131.66, 133.79, 136.33, 139.41, 145.70, 150.80, 159.85, and 187.28. The crystals were sensitive to oxidation, turning red on exposure to air. TLC investigations revealed a complex mixture of oxidation products. The compound was also oxidized by high-potential quinones in methanol or dioxane solution, again giving an intra­ctable mixture of products.

Crystal data
  • C20H20O5

  • Mr = 340.36

  • Monoclinic, C 2/c

  • a = 18.3264 (5) Å

  • b = 13.3022 (5) Å

  • c = 15.7673 (6) Å

  • β = 119.1321 (16)°

  • V = 3357.5 (2) Å3

  • Z = 8

  • Dx = 1.347 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3939 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block (cut from needle), pale yellow

  • 0.22 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.979, Tmax = 0.989

  • 20240 measured reflections

  • 3856 independent reflections

  • 3231 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

  • h = −23 → 23

  • k = −17 → 17

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.07

  • 3856 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0447P)2 + 3.3509P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0030 (5)

Table 1
Selected geometric parameters (Å, °)[link]

C5—C8 1.460 (2)
C9—C14 1.484 (2)
C13—C14 1.4814 (19)
C9—C10—C11—C12 52.21 (16)
C10—C11—C12—C13 −27.58 (18)
C12—C13—C14—C9 14.32 (19)
C10—C9—C14—C13 13.43 (18)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2i 0.86 (2) 2.02 (2) 2.8248 (15) 155 (2)
O3—H1⋯O5 0.86 (2) 2.29 (2) 2.7308 (15) 112 (2)
C6—H6⋯O5ii 0.95 2.48 3.2668 (18) 140
C7—H7⋯O3ii 0.95 2.59 3.4591 (18) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

The O-bound H atom was located in a difference map. Its position was freely refined with the constraint Uiso(H) = 1.2Ueq(O) applied. All the C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, commonly called 2(4-methoxybenzylidene)-5-hydroxy-6,7-dimethoxytetral-1-one, (I), prepared by the condensation of anisaldehyde with 5-hydroxy-6,7-dimethoxytetral-1-one, was found to be sensitive to aerial oxidation. Its crystal structure was determined in the hope of identifying structural features which might explain its ready oxidation.

All the geometrical parameters for (I) (Fig. 1 and Table 1) lie within their expected ranges (Allen et al., 1995). The six-membered C9–C14 ring adopts an envelope configuration, with C9 and C11–C14 approximately co-planar [r.m.s. deviation = 0.054 Å, maximum deviation = −0.0846 (10) for atom C14] and C10 in the flap position, displaced by 0.637 (2) Å from the best plane. The dihedral angle between the C3 and C15 benzene rings is 66.90 (4)°. The terminal methyl groups are displaced from their attached benzene ring C-atom best planes by 0.066 (3), 0.079 (3), and −1.113 (3) Å for atoms C1, C19, and C20, respectively.

Various O—H···O and possible C—H···O interactions exist in the crystal structure of (I) (Table 2). The O3—H1 moiety forms a bifurcated intramolecular/intermolecular hydrogen bond. The intermolecular O—H···O connectivity results in chains of (I) propagating in [010]. Pairs of inversion-symmetry-generated C3-benzene rings interact by ππi [symmetry code: (i) 3/2 − x, 1/2 − y, 1 − z] stacking with a centroid separation of 3.6516 (9) Å and an interplane separation of 3.451 Å. Overall, we cannot observe any unusual structural features in (I) that correlate with its sensitivity to oxidation.

Experimental top

A stirred solution of 102 mg of 5-hydroxy-6,7-dimethoxytetral-1-one (Cooke & Robinson, 1970) and 100 mg of 4-methoxybenzaldehyde in ethanol (10 ml) was treated dropwise with concentrated sulfuric acid (1.2 ml) over a period of 10 min (slight exothermic reaction) and the pale-brown solution was left at room temperature for 5 d. The crystals that had formed were collected and washed with cold ethanol. Recrystallization from ethanol gave (I) as pale-yellow needles (124 mg, 80%; m.p. 412–413 K) UV-vis: λmax 334 nm (ε = 16,100); νmax (cm−1) 3312, 1654, 1600, 1578, 1252, 1167, 1120, 1009, 928, 824; 13C NMR (100 MHz): δ 21.27, 26.78, 55.33, 55.95, 61.06, 102.81, 113.92, 123.61, 128.51, 129.17, 131.66, 133.79, 136.33, 139.41, 145.70, 150.80, 159.85, and 187.28. The crystals were sensitive to oxidation, turning red on exposure to air. TLC investigations revealed a complex mixture of oxidation products. The compound was also oxidized by high-potential quinones in methanol or dioxane solution, again giving an intractable mixture of products.

Refinement top

The O-bound H atom was located in a difference map. Its position was freely refined with the constraint Uiso(H) = 1.2Ueq(O) applied. All the C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups was allowed to rotate to best fit the electron density.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I) (50% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). The dashed lines represent the O—H···O intramolecular interaction.
[Figure 2] Fig. 2. View showing crystal packing (all H atoms omitted except OH; pink circles used to represent the centroid of the C3 benzene ring).
5-Hydroxy-6,7-dimethoxy-2-[(E)-1-(4-methoxyphenyl)methylidene]-3,4-dihydro- 2H-napthalen-1-one 2-(4-methoxybenzylidene)-5-hydroxy-6,7-dimethoxytetral-1-one top
Crystal data top
C20H20O5F(000) = 1440
Mr = 340.36Dx = 1.347 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3939 reflections
a = 18.3264 (5) Åθ = 2.9–27.5°
b = 13.3022 (5) ŵ = 0.10 mm1
c = 15.7673 (6) ÅT = 120 K
β = 119.1321 (16)°Block, pale yellow
V = 3357.5 (2) Å30.22 × 0.20 × 0.12 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3856 independent reflections
Radiation source: fine-focus sealed tube3231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2323
Tmin = 0.979, Tmax = 0.989k = 1717
20240 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (C-H)
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0447P)2 + 3.3509P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3856 reflectionsΔρmax = 0.28 e Å3
233 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (5)
Crystal data top
C20H20O5V = 3357.5 (2) Å3
Mr = 340.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.3264 (5) ŵ = 0.10 mm1
b = 13.3022 (5) ÅT = 120 K
c = 15.7673 (6) Å0.22 × 0.20 × 0.12 mm
β = 119.1321 (16)°
Data collection top
Nonius KappaCCD
diffractometer
3856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3231 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.989Rint = 0.042
20240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
3856 reflectionsΔρmin = 0.23 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89149 (10)0.29139 (12)0.40275 (12)0.0293 (4)
H1A0.95090.30290.42490.044*
H1B0.85990.29570.33180.044*
H1C0.88410.22450.42340.044*
C20.78079 (9)0.35687 (11)0.42500 (10)0.0215 (3)
C30.75285 (9)0.42983 (11)0.46647 (11)0.0232 (3)
H30.78890.48310.50330.028*
C40.67302 (9)0.42464 (11)0.45401 (10)0.0215 (3)
H40.65450.47470.48220.026*
C50.61872 (9)0.34639 (10)0.40022 (10)0.0200 (3)
C60.64855 (9)0.27408 (11)0.36052 (11)0.0228 (3)
H60.61330.21970.32510.027*
C70.72791 (9)0.27932 (11)0.37116 (11)0.0236 (3)
H70.74610.23020.34180.028*
C80.53592 (9)0.33069 (11)0.38987 (10)0.0206 (3)
H80.52070.26210.38780.025*
C90.47747 (9)0.39649 (10)0.38278 (10)0.0198 (3)
C100.47752 (9)0.50872 (10)0.36893 (10)0.0201 (3)
H10A0.52380.52720.35650.024*
H10B0.48650.54350.42880.024*
C110.39419 (9)0.54235 (11)0.28324 (10)0.0208 (3)
H11A0.39240.61670.27990.025*
H11B0.38990.51670.22200.025*
C120.32103 (8)0.50453 (10)0.29296 (10)0.0191 (3)
C130.32654 (9)0.41647 (10)0.34387 (10)0.0197 (3)
C140.40214 (9)0.35263 (10)0.38071 (10)0.0205 (3)
C150.25951 (9)0.38177 (11)0.35495 (11)0.0220 (3)
H150.26500.32190.39040.026*
C160.18553 (9)0.43493 (11)0.31411 (11)0.0231 (3)
C170.17730 (9)0.52133 (11)0.25892 (11)0.0225 (3)
C180.24411 (9)0.55464 (11)0.24764 (10)0.0206 (3)
C190.12370 (12)0.32182 (13)0.37813 (16)0.0405 (4)
H19A0.07040.30960.37690.061*
H19B0.16770.33230.44530.061*
H19C0.13780.26360.35080.061*
C200.03432 (10)0.53371 (13)0.13886 (14)0.0375 (4)
H20A0.01130.58280.11060.056*
H20B0.01670.47550.16250.056*
H20C0.04850.51190.08930.056*
O10.86164 (6)0.36594 (8)0.44389 (8)0.0279 (3)
O20.40156 (6)0.26562 (8)0.40761 (8)0.0273 (3)
O30.23724 (7)0.63713 (8)0.19300 (8)0.0249 (3)
H10.1879 (12)0.6628 (14)0.1686 (13)0.030*
O40.11660 (7)0.40919 (8)0.32184 (9)0.0307 (3)
O50.10613 (6)0.57905 (8)0.21820 (8)0.0282 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0298 (8)0.0329 (9)0.0298 (8)0.0080 (7)0.0181 (7)0.0051 (7)
C20.0208 (7)0.0228 (7)0.0202 (7)0.0030 (5)0.0095 (6)0.0049 (6)
C30.0245 (7)0.0198 (7)0.0218 (7)0.0007 (6)0.0085 (6)0.0006 (6)
C40.0241 (7)0.0183 (7)0.0201 (7)0.0025 (5)0.0091 (6)0.0008 (5)
C50.0219 (7)0.0176 (7)0.0173 (7)0.0025 (5)0.0071 (6)0.0027 (5)
C60.0249 (7)0.0175 (7)0.0230 (7)0.0005 (6)0.0093 (6)0.0009 (6)
C70.0275 (7)0.0209 (7)0.0227 (7)0.0038 (6)0.0126 (6)0.0006 (6)
C80.0230 (7)0.0157 (7)0.0194 (7)0.0007 (5)0.0073 (6)0.0004 (5)
C90.0204 (7)0.0183 (7)0.0176 (7)0.0009 (5)0.0067 (6)0.0005 (5)
C100.0207 (7)0.0170 (7)0.0218 (7)0.0005 (5)0.0098 (6)0.0003 (5)
C110.0229 (7)0.0177 (7)0.0227 (7)0.0025 (5)0.0119 (6)0.0017 (5)
C120.0206 (7)0.0172 (7)0.0180 (7)0.0003 (5)0.0083 (6)0.0039 (5)
C130.0203 (7)0.0176 (7)0.0187 (7)0.0012 (5)0.0074 (6)0.0041 (5)
C140.0219 (7)0.0174 (7)0.0179 (7)0.0005 (5)0.0063 (6)0.0013 (5)
C150.0244 (7)0.0173 (7)0.0237 (7)0.0026 (5)0.0112 (6)0.0037 (6)
C160.0225 (7)0.0199 (7)0.0283 (8)0.0044 (6)0.0135 (6)0.0083 (6)
C170.0199 (7)0.0186 (7)0.0269 (8)0.0009 (5)0.0097 (6)0.0067 (6)
C180.0241 (7)0.0153 (7)0.0203 (7)0.0007 (5)0.0091 (6)0.0031 (5)
C190.0414 (10)0.0286 (9)0.0667 (13)0.0028 (7)0.0382 (10)0.0037 (8)
C200.0239 (8)0.0273 (9)0.0457 (11)0.0008 (6)0.0047 (8)0.0037 (7)
O10.0229 (5)0.0297 (6)0.0331 (6)0.0009 (4)0.0151 (5)0.0015 (5)
O20.0232 (5)0.0178 (5)0.0358 (6)0.0010 (4)0.0105 (5)0.0046 (4)
O30.0227 (5)0.0195 (5)0.0307 (6)0.0063 (4)0.0115 (5)0.0049 (4)
O40.0259 (6)0.0259 (6)0.0465 (7)0.0022 (4)0.0223 (5)0.0010 (5)
O50.0196 (5)0.0199 (5)0.0402 (7)0.0022 (4)0.0106 (5)0.0068 (5)
Geometric parameters (Å, º) top
C1—O11.4314 (19)C11—H11A0.9900
C1—H1A0.9800C11—H11B0.9900
C1—H1B0.9800C12—C131.396 (2)
C1—H1C0.9800C12—C181.4006 (19)
C2—O11.3670 (17)C13—C151.401 (2)
C2—C71.387 (2)C13—C141.4814 (19)
C2—C31.399 (2)C14—O21.2345 (17)
C3—C41.380 (2)C15—C161.379 (2)
C3—H30.9500C15—H150.9500
C4—C51.404 (2)C16—O41.3703 (17)
C4—H40.9500C16—C171.405 (2)
C5—C61.396 (2)C17—O51.3739 (17)
C5—C81.460 (2)C17—C181.393 (2)
C6—C71.382 (2)C18—O31.3625 (18)
C6—H60.9500C19—O41.429 (2)
C7—H70.9500C19—H19A0.9800
C8—C91.345 (2)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C141.484 (2)C20—O51.4344 (19)
C9—C101.5089 (19)C20—H20A0.9800
C10—C111.5326 (19)C20—H20B0.9800
C10—H10A0.9900C20—H20C0.9800
C10—H10B0.9900O3—H10.863 (19)
C11—C121.5079 (19)
O1—C1—H1A109.5C10—C11—H11B109.3
O1—C1—H1B109.5H11A—C11—H11B108.0
H1A—C1—H1B109.5C13—C12—C18117.77 (13)
O1—C1—H1C109.5C13—C12—C11121.30 (12)
H1A—C1—H1C109.5C18—C12—C11120.88 (13)
H1B—C1—H1C109.5C12—C13—C15121.75 (13)
O1—C2—C7124.01 (13)C12—C13—C14119.91 (12)
O1—C2—C3116.18 (13)C15—C13—C14118.15 (13)
C7—C2—C3119.77 (13)O2—C14—C13120.63 (13)
C4—C3—C2120.17 (14)O2—C14—C9121.63 (13)
C4—C3—H3119.9C13—C14—C9117.74 (12)
C2—C3—H3119.9C16—C15—C13119.69 (14)
C3—C4—C5120.91 (13)C16—C15—H15120.2
C3—C4—H4119.5C13—C15—H15120.2
C5—C4—H4119.5O4—C16—C15124.72 (14)
C6—C5—C4117.68 (13)O4—C16—C17115.72 (13)
C6—C5—C8117.64 (13)C15—C16—C17119.55 (13)
C4—C5—C8124.46 (13)O5—C17—C18117.14 (13)
C7—C6—C5121.96 (14)O5—C17—C16122.55 (13)
C7—C6—H6119.0C18—C17—C16120.24 (13)
C5—C6—H6119.0O3—C18—C17121.38 (13)
C6—C7—C2119.49 (13)O3—C18—C12117.78 (13)
C6—C7—H7120.3C17—C18—C12120.84 (13)
C2—C7—H7120.3O4—C19—H19A109.5
C9—C8—C5131.19 (13)O4—C19—H19B109.5
C9—C8—H8114.4H19A—C19—H19B109.5
C5—C8—H8114.4O4—C19—H19C109.5
C8—C9—C14116.14 (13)H19A—C19—H19C109.5
C8—C9—C10126.81 (13)H19B—C19—H19C109.5
C14—C9—C10116.86 (12)O5—C20—H20A109.5
C9—C10—C11110.23 (12)O5—C20—H20B109.5
C9—C10—H10A109.6H20A—C20—H20B109.5
C11—C10—H10A109.6O5—C20—H20C109.5
C9—C10—H10B109.6H20A—C20—H20C109.5
C11—C10—H10B109.6H20B—C20—H20C109.5
H10A—C10—H10B108.1C2—O1—C1116.93 (12)
C12—C11—C10111.52 (11)C18—O3—H1110.8 (12)
C12—C11—H11A109.3C16—O4—C19116.69 (12)
C10—C11—H11A109.3C17—O5—C20115.58 (11)
C12—C11—H11B109.3
O1—C2—C3—C4177.79 (13)C8—C9—C14—O217.3 (2)
C7—C2—C3—C40.1 (2)C10—C9—C14—O2167.35 (13)
C2—C3—C4—C50.3 (2)C8—C9—C14—C13161.95 (13)
C3—C4—C5—C60.4 (2)C10—C9—C14—C1313.43 (18)
C3—C4—C5—C8174.93 (13)C12—C13—C15—C160.6 (2)
C4—C5—C6—C71.4 (2)C14—C13—C15—C16174.39 (13)
C8—C5—C6—C7176.37 (13)C13—C15—C16—O4178.69 (13)
C5—C6—C7—C21.8 (2)C13—C15—C16—C172.3 (2)
O1—C2—C7—C6176.59 (13)O4—C16—C17—O52.5 (2)
C3—C2—C7—C61.1 (2)C15—C16—C17—O5178.41 (13)
C6—C5—C8—C9149.65 (16)O4—C16—C17—C18179.17 (13)
C4—C5—C8—C935.8 (2)C15—C16—C17—C181.7 (2)
C5—C8—C9—C14175.38 (14)O5—C17—C18—O34.4 (2)
C5—C8—C9—C109.8 (3)C16—C17—C18—O3178.77 (13)
C8—C9—C10—C11128.49 (15)O5—C17—C18—C12175.17 (13)
C14—C9—C10—C1146.34 (16)C16—C17—C18—C121.7 (2)
C9—C10—C11—C1252.21 (16)C13—C12—C18—O3176.06 (12)
C10—C11—C12—C1327.58 (18)C11—C12—C18—O31.4 (2)
C10—C11—C12—C18155.07 (13)C13—C12—C18—C174.4 (2)
C18—C12—C13—C153.9 (2)C11—C12—C18—C17178.16 (13)
C11—C12—C13—C15178.71 (13)C7—C2—O1—C11.7 (2)
C18—C12—C13—C14170.99 (12)C3—C2—O1—C1179.45 (13)
C11—C12—C13—C146.4 (2)C15—C16—O4—C191.3 (2)
C12—C13—C14—O2164.91 (14)C17—C16—O4—C19179.67 (14)
C15—C13—C14—O210.1 (2)C18—C17—O5—C20113.18 (16)
C12—C13—C14—C914.32 (19)C16—C17—O5—C2070.03 (19)
C15—C13—C14—C9170.65 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.863 (19)2.02 (2)2.8248 (15)154.8 (17)
O3—H1···O50.863 (19)2.289 (18)2.7308 (15)111.9 (15)
C6—H6···O5ii0.952.483.2668 (18)140
C7—H7···O3ii0.952.593.4591 (18)153
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H20O5
Mr340.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)18.3264 (5), 13.3022 (5), 15.7673 (6)
β (°) 119.1321 (16)
V3)3357.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.979, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
20240, 3856, 3231
Rint0.042
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.07
No. of reflections3856
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
C5—C81.460 (2)C13—C141.4814 (19)
C9—C141.484 (2)
C9—C10—C11—C1252.21 (16)C12—C13—C14—C914.32 (19)
C10—C11—C12—C1327.58 (18)C10—C9—C14—C1313.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.863 (19)2.02 (2)2.8248 (15)154.8 (17)
O3—H1···O50.863 (19)2.289 (18)2.7308 (15)111.9 (15)
C6—H6···O5ii0.952.483.2668 (18)140
C7—H7···O3ii0.952.593.4591 (18)153
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooke, R. G. & Robinson, J. B. (1970). Aust. J. Chem. 23, 1695–1698.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds