organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iso­propyl-6,6,8a-tri­methyl-1,3a,5,6,7,8a-hexa­hydro-3H-1-benzofuro[2,3-b]pyrrole-2,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, bFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England, cIndian Institute of Science, Bangalore 560 012, India, and dOriental Organization of Molecular and Structural Biology, 204, Agarwal Bhavan, Malleshwaram, Bangalore 560 055, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 23 December 2005; accepted 20 February 2006; online 10 March 2006)

The crystal structure of the title benzofuran derivative, C16H23NO3, has been elucidated. The tricyclic core, i.e. the tetra­hydro­benzo–dihydro­furo–pyrrolidine ring system, is non-planar owing to the folding of the five-membered rings at their cis junction. The cyclo­hexene ring assumes a half-chair conformation, while the dihydro­furan and pyrrolidine rings each adopt an envelope conformation. Intra­molecular C—H⋯O hydrogen bonds form S(6) closed patterns.

Comment

The title compound, (I)[link], has been shown to exhibit a moderate hypoglycemic activity in a previous structure–activity relationship study (Nagarajan et al., 1988[Nagarajan, K., Talwalker, P. K., Nagana Goud, A., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113-1123.]). Compound (I)[link] is a new tricyclic benzofuran derivative containing linearly fused tetra­hydro­benzo–dihydro­furo–pyrrolidine (A–B–C) rings. This chiral mol­ecule formally derives from a perhydro–furo (or –pyrrolo)–benzofuran system (Nagarajan et al., 1988[Nagarajan, K., Talwalker, P. K., Nagana Goud, A., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113-1123.]) and is structurally related to a structure containing a tetra­hydro­benzo–furo–furan ring system, which we recently published (Nagaraj et al., 2005[Nagaraj, B., Yathirajan, H. S., Nagaraja, P. & Lynch, D. E. (2005). Acta Cryst. E61, o1041-o1042.]).

[Scheme 1]

The mol­ecular structure is shown in Fig. 1[link]. The BC ring-junction is cis (Bucourt, 1974[Bucourt, R. (1974). Topics in Stereochemistry, edited by E. L. Eliel & N. L. Allinger, Vol. 8, pp. 159-224. New York: Interscience.]). The shape of the tricyclic core is non-planar owing to the folding at the BC junction. The torsion angles at this junction, namely N1—C1—C4—C5 and O1—C1—C4—C3, are −99.69 (11) and 132.78 (11)°, respectively. The structure of the analogous mol­ecule based on a chiral tetra­hydro­benzo–furo–furan core (Nagaraj et al., 2005[Nagaraj, B., Yathirajan, H. S., Nagaraja, P. & Lynch, D. E. (2005). Acta Cryst. E61, o1041-o1042.]) also has a non-planar shape for its tricyclic core, and the equivalent torsion angles are 103.98 (10) and −127.17 (10)°, respectively. The torsion angle C1—N1—C14—C15 in (I)[link], describing the conformation of the N-isopropyl substituent, is 121.51 (14)°. The inter­nal torsion angles of individual rings are shown in Fig. 1[link]. Ring A (cyclo­hexene) adopts a half-chair (C2) conformation (Bucourt, 1974[Bucourt, R. (1974). Topics in Stereochemistry, edited by E. L. Eliel & N. L. Allinger, Vol. 8, pp. 159-224. New York: Interscience.]) with the following values of puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): q2 = 0.347 (2), q3 = −0.275 (2) Å, φ2 = 345.7 (3), θ2 = 128.4 (2)° and Q = 0.443 (2) Å. Rings B and C adopt envelope (Cs) conformations (Fuchs, 1978[Fuchs, B. (1978). Topics in Stereochemistry, edited by E. L. Eliel & N. L. Allinger, Vol. 10, pp. 1-94. New York: Interscience.]) with atoms C1 and C4, respectively, at the flap positions. Atoms C1 and C4 are 0.24 (1) and 0.33 (1) Å out of the mean planes formed by the remaining ring atoms. The puckering amplitudes q (Å) and the phase angles φ (°) of the five-membered rings are 0.146 (2) and 39.7 (7), and 0.210 (2) and 80.3 (5), respectively. Two S(6) hydrogen-bonded closed patterns (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) are formed by C15—H⋯O2 and C16—H⋯O2 intra­molecular contacts (Table 1[link]). The lengths and directionality suggest that these hydrogen bonds are very weak. The crystal packing is entirely due to van der Waals inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 30% probability level and numerical values refer to the inter­nal torsion angles (°) of individual rings (s.u. values lie in the range 0.1–0.2°). Intra­molecular C—H⋯O hydrogen bonds are displayed with dashed lines.

Experimental

The synthesis of (I)[link] was described by Nagarajan et al. (1988[Nagarajan, K., Talwalker, P. K., Nagana Goud, A., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113-1123.]). Suitable single crystals were obtained by slow evaporation of a benzene–hexane (1:1) solution.

Crystal data
  • C16H23NO3

  • Mr = 277.35

  • Triclinic, [P \overline 1]

  • a = 8.9725 (3) Å

  • b = 10.2472 (3) Å

  • c = 10.4372 (3) Å

  • α = 101.733 (2)°

  • β = 109.290 (1)°

  • γ = 115.765 (1)°

  • V = 744.67 (4) Å3

  • Z = 2

  • Dx = 1.237 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3368 reflections

  • θ = 2.9–27.5°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.22 × 0.18 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.890, Tmax = 0.996

  • 14657 measured reflections

  • 2911 independent reflections

  • 2548 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 26.0°

  • h = −11 → 11

  • k = −12 → 12

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.09

  • 2911 reflections

  • 273 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0394P)2 + 0.3291P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H153⋯O2 0.99 (3) 2.54 (2) 3.122 (2) 118 (2)
C16—H161⋯O2 1.02 (3) 2.58 (2) 3.186 (2) 118 (1)

Larger than expected values of residual electron density were observed and attributed to the presence of a few poorly fitting reflections ([\overline{1}]22, 1[\overline{1}]1, 011, 2[\overline{2}]1, [\overline{2}]22 and [\overline{1}][\overline{1}]1). The application of an extinction correction [extinction parameter = 0.57 (3)] further degraded the model quality. In the absence of any obvious cause, these reflections were omitted during the last cycles of refinement. Residual electron density was then featureless and the residual factor R dropped from 0.056 to 0.039 for observed data. H atoms were located in a difference map and were refined freely [C—H = 0.97 (2)–1.02 (2) Å].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

1-Isopropyl-6,6,8a-trimethyl-1,3a,5,6,7,8a-hexahydro-3H- 1-benzofuro[2,3-b]pyrrole-2,4-dione top
Crystal data top
C16H23NO3Z = 2
Mr = 277.35F(000) = 300
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Melting point: 417(1) K
a = 8.9725 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2472 (3) ÅCell parameters from 3368 reflections
c = 10.4372 (3) Åθ = 2.9–27.5°
α = 101.733 (2)°µ = 0.09 mm1
β = 109.290 (1)°T = 120 K
γ = 115.765 (1)°Plate, colourless
V = 744.67 (4) Å30.22 × 0.18 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2911 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2548 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.890, Tmax = 0.996l = 1212
14657 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.101All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.3291P]
where P = (Fo2 + 2Fc2)/3
2911 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.872591.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

======================================================================= Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d ======================================================================

Plane 1 m1 = 0.48034(0.00080) m2 = -0.51073(0.00089) m3 = -0.71305(0.00054) D = -3.47648(0.00103) Atom d s d/s (d/s)**2 O1 * 0.0009 0.0010 0.840 0.705 C4 * -0.0017 0.0015 - 1.094 1.196 C5 * 0.0030 0.0015 1.999 3.995 C10 * -0.0033 0.0015 - 2.183 4.764 C1 0.2352 0.0015 155.518 24185.846 C6 0.0321 0.0016 20.563 422.838 C9 0.0025 0.0016 1.520 2.310 ============ Sum((d/s)**2) for starred atoms 10.660 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.57685(0.00075) m2 = -0.81274(0.00052) m3 = -0.08184(0.00118) D = -2.53847(0.00205) Atom d s d/s (d/s)**2 C1 * 0.0096 0.0016 5.952 35.423 N1 * -0.0121 0.0014 - 8.837 78.089 C2 * 0.0182 0.0017 10.568 111.686 C3 * -0.0118 0.0019 - 6.308 39.797 C4 0.3292 0.0017 196.068 38442.645 O2 0.0241 0.0014 17.584 309.209 C14 0.0026 0.0018 1.426 2.033 ============ Sum((d/s)**2) for starred atoms 264.994 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 3 m1 = 0.50473(0.00072) m2 = -0.44860(0.00067) m3 = -0.73757(0.00047) D = -3.49574(0.00100) Atom d s d/s (d/s)**2 C5 * 0.0160 0.0015 10.544 111.186 C6 * -0.0513 0.0016 - 32.865 1080.080 C7 * 0.0504 0.0017 29.536 872.347 C9 * -0.0388 0.0016 - 23.749 564.027 C10 * 0.0268 0.0015 17.427 303.694 C8 - 0.6054 0.0016 - 375.708 141156.844 O1 0.1249 0.0010 120.888 14613.903 O3 - 0.1396 0.0012 - 120.991 14638.831 C1 0.4114 0.0015 271.503 73713.656 C4 0.1036 0.0015 67.343 4535.050 ============ Sum((d/s)**2) for starred atoms 2931.333 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 4 m1 = 0.43339(0.00065) m2 = -0.56971(0.00061) m3 = -0.69829(0.00046) D = -3.49262(0.00082) Atom d s d/s (d/s)**2 O1 * -0.0444 0.0010 - 42.960 1845.563 C4 * -0.0857 0.0015 - 55.889 3123.553 C5 * 0.0320 0.0015 21.356 456.076 C10 * 0.0398 0.0015 26.204 686.636 C1 * 0.1049 0.0015 69.890 4884.553 C6 0.1476 0.0016 95.146 9052.818 C9 0.1452 0.0016 89.106 7939.827 ============ Sum((d/s)**2) for starred atoms 10996.382 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 5 m1 = -0.54504(0.00072) m2 = -0.81842(0.00049) m3 = -0.18198(0.00081) D = -2.64088(0.00166) Atom d s d/s (d/s)**2 C1 * -0.0918 0.0016 - 57.193 3271.052 N1 * 0.0233 0.0014 17.159 294.425 C2 * 0.0494 0.0017 28.976 839.585 C3 * -0.1326 0.0019 - 71.591 5125.335 C4 * 0.1238 0.0017 74.360 5529.379 O2 0.1575 0.0014 115.889 13430.213 C14 0.1679 0.0018 92.604 8575.446 ============ Sum((d/s)**2) for starred atoms 15059.777 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 78.68 (0.07) 101.32 (0.07) 1 3 4.08 (0.06) 175.92 (0.06) 1 4 4.40 (0.06) 175.60 (0.06) 1 5 73.38 (0.07) 106.62 (0.07) 2 3 82.31 (0.07) 97.69 (0.07) 2 4 74.33 (0.07) 105.67 (0.07) 2 5 6.03 (0.08) 173.97 (0.08) 3 4 8.37 (0.05) 171.63 (0.05) 3 5 76.92 (0.06) 103.08 (0.06) 4 5 69.08 (0.05) 110.92 (0.05)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01944 (12)0.39092 (11)0.14638 (10)0.0189 (2)
O20.32915 (15)0.18884 (13)0.02664 (12)0.0305 (3)
O30.24363 (14)0.22511 (12)0.50240 (11)0.0263 (3)
N10.21495 (15)0.34804 (13)0.06151 (12)0.0185 (3)
C10.21660 (18)0.45088 (15)0.18038 (15)0.0171 (3)
C20.31312 (19)0.28088 (16)0.10736 (16)0.0213 (3)
C30.4043 (2)0.34509 (18)0.27510 (16)0.0218 (3)
H310.540 (2)0.427 (2)0.3151 (19)0.030 (4)*
H320.392 (2)0.257 (2)0.3074 (19)0.029 (4)*
C40.30327 (18)0.42019 (16)0.31682 (15)0.0183 (3)
H40.388 (2)0.519 (2)0.4074 (19)0.025 (4)*
C50.12821 (18)0.30714 (15)0.31940 (15)0.0177 (3)
C60.10779 (19)0.21344 (16)0.40668 (15)0.0191 (3)
C70.0935 (2)0.09516 (17)0.36745 (17)0.0216 (3)
H710.093 (2)0.0685 (19)0.4518 (19)0.025 (4)*
H720.142 (2)0.004 (2)0.282 (2)0.032 (4)*
C80.22872 (19)0.15110 (16)0.31966 (16)0.0199 (3)
C90.21885 (19)0.20124 (17)0.19147 (16)0.0218 (3)
H910.284 (2)0.106 (2)0.100 (2)0.029 (4)*
H920.283 (2)0.261 (2)0.1752 (19)0.031 (4)*
C100.02110 (19)0.29910 (15)0.22264 (15)0.0178 (3)
C110.4302 (2)0.01507 (19)0.2635 (2)0.0295 (4)
H1110.444 (3)0.018 (2)0.346 (2)0.042 (5)*
H1120.464 (3)0.075 (2)0.181 (2)0.041 (5)*
H1130.520 (3)0.049 (2)0.229 (2)0.038 (5)*
C120.1750 (2)0.28916 (18)0.45332 (18)0.0254 (3)
H1210.255 (3)0.331 (2)0.426 (2)0.035 (5)*
H1220.040 (2)0.377 (2)0.4999 (19)0.028 (4)*
H1230.195 (2)0.252 (2)0.531 (2)0.036 (5)*
C130.3084 (2)0.62117 (17)0.19824 (17)0.0217 (3)
H1310.442 (2)0.6640 (19)0.2287 (17)0.023 (4)*
H1320.296 (2)0.685 (2)0.2756 (19)0.030 (4)*
H1330.250 (2)0.632 (2)0.106 (2)0.030 (4)*
C140.10618 (19)0.31569 (18)0.09504 (15)0.0226 (3)
H140.052 (2)0.3839 (19)0.0917 (18)0.026 (4)*
C150.2334 (2)0.3652 (2)0.16630 (18)0.0307 (4)
H1510.335 (3)0.478 (2)0.108 (2)0.040 (5)*
H1520.161 (3)0.352 (2)0.266 (2)0.044 (5)*
H1530.295 (3)0.305 (2)0.166 (2)0.036 (5)*
C160.0585 (2)0.1430 (2)0.17838 (18)0.0301 (4)
H1610.012 (3)0.069 (2)0.171 (2)0.038 (5)*
H1620.133 (3)0.124 (2)0.285 (2)0.044 (5)*
H1630.143 (2)0.122 (2)0.134 (2)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (5)0.0238 (5)0.0216 (5)0.0117 (4)0.0105 (4)0.0135 (4)
O20.0337 (6)0.0330 (6)0.0332 (6)0.0232 (5)0.0188 (5)0.0113 (5)
O30.0252 (5)0.0326 (6)0.0258 (6)0.0171 (5)0.0114 (5)0.0180 (5)
N10.0183 (6)0.0206 (6)0.0170 (6)0.0107 (5)0.0083 (5)0.0078 (5)
C10.0133 (6)0.0194 (7)0.0188 (7)0.0083 (5)0.0083 (5)0.0087 (5)
C20.0181 (7)0.0217 (7)0.0262 (8)0.0106 (6)0.0123 (6)0.0105 (6)
C30.0194 (7)0.0277 (8)0.0252 (8)0.0151 (6)0.0123 (6)0.0149 (6)
C40.0159 (6)0.0199 (7)0.0179 (7)0.0088 (6)0.0074 (6)0.0090 (6)
C50.0168 (6)0.0183 (7)0.0187 (7)0.0092 (6)0.0092 (6)0.0082 (5)
C60.0222 (7)0.0192 (7)0.0195 (7)0.0127 (6)0.0112 (6)0.0085 (6)
C70.0240 (7)0.0194 (7)0.0273 (8)0.0122 (6)0.0150 (6)0.0138 (6)
C80.0177 (7)0.0184 (7)0.0249 (7)0.0086 (6)0.0118 (6)0.0111 (6)
C90.0163 (7)0.0239 (7)0.0242 (8)0.0099 (6)0.0089 (6)0.0113 (6)
C100.0197 (7)0.0175 (6)0.0183 (7)0.0100 (6)0.0106 (6)0.0085 (5)
C110.0214 (8)0.0246 (8)0.0401 (10)0.0086 (7)0.0160 (7)0.0156 (7)
C120.0266 (8)0.0262 (8)0.0302 (8)0.0164 (7)0.0168 (7)0.0130 (7)
C130.0207 (7)0.0201 (7)0.0250 (8)0.0104 (6)0.0116 (6)0.0110 (6)
C140.0196 (7)0.0284 (8)0.0170 (7)0.0120 (6)0.0075 (6)0.0088 (6)
C150.0260 (8)0.0403 (10)0.0227 (8)0.0138 (8)0.0132 (7)0.0140 (7)
C160.0196 (7)0.0330 (9)0.0244 (8)0.0088 (7)0.0084 (7)0.0046 (7)
Geometric parameters (Å, º) top
O1—C101.3599 (16)C8—C91.5428 (19)
O1—C11.4780 (15)C9—C101.4828 (18)
O2—C21.2226 (17)C9—H910.984 (18)
O3—C61.2321 (17)C9—H921.009 (18)
N1—C21.3642 (18)C11—H1111.02 (2)
N1—C11.4465 (17)C11—H1120.98 (2)
N1—C141.4754 (18)C11—H1131.001 (19)
C1—C131.5083 (19)C12—H1210.984 (19)
C1—C41.5475 (18)C12—H1221.001 (18)
C2—C31.511 (2)C12—H1231.003 (19)
C3—C41.5276 (19)C13—H1310.981 (16)
C3—H310.999 (18)C13—H1320.995 (18)
C3—H321.000 (17)C13—H1330.993 (18)
C4—C51.5062 (18)C14—C161.524 (2)
C4—H40.981 (17)C14—C151.524 (2)
C5—C101.3409 (19)C14—H141.015 (17)
C5—C61.4486 (18)C15—H1510.99 (2)
C6—C71.5182 (19)C15—H1520.97 (2)
C7—C81.5397 (19)C15—H1530.991 (19)
C7—H710.972 (17)C16—H1611.012 (19)
C7—H721.001 (18)C16—H1621.01 (2)
C8—C111.5269 (19)C16—H1630.986 (19)
C8—C121.530 (2)
C10—O1—C1106.56 (9)C10—C9—H91107.3 (10)
C2—N1—C1114.23 (11)C8—C9—H91109.1 (10)
C2—N1—C14124.67 (11)C10—C9—H92110.5 (10)
C1—N1—C14121.03 (11)C8—C9—H92110.1 (10)
N1—C1—O1107.93 (10)H91—C9—H92108.8 (14)
N1—C1—C13113.64 (11)C5—C10—O1114.25 (11)
O1—C1—C13107.74 (10)C5—C10—C9126.89 (12)
N1—C1—C4103.99 (10)O1—C10—C9118.86 (11)
O1—C1—C4106.33 (10)C8—C11—H111110.5 (11)
C13—C1—C4116.70 (11)C8—C11—H112109.8 (11)
O2—C2—N1125.69 (13)H111—C11—H112109.6 (15)
O2—C2—C3126.18 (13)C8—C11—H113110.7 (11)
N1—C2—C3108.09 (11)H111—C11—H113107.4 (15)
C2—C3—C4104.74 (11)H112—C11—H113108.8 (15)
C2—C3—H31107.7 (10)C8—C12—H121111.5 (11)
C4—C3—H31111.0 (10)C8—C12—H122112.0 (10)
C2—C3—H32109.6 (10)H121—C12—H122109.2 (14)
C4—C3—H32114.0 (10)C8—C12—H123110.1 (10)
H31—C3—H32109.5 (13)H121—C12—H123106.2 (14)
C5—C4—C3114.25 (11)H122—C12—H123107.7 (14)
C5—C4—C1100.56 (10)C1—C13—H131108.0 (9)
C3—C4—C1104.48 (11)C1—C13—H132110.3 (10)
C5—C4—H4112.6 (9)H131—C13—H132109.6 (13)
C3—C4—H4112.7 (9)C1—C13—H133112.8 (10)
C1—C4—H4111.2 (9)H131—C13—H133109.5 (13)
C10—C5—C6121.02 (12)H132—C13—H133106.7 (14)
C10—C5—C4110.05 (11)N1—C14—C16109.81 (12)
C6—C5—C4128.93 (12)N1—C14—C15111.05 (12)
O3—C6—C5122.42 (12)C16—C14—C15114.05 (13)
O3—C6—C7122.39 (12)N1—C14—H14105.4 (9)
C5—C6—C7115.15 (11)C16—C14—H14107.3 (9)
C6—C7—C8114.64 (11)C15—C14—H14108.9 (9)
C6—C7—H71108.4 (10)C14—C15—H151109.7 (11)
C8—C7—H71110.7 (9)C14—C15—H152109.3 (11)
C6—C7—H72107.7 (10)H151—C15—H152108.4 (16)
C8—C7—H72107.4 (10)C14—C15—H153110.6 (11)
H71—C7—H72107.7 (14)H151—C15—H153106.4 (15)
C11—C8—C12109.17 (12)H152—C15—H153112.3 (16)
C11—C8—C7109.80 (11)C14—C16—H161110.5 (10)
C12—C8—C7109.23 (12)C14—C16—H162108.6 (11)
C11—C8—C9108.16 (12)H161—C16—H162112.9 (15)
C12—C8—C9111.04 (11)C14—C16—H163110.2 (10)
C7—C8—C9109.42 (11)H161—C16—H163107.2 (14)
C10—C9—C8110.89 (11)H162—C16—H163107.4 (15)
C2—N1—C1—O1122.94 (11)C1—C4—C5—C6169.67 (13)
C14—N1—C1—O154.09 (15)C10—C5—C6—O3175.76 (13)
C2—N1—C1—C13117.63 (13)C4—C5—C6—O35.3 (2)
C14—N1—C1—C1365.34 (15)C10—C5—C6—C76.57 (19)
C2—N1—C1—C410.29 (14)C4—C5—C6—C7172.36 (13)
C14—N1—C1—C4166.74 (11)O3—C6—C7—C8147.54 (13)
C10—O1—C1—N196.49 (11)C5—C6—C7—C834.79 (17)
C10—O1—C1—C13140.41 (11)C6—C7—C8—C11172.47 (12)
C10—O1—C1—C414.58 (13)C6—C7—C8—C1267.85 (15)
C1—N1—C2—O2179.05 (13)C6—C7—C8—C953.91 (16)
C14—N1—C2—O22.1 (2)C11—C8—C9—C10163.97 (12)
C1—N1—C2—C33.13 (15)C12—C8—C9—C1076.27 (15)
C14—N1—C2—C3179.97 (12)C7—C8—C9—C1044.39 (15)
O2—C2—C3—C4166.83 (14)C6—C5—C10—O1178.50 (11)
N1—C2—C3—C415.37 (14)C4—C5—C10—O10.61 (16)
C2—C3—C4—C588.10 (13)C6—C5—C10—C90.7 (2)
C2—C3—C4—C120.80 (14)C4—C5—C10—C9179.80 (13)
N1—C1—C4—C599.69 (11)C1—O1—C10—C59.08 (15)
O1—C1—C4—C514.11 (13)C1—O1—C10—C9170.17 (12)
C13—C1—C4—C5134.30 (12)C8—C9—C10—C519.6 (2)
N1—C1—C4—C318.97 (13)C8—C9—C10—O1161.21 (11)
O1—C1—C4—C3132.78 (11)C2—N1—C14—C1665.27 (17)
C13—C1—C4—C3107.04 (13)C1—N1—C14—C16111.43 (14)
C3—C4—C5—C10120.63 (13)C2—N1—C14—C1561.79 (18)
C1—C4—C5—C109.35 (14)C1—N1—C14—C15121.51 (14)
C3—C4—C5—C658.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H153···O20.99 (3)2.54 (2)3.122 (2)118 (2)
C16—H161···O21.02 (3)2.58 (2)3.186 (2)118 (1)
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service, Southampton, England.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBucourt, R. (1974). Topics in Stereochemistry, edited by E. L. Eliel & N. L. Allinger, Vol. 8, pp. 159–224. New York: Interscience.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFuchs, B. (1978). Topics in Stereochemistry, edited by E. L. Eliel & N. L. Allinger, Vol. 10, pp. 1–94. New York: Interscience.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNagarajan, K., Talwalker, P. K., Nagana Goud, A., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113–1123.  Google Scholar
First citationNagaraj, B., Yathirajan, H. S., Nagaraja, P. & Lynch, D. E. (2005). Acta Cryst. E61, o1041–o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds