organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1-chloro­phenyl-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore-574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 21 March 2006; accepted 22 March 2006; online 29 March 2006)

The geometrical parameters for the title compound, C16H12BrClO2, are normal. The observed bond lengths and angles imply that there is little electronic conjugation between the two benzene ring systems. An intra­molecular C—H⋯Br inter­action may help to establish the mol­ecular conformation. The crystal packing results in a centrosymmetric structure.

Comment

Many chalcone (C15H12O) derivatives crystallize as non-centrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). The title compound, (I)[link], (Fig. 1[link]), was prepared as part of our ongoing studies in this area (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. K., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.]). However, (I)[link] crystallizes in a centrosymmetric space group, thus it has a zero NLO response (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp 112-117.]).

[Scheme 1]

The geometrical parameters for (I)[link] are normal (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2. p.p. S1-19.]) and consistent with those of other chalcone derivatives (Moorthi et al., 2005[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]; Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465-o1465.]). The mol­ecule of (I)[link] is distinctly twisted about the C4—C7 and C7—C8 bonds (Table 1[link]). This twisting, and the C4—C7 and C7—C8 bond lengths of greater than 1.48 Å, imply that there is limited electronic conjugation between the two aromatic ring systems. The dihedral angle between the benzene ring mean planes (C1–C6 and C10–C15) is 53.35 (6)°. C7 and O2 deviate from the former mean plane by 0.176 (3) and 0.895 (3) Å, respectively. By contrast, the terminal methyl atom C16 is almost co-planar with the C10–C15 ring [deviation = 0.045 (4) Å].

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated a possible intra­molecular C—H⋯Br inter­action (Table 2[link]) that might help to maintain near coplanarity between the C8/C9/Br1 fragment and the C10-benzene ring. The predicted (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-000.]) van der Waals contact distance for H and Br is 3.05 Å. There are no ππ stacking inter­actions in the crystal structure of (I)[link].

[Figure 1]
Figure 1
View of (I)[link], showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The possible C—H⋯Br inter­action is indicated by a dashed line.

Experimental

2,3-Dibromo-1-chloro­phenyl-3-(4-methoxy­phen­yl)-2-propan-1-one (4.32 g, 0.01 mol) was mixed with triethyl­amine (5 ml, 0.05 mol) in toluene (100 ml). The reaction was stirred for 24 hrs. and the precip­itated triethylamine hydrobromide was removed by filtration. The solvent was removed under reduced pressure and the resulting solid mass obtained on cooling was collected by filtration. The crude product was recrystallized from ethanol to yield blocks of (I)[link] in 60% yield. M.p.: 403 K. Analysis for C16H12BrClO2: calc. C 54.65, H 3.44%, found: C 54.53, H 3.64%.

Crystal data
  • C16H12BrClO2

  • Mr = 351.62

  • Monoclinic, P 21 /c

  • a = 13.9793 (3) Å

  • b = 8.8780 (1) Å

  • c = 11.4870 (3) Å

  • β = 96.7094 (10)°

  • V = 1415.87 (5) Å3

  • Z = 4

  • Dx = 1.650 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3426 reflections

  • θ = 2.9–27.5°

  • μ = 3.09 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.55 × 0.37 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan SADABS (Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.266, Tmax = 0.573

  • 19150 measured reflections

  • 3249 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

  • h = −18 → 18

  • k = −11 → 11

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.04

  • 3249 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0257P)2 + 1.1891P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.58 e Å−3

  • Extinction correction: SHELXL

  • Extinction coefficient: 0.0135 (6)

Table 1
Selected geometric parameters (Å, °)

C4—C7 1.494 (2)
C7—C8 1.488 (2)
C8—C9 1.346 (2)
C9—C10 1.460 (2)
C3—C4—C7—O2 33.7 (2)
O2—C7—C8—Br1 19.6 (2)
C8—C9—C10—C15 −2.9 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Br1 0.95 2.62 3.3339 (18) 132

H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
C16H12BrClO2F(000) = 704
Mr = 351.62Dx = 1.650 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3426 reflections
a = 13.9793 (3) Åθ = 2.9–27.5°
b = 8.8780 (1) ŵ = 3.09 mm1
c = 11.4870 (3) ÅT = 120 K
β = 96.7094 (10)°Block, colourless
V = 1415.87 (5) Å30.55 × 0.37 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube2906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
SADABS (Bruker, 2003)
h = 1818
Tmin = 0.266, Tmax = 0.573k = 1111
19150 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0257P)2 + 1.1891P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3249 reflectionsΔρmax = 0.36 e Å3
183 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0135 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06540 (12)0.5985 (2)0.21192 (16)0.0146 (3)
C20.05661 (13)0.6274 (2)0.32927 (17)0.0168 (4)
H20.01020.69730.35050.020*
C30.11671 (12)0.5522 (2)0.41443 (16)0.0155 (4)
H30.11130.57010.49490.019*
C40.18529 (12)0.45017 (19)0.38280 (15)0.0121 (3)
C50.19221 (12)0.4226 (2)0.26447 (15)0.0133 (3)
H50.23870.35310.24280.016*
C60.13172 (12)0.4960 (2)0.17835 (15)0.0142 (3)
H60.13570.47640.09780.017*
C70.23978 (12)0.35782 (19)0.47705 (15)0.0126 (3)
C80.34100 (12)0.31417 (19)0.46523 (15)0.0125 (3)
C90.39851 (12)0.39414 (19)0.40209 (15)0.0124 (3)
H90.36650.47790.36360.015*
C100.49874 (12)0.38168 (19)0.37913 (15)0.0124 (3)
C110.52953 (12)0.4872 (2)0.30057 (15)0.0147 (3)
H110.48560.56210.26850.018*
C120.62195 (13)0.4858 (2)0.26810 (15)0.0163 (4)
H120.64080.55860.21460.020*
C130.68678 (13)0.3769 (2)0.31473 (16)0.0164 (4)
C140.65847 (13)0.2725 (2)0.39495 (18)0.0196 (4)
H140.70320.19930.42800.024*
C150.56618 (13)0.2744 (2)0.42692 (16)0.0167 (4)
H150.54820.20260.48170.020*
C160.81160 (14)0.4659 (2)0.20706 (19)0.0240 (4)
H16A0.87830.44200.19560.036*
H16B0.80830.56910.23670.036*
H16C0.77060.45710.13210.036*
O10.77892 (10)0.36308 (15)0.28995 (13)0.0228 (3)
O20.20035 (9)0.31697 (15)0.56104 (11)0.0184 (3)
Cl10.00923 (3)0.69297 (5)0.10428 (4)0.02141 (11)
Br10.382362 (13)0.14483 (2)0.558415 (16)0.01882 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0103 (8)0.0151 (8)0.0181 (9)0.0012 (7)0.0002 (6)0.0050 (7)
C20.0142 (8)0.0156 (9)0.0214 (9)0.0031 (7)0.0053 (7)0.0006 (7)
C30.0159 (9)0.0162 (9)0.0150 (8)0.0007 (7)0.0044 (7)0.0014 (7)
C40.0087 (8)0.0131 (8)0.0145 (8)0.0024 (6)0.0015 (6)0.0007 (6)
C50.0099 (8)0.0142 (8)0.0161 (8)0.0003 (6)0.0032 (6)0.0009 (6)
C60.0122 (8)0.0174 (9)0.0130 (8)0.0016 (7)0.0012 (6)0.0005 (7)
C70.0122 (8)0.0127 (8)0.0129 (8)0.0026 (6)0.0014 (6)0.0019 (6)
C80.0125 (8)0.0119 (8)0.0125 (8)0.0021 (6)0.0012 (6)0.0003 (6)
C90.0126 (8)0.0114 (8)0.0127 (8)0.0002 (6)0.0011 (6)0.0005 (6)
C100.0106 (8)0.0135 (8)0.0129 (8)0.0023 (6)0.0002 (6)0.0015 (6)
C110.0129 (8)0.0159 (9)0.0147 (8)0.0003 (7)0.0008 (7)0.0019 (7)
C120.0152 (8)0.0186 (9)0.0153 (8)0.0025 (7)0.0029 (7)0.0016 (7)
C130.0117 (8)0.0171 (9)0.0210 (9)0.0015 (7)0.0045 (7)0.0033 (7)
C140.0151 (9)0.0150 (9)0.0290 (10)0.0038 (7)0.0034 (7)0.0039 (7)
C150.0144 (9)0.0146 (9)0.0214 (9)0.0008 (7)0.0032 (7)0.0034 (7)
C160.0180 (9)0.0257 (10)0.0304 (11)0.0012 (8)0.0114 (8)0.0021 (8)
O10.0129 (6)0.0220 (7)0.0355 (8)0.0016 (5)0.0106 (6)0.0050 (6)
O20.0164 (6)0.0233 (7)0.0161 (6)0.0004 (5)0.0053 (5)0.0043 (5)
Cl10.0155 (2)0.0261 (2)0.0222 (2)0.00535 (18)0.00078 (17)0.00994 (18)
Br10.01765 (11)0.01849 (11)0.02112 (11)0.00434 (7)0.00564 (7)0.00930 (7)
Geometric parameters (Å, º) top
C1—C61.385 (2)C9—H90.9500
C1—C21.392 (3)C10—C111.403 (2)
C1—Cl11.7375 (18)C10—C151.406 (2)
C2—C31.384 (3)C11—C121.386 (2)
C2—H20.9500C11—H110.9500
C3—C41.398 (2)C12—C131.390 (3)
C3—H30.9500C12—H120.9500
C4—C51.395 (2)C13—O11.357 (2)
C4—C71.494 (2)C13—C141.396 (3)
C5—C61.387 (2)C14—C151.382 (3)
C5—H50.9500C14—H140.9500
C6—H60.9500C15—H150.9500
C7—O21.221 (2)C16—O11.432 (2)
C7—C81.488 (2)C16—H16A0.9800
C8—C91.346 (2)C16—H16B0.9800
C8—Br11.8963 (17)C16—H16C0.9800
C9—C101.460 (2)
C6—C1—C2121.89 (17)C10—C9—H9112.6
C6—C1—Cl1118.98 (14)C11—C10—C15117.48 (15)
C2—C1—Cl1119.13 (14)C11—C10—C9116.02 (15)
C3—C2—C1118.74 (16)C15—C10—C9126.49 (16)
C3—C2—H2120.6C12—C11—C10122.22 (17)
C1—C2—H2120.6C12—C11—H11118.9
C2—C3—C4120.46 (16)C10—C11—H11118.9
C2—C3—H3119.8C11—C12—C13119.26 (16)
C4—C3—H3119.8C11—C12—H12120.4
C5—C4—C3119.64 (16)C13—C12—H12120.4
C5—C4—C7121.48 (15)O1—C13—C12125.05 (16)
C3—C4—C7118.33 (15)O1—C13—C14115.33 (16)
C6—C5—C4120.44 (16)C12—C13—C14119.61 (16)
C6—C5—H5119.8C15—C14—C13120.84 (17)
C4—C5—H5119.8C15—C14—H14119.6
C1—C6—C5118.83 (16)C13—C14—H14119.6
C1—C6—H6120.6C14—C15—C10120.58 (16)
C5—C6—H6120.6C14—C15—H15119.7
O2—C7—C8121.10 (16)C10—C15—H15119.7
O2—C7—C4119.78 (15)O1—C16—H16A109.5
C8—C7—C4119.11 (14)O1—C16—H16B109.5
C9—C8—C7123.07 (16)H16A—C16—H16B109.5
C9—C8—Br1124.08 (13)O1—C16—H16C109.5
C7—C8—Br1112.66 (12)H16A—C16—H16C109.5
C8—C9—C10134.71 (16)H16B—C16—H16C109.5
C8—C9—H9112.6C13—O1—C16117.81 (15)
C6—C1—C2—C30.6 (3)C4—C7—C8—Br1159.02 (12)
Cl1—C1—C2—C3179.65 (14)C7—C8—C9—C10177.38 (18)
C1—C2—C3—C40.4 (3)Br1—C8—C9—C102.7 (3)
C2—C3—C4—C50.8 (3)C8—C9—C10—C11176.46 (19)
C2—C3—C4—C7172.42 (16)C8—C9—C10—C152.9 (3)
C3—C4—C5—C60.2 (3)C15—C10—C11—C121.4 (3)
C7—C4—C5—C6171.47 (16)C9—C10—C11—C12178.08 (16)
C2—C1—C6—C51.3 (3)C10—C11—C12—C130.1 (3)
Cl1—C1—C6—C5178.99 (13)C11—C12—C13—O1179.83 (17)
C4—C5—C6—C10.9 (3)C11—C12—C13—C141.2 (3)
C5—C4—C7—O2137.69 (17)O1—C13—C14—C15179.67 (17)
C3—C4—C7—O233.7 (2)C12—C13—C14—C151.2 (3)
C5—C4—C7—C840.9 (2)C13—C14—C15—C100.0 (3)
C3—C4—C7—C8147.67 (16)C11—C10—C15—C141.3 (3)
O2—C7—C8—C9155.64 (17)C9—C10—C15—C14178.08 (18)
C4—C7—C8—C925.8 (2)C12—C13—O1—C161.7 (3)
O2—C7—C8—Br119.6 (2)C14—C13—O1—C16179.23 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Br10.952.623.3339 (18)132
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. One of the authors (BKS) thanks AICTE, Government of India, New Delhi for financial assistance under the 'Career Award for Young Teachers' Scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2. p.p. S1–19.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–000.  CrossRef CAS Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. K., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465–o1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp 112–117.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds