organic compounds
2-Bromo-1-chlorophenyl-3-(4-methoxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore-574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk
The geometrical parameters for the title compound, C16H12BrClO2, are normal. The observed bond lengths and angles imply that there is little electronic conjugation between the two benzene ring systems. An intramolecular C—H⋯Br interaction may help to establish the molecular conformation. The crystal packing results in a centrosymmetric structure.
Comment
Many chalcone (C15H12O) derivatives crystallize as non-centrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida et al., 1998). The title compound, (I), (Fig. 1), was prepared as part of our ongoing studies in this area (Harrison et al., 2005). However, (I) crystallizes in a centrosymmetric thus it has a zero NLO response (Watson et al., 1993).
The geometrical parameters for (I) are normal (Allen et al., 1987) and consistent with those of other chalcone derivatives (Moorthi et al., 2005; Patil et al., 2006). The molecule of (I) is distinctly twisted about the C4—C7 and C7—C8 bonds (Table 1). This twisting, and the C4—C7 and C7—C8 bond lengths of greater than 1.48 Å, imply that there is limited electronic conjugation between the two aromatic ring systems. The dihedral angle between the benzene ring mean planes (C1–C6 and C10–C15) is 53.35 (6)°. C7 and O2 deviate from the former mean plane by 0.176 (3) and 0.895 (3) Å, respectively. By contrast, the terminal methyl atom C16 is almost co-planar with the C10–C15 ring [deviation = 0.045 (4) Å].
A PLATON (Spek, 2003) analysis of (I) indicated a possible intramolecular C—H⋯Br interaction (Table 2) that might help to maintain near coplanarity between the C8/C9/Br1 fragment and the C10-benzene ring. The predicted (Bondi, 1964) van der Waals contact distance for H and Br is 3.05 Å. There are no π⋯π stacking interactions in the of (I).
Experimental
2,3-Dibromo-1-chlorophenyl-3-(4-methoxyphenyl)-2-propan-1-one (4.32 g, 0.01 mol) was mixed with triethylamine (5 ml, 0.05 mol) in toluene (100 ml). The reaction was stirred for 24 hrs. and the precipitated triethylamine hydrobromide was removed by filtration. The solvent was removed under reduced pressure and the resulting solid mass obtained on cooling was collected by filtration. The crude product was recrystallized from ethanol to yield blocks of (I) in 60% yield. M.p.: 403 K. Analysis for C16H12BrClO2: calc. C 54.65, H 3.44%, found: C 54.53, H 3.64%.
Crystal data
|
Refinement
|
|
|
H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The methyl group was rotated to fit the electron density.
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806010464/bt2039sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806010464/bt2039Isup2.hkl
Data collection: Collect (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C16H12BrClO2 | F(000) = 704 |
Mr = 351.62 | Dx = 1.650 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3426 reflections |
a = 13.9793 (3) Å | θ = 2.9–27.5° |
b = 8.8780 (1) Å | µ = 3.09 mm−1 |
c = 11.4870 (3) Å | T = 120 K |
β = 96.7094 (10)° | Block, colourless |
V = 1415.87 (5) Å3 | 0.55 × 0.37 × 0.18 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 3249 independent reflections |
Radiation source: fine-focus sealed tube | 2906 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω and φ scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan SADABS (Bruker, 2003) | h = −18→18 |
Tmin = 0.266, Tmax = 0.573 | k = −11→11 |
19150 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: none |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0257P)2 + 1.1891P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3249 reflections | Δρmax = 0.36 e Å−3 |
183 parameters | Δρmin = −0.58 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0135 (6) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.06540 (12) | 0.5985 (2) | 0.21192 (16) | 0.0146 (3) | |
C2 | 0.05661 (13) | 0.6274 (2) | 0.32927 (17) | 0.0168 (4) | |
H2 | 0.0102 | 0.6973 | 0.3505 | 0.020* | |
C3 | 0.11671 (12) | 0.5522 (2) | 0.41443 (16) | 0.0155 (4) | |
H3 | 0.1113 | 0.5701 | 0.4949 | 0.019* | |
C4 | 0.18529 (12) | 0.45017 (19) | 0.38280 (15) | 0.0121 (3) | |
C5 | 0.19221 (12) | 0.4226 (2) | 0.26447 (15) | 0.0133 (3) | |
H5 | 0.2387 | 0.3531 | 0.2428 | 0.016* | |
C6 | 0.13172 (12) | 0.4960 (2) | 0.17835 (15) | 0.0142 (3) | |
H6 | 0.1357 | 0.4764 | 0.0978 | 0.017* | |
C7 | 0.23978 (12) | 0.35782 (19) | 0.47705 (15) | 0.0126 (3) | |
C8 | 0.34100 (12) | 0.31417 (19) | 0.46523 (15) | 0.0125 (3) | |
C9 | 0.39851 (12) | 0.39414 (19) | 0.40209 (15) | 0.0124 (3) | |
H9 | 0.3665 | 0.4779 | 0.3636 | 0.015* | |
C10 | 0.49874 (12) | 0.38168 (19) | 0.37913 (15) | 0.0124 (3) | |
C11 | 0.52953 (12) | 0.4872 (2) | 0.30057 (15) | 0.0147 (3) | |
H11 | 0.4856 | 0.5621 | 0.2685 | 0.018* | |
C12 | 0.62195 (13) | 0.4858 (2) | 0.26810 (15) | 0.0163 (4) | |
H12 | 0.6408 | 0.5586 | 0.2146 | 0.020* | |
C13 | 0.68678 (13) | 0.3769 (2) | 0.31473 (16) | 0.0164 (4) | |
C14 | 0.65847 (13) | 0.2725 (2) | 0.39495 (18) | 0.0196 (4) | |
H14 | 0.7032 | 0.1993 | 0.4280 | 0.024* | |
C15 | 0.56618 (13) | 0.2744 (2) | 0.42692 (16) | 0.0167 (4) | |
H15 | 0.5482 | 0.2026 | 0.4817 | 0.020* | |
C16 | 0.81160 (14) | 0.4659 (2) | 0.20706 (19) | 0.0240 (4) | |
H16A | 0.8783 | 0.4420 | 0.1956 | 0.036* | |
H16B | 0.8083 | 0.5691 | 0.2367 | 0.036* | |
H16C | 0.7706 | 0.4571 | 0.1321 | 0.036* | |
O1 | 0.77892 (10) | 0.36308 (15) | 0.28995 (13) | 0.0228 (3) | |
O2 | 0.20035 (9) | 0.31697 (15) | 0.56104 (11) | 0.0184 (3) | |
Cl1 | −0.00923 (3) | 0.69297 (5) | 0.10428 (4) | 0.02141 (11) | |
Br1 | 0.382362 (13) | 0.14483 (2) | 0.558415 (16) | 0.01882 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0103 (8) | 0.0151 (8) | 0.0181 (9) | −0.0012 (7) | −0.0002 (6) | 0.0050 (7) |
C2 | 0.0142 (8) | 0.0156 (9) | 0.0214 (9) | 0.0031 (7) | 0.0053 (7) | 0.0006 (7) |
C3 | 0.0159 (9) | 0.0162 (9) | 0.0150 (8) | −0.0007 (7) | 0.0044 (7) | −0.0014 (7) |
C4 | 0.0087 (8) | 0.0131 (8) | 0.0145 (8) | −0.0024 (6) | 0.0015 (6) | 0.0007 (6) |
C5 | 0.0099 (8) | 0.0142 (8) | 0.0161 (8) | 0.0003 (6) | 0.0032 (6) | −0.0009 (6) |
C6 | 0.0122 (8) | 0.0174 (9) | 0.0130 (8) | −0.0016 (7) | 0.0012 (6) | 0.0005 (7) |
C7 | 0.0122 (8) | 0.0127 (8) | 0.0129 (8) | −0.0026 (6) | 0.0014 (6) | −0.0019 (6) |
C8 | 0.0125 (8) | 0.0119 (8) | 0.0125 (8) | 0.0021 (6) | −0.0012 (6) | 0.0003 (6) |
C9 | 0.0126 (8) | 0.0114 (8) | 0.0127 (8) | 0.0002 (6) | −0.0011 (6) | 0.0005 (6) |
C10 | 0.0106 (8) | 0.0135 (8) | 0.0129 (8) | −0.0023 (6) | 0.0002 (6) | −0.0015 (6) |
C11 | 0.0129 (8) | 0.0159 (9) | 0.0147 (8) | 0.0003 (7) | −0.0008 (7) | 0.0019 (7) |
C12 | 0.0152 (8) | 0.0186 (9) | 0.0153 (8) | −0.0025 (7) | 0.0029 (7) | 0.0016 (7) |
C13 | 0.0117 (8) | 0.0171 (9) | 0.0210 (9) | −0.0015 (7) | 0.0045 (7) | −0.0033 (7) |
C14 | 0.0151 (9) | 0.0150 (9) | 0.0290 (10) | 0.0038 (7) | 0.0034 (7) | 0.0039 (7) |
C15 | 0.0144 (9) | 0.0146 (9) | 0.0214 (9) | −0.0008 (7) | 0.0032 (7) | 0.0034 (7) |
C16 | 0.0180 (9) | 0.0257 (10) | 0.0304 (11) | −0.0012 (8) | 0.0114 (8) | 0.0021 (8) |
O1 | 0.0129 (6) | 0.0220 (7) | 0.0355 (8) | 0.0016 (5) | 0.0106 (6) | 0.0050 (6) |
O2 | 0.0164 (6) | 0.0233 (7) | 0.0161 (6) | −0.0004 (5) | 0.0053 (5) | 0.0043 (5) |
Cl1 | 0.0155 (2) | 0.0261 (2) | 0.0222 (2) | 0.00535 (18) | 0.00078 (17) | 0.00994 (18) |
Br1 | 0.01765 (11) | 0.01849 (11) | 0.02112 (11) | 0.00434 (7) | 0.00564 (7) | 0.00930 (7) |
C1—C6 | 1.385 (2) | C9—H9 | 0.9500 |
C1—C2 | 1.392 (3) | C10—C11 | 1.403 (2) |
C1—Cl1 | 1.7375 (18) | C10—C15 | 1.406 (2) |
C2—C3 | 1.384 (3) | C11—C12 | 1.386 (2) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—C4 | 1.398 (2) | C12—C13 | 1.390 (3) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.395 (2) | C13—O1 | 1.357 (2) |
C4—C7 | 1.494 (2) | C13—C14 | 1.396 (3) |
C5—C6 | 1.387 (2) | C14—C15 | 1.382 (3) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—H6 | 0.9500 | C15—H15 | 0.9500 |
C7—O2 | 1.221 (2) | C16—O1 | 1.432 (2) |
C7—C8 | 1.488 (2) | C16—H16A | 0.9800 |
C8—C9 | 1.346 (2) | C16—H16B | 0.9800 |
C8—Br1 | 1.8963 (17) | C16—H16C | 0.9800 |
C9—C10 | 1.460 (2) | ||
C6—C1—C2 | 121.89 (17) | C10—C9—H9 | 112.6 |
C6—C1—Cl1 | 118.98 (14) | C11—C10—C15 | 117.48 (15) |
C2—C1—Cl1 | 119.13 (14) | C11—C10—C9 | 116.02 (15) |
C3—C2—C1 | 118.74 (16) | C15—C10—C9 | 126.49 (16) |
C3—C2—H2 | 120.6 | C12—C11—C10 | 122.22 (17) |
C1—C2—H2 | 120.6 | C12—C11—H11 | 118.9 |
C2—C3—C4 | 120.46 (16) | C10—C11—H11 | 118.9 |
C2—C3—H3 | 119.8 | C11—C12—C13 | 119.26 (16) |
C4—C3—H3 | 119.8 | C11—C12—H12 | 120.4 |
C5—C4—C3 | 119.64 (16) | C13—C12—H12 | 120.4 |
C5—C4—C7 | 121.48 (15) | O1—C13—C12 | 125.05 (16) |
C3—C4—C7 | 118.33 (15) | O1—C13—C14 | 115.33 (16) |
C6—C5—C4 | 120.44 (16) | C12—C13—C14 | 119.61 (16) |
C6—C5—H5 | 119.8 | C15—C14—C13 | 120.84 (17) |
C4—C5—H5 | 119.8 | C15—C14—H14 | 119.6 |
C1—C6—C5 | 118.83 (16) | C13—C14—H14 | 119.6 |
C1—C6—H6 | 120.6 | C14—C15—C10 | 120.58 (16) |
C5—C6—H6 | 120.6 | C14—C15—H15 | 119.7 |
O2—C7—C8 | 121.10 (16) | C10—C15—H15 | 119.7 |
O2—C7—C4 | 119.78 (15) | O1—C16—H16A | 109.5 |
C8—C7—C4 | 119.11 (14) | O1—C16—H16B | 109.5 |
C9—C8—C7 | 123.07 (16) | H16A—C16—H16B | 109.5 |
C9—C8—Br1 | 124.08 (13) | O1—C16—H16C | 109.5 |
C7—C8—Br1 | 112.66 (12) | H16A—C16—H16C | 109.5 |
C8—C9—C10 | 134.71 (16) | H16B—C16—H16C | 109.5 |
C8—C9—H9 | 112.6 | C13—O1—C16 | 117.81 (15) |
C6—C1—C2—C3 | 0.6 (3) | C4—C7—C8—Br1 | −159.02 (12) |
Cl1—C1—C2—C3 | −179.65 (14) | C7—C8—C9—C10 | 177.38 (18) |
C1—C2—C3—C4 | 0.4 (3) | Br1—C8—C9—C10 | 2.7 (3) |
C2—C3—C4—C5 | −0.8 (3) | C8—C9—C10—C11 | 176.46 (19) |
C2—C3—C4—C7 | −172.42 (16) | C8—C9—C10—C15 | −2.9 (3) |
C3—C4—C5—C6 | 0.2 (3) | C15—C10—C11—C12 | 1.4 (3) |
C7—C4—C5—C6 | 171.47 (16) | C9—C10—C11—C12 | −178.08 (16) |
C2—C1—C6—C5 | −1.3 (3) | C10—C11—C12—C13 | −0.1 (3) |
Cl1—C1—C6—C5 | 178.99 (13) | C11—C12—C13—O1 | 179.83 (17) |
C4—C5—C6—C1 | 0.9 (3) | C11—C12—C13—C14 | −1.2 (3) |
C5—C4—C7—O2 | −137.69 (17) | O1—C13—C14—C15 | −179.67 (17) |
C3—C4—C7—O2 | 33.7 (2) | C12—C13—C14—C15 | 1.2 (3) |
C5—C4—C7—C8 | 40.9 (2) | C13—C14—C15—C10 | 0.0 (3) |
C3—C4—C7—C8 | −147.67 (16) | C11—C10—C15—C14 | −1.3 (3) |
O2—C7—C8—C9 | −155.64 (17) | C9—C10—C15—C14 | 178.08 (18) |
C4—C7—C8—C9 | 25.8 (2) | C12—C13—O1—C16 | −1.7 (3) |
O2—C7—C8—Br1 | 19.6 (2) | C14—C13—O1—C16 | 179.23 (17) |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. One of the authors (BKS) thanks AICTE, Government of India, New Delhi for financial assistance under the 'Career Award for Young Teachers' Scheme.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2. p.p. S1–19. CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–000. CrossRef CAS Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. K., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465–o1465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CrossRef Google Scholar
Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp 112–117. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.