organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl­cyclo­penta­ne

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Central Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: richard.bream@pmb.ox.ac.uk

(Received 13 February 2006; accepted 17 February 2006; online 3 March 2006)

Methyl­cyclo­pentane, C6H12, a liquid at room temperature, was studied as part of a project to develop a computer-controlled low-temperature crystal-growing device. A single crystal was obtained at 115 K. The ring has an envelope conformation, with a pseudo-equatorial methyl substituent on the flap atom.

Comment

The melting point of methyl­cyclo­pentane is noted by the CRC Handbook of Chemistry and Physics as being −142.4° C (130.8 K) (Weast, 1978[Weast, R. C. (1978). Editor. CRC Handbook of Chemistry and Physics. Cleveland, Ohio: CRC Press.]). A sample solidified spontaneously to a polycrystalline mass on flash-cooling to 115 K, and was then zone refined into a single crystal using tandem computer-controlled heating elements. Data collection was completed at 110 K

[Scheme 1]

The mol­ecule is in the envelope conformation (Fig. 1[link]), with the four atoms C2—C5 almost coplanar (maximum deviation 0.04 Å) and a pseudo-equatorial methyl group attached to the flap atom C1. The crystal structure consists of mol­ecular stacks formed by unit-cell translations along the a axis (Figs. 2[link] and 3[link]).

The calculated density is not unlike that of the ordered monoclinic phase of cyclo­hexane (0.996 Mg m−3), suggesting that a low density may be a feature of small cyclic hydro­carbons (Kahn et al., 1973[Kahn, R., Fourme, R., Andre, D. & Renaud, M. (1973). Acta Cryst. B29, 131-138.]).

[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
An a-axis projection of the title compound. One column of mol­ecules has been highlighted in blue for comparison with Fig. 3[link].
[Figure 3]
Figure 3
A projection along the c axis, showing the mol­ecular stacks parallel to the a axis.

Experimental

The material was used as supplied by Acros Organics. A 2.0 mm column was flame-sealed in a 0.3 mm diameter Lindemann tube and crystallized as described above.

Crystal data
  • C6H12

  • Mr = 84.16

  • Monoclinic, P 21 /n

  • a = 5.3934 (2) Å

  • b = 11.1439 (5) Å

  • c = 9.7047 (5) Å

  • β = 98.0288 (17)°

  • V = 577.57 (5) Å3

  • Z = 4

  • Dx = 0.968 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1447 reflections

  • θ = 5–28°

  • μ = 0.05 mm−1

  • T = 110 K

  • Cylinder, colourless

  • 1.00 × 0.20 (radius) mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.69, Tmax = 0.98

  • 7788 measured reflections

  • 1412 independent reflections

  • 1408 reflections with I > 3σ(I)

  • Rint = 0.063

  • θmax = 28.3°

  • h = −7 → 7

  • k = −14 → 14

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.097

  • S = 0.94

  • 1408 reflections

  • 55 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.1P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.5290 (14)
C1—C5 1.5274 (14)
C1—C6 1.5171 (14)
C2—C3 1.5344 (14)
C3—C4 1.5402 (15)
C4—C5 1.5286 (14)
C2—C1—C5 101.82 (8)
C2—C1—C6 114.77 (8)
C5—C1—C6 115.00 (8)
C1—C2—C3 105.28 (8)
C2—C3—C4 105.88 (8)
C3—C4—C5 105.39 (8)
C4—C5—C1 104.05 (8)

The H atoms were all located in a difference map and then repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C–H in the range 0.93–0.98 Å) and displacement parameters [Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

methylcyclopentane top
Crystal data top
C6H12Dx = 0.968 Mg m3
Mr = 84.16Melting point: 130.8 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3934 (2) ÅCell parameters from 1447 reflections
b = 11.1439 (5) Åθ = 5–28°
c = 9.7047 (5) ŵ = 0.05 mm1
β = 98.0288 (17)°T = 110 K
V = 577.57 (5) Å3Cylinder, colourless
Z = 41.00 × 0.20 (radius) mm
F(000) = 192
Data collection top
Nonius KappaCCD
diffractometer
1408 reflections with I > 3.0σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 28.3°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.69, Tmax = 0.98k = 1414
7788 measured reflectionsl = 1212
1412 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(F2) + (0.03P)2 + 0.1P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.94(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 0.28 e Å3
55 parametersΔρmin = 0.22 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.03029 (18)0.25222 (9)0.78471 (10)0.0284
C21.0448 (2)0.19129 (9)0.64490 (11)0.0347
C31.2171 (2)0.08259 (10)0.67904 (11)0.0350
C41.22182 (19)0.05906 (10)0.83578 (11)0.0343
C51.02749 (18)0.14454 (9)0.88184 (11)0.0313
C60.81288 (19)0.33855 (10)0.78504 (12)0.0360
H111.18570.29570.81380.0340*
H211.10390.24570.57890.0431*
H220.87420.16330.60540.0443*
H311.38760.10100.65820.0454*
H321.15340.01410.62600.0435*
H411.38880.07810.88550.0414*
H421.18820.02510.85630.0421*
H511.06290.16770.97950.0402*
H520.85930.10620.86560.0385*
H610.81460.37620.87880.0540*
H620.82150.40620.71630.0519*
H630.65220.29490.76050.0531*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0268 (5)0.0270 (5)0.0316 (6)0.0033 (4)0.0046 (4)0.0004 (4)
C20.0411 (6)0.0343 (6)0.0297 (6)0.0059 (5)0.0078 (4)0.0033 (4)
C30.0380 (6)0.0309 (6)0.0366 (6)0.0042 (5)0.0067 (4)0.0009 (4)
C40.0341 (5)0.0316 (5)0.0364 (6)0.0002 (4)0.0024 (4)0.0058 (5)
C50.0320 (5)0.0333 (5)0.0286 (6)0.0044 (4)0.0044 (4)0.0021 (4)
C60.0348 (6)0.0338 (6)0.0405 (6)0.0017 (5)0.0085 (4)0.0023 (5)
Geometric parameters (Å, º) top
C1—C21.5290 (14)C3—H320.957
C1—C51.5274 (14)C4—C51.5286 (14)
C1—C61.5171 (14)C4—H410.984
C1—H110.975C4—H420.981
C2—C31.5344 (14)C5—H510.975
C2—H210.967C5—H520.995
C2—H220.996C6—H611.001
C3—C41.5402 (15)C6—H621.013
C3—H310.990C6—H630.993
C2—C1—C5101.82 (8)C3—C4—C5105.39 (8)
C2—C1—C6114.77 (8)C3—C4—H41109.6
C5—C1—C6115.00 (8)C5—C4—H41109.9
C2—C1—H11109.2C3—C4—H42112.6
C5—C1—H11107.1C5—C4—H42112.5
C6—C1—H11108.5H41—C4—H42106.8
C1—C2—C3105.28 (8)C4—C5—C1104.05 (8)
C1—C2—H21111.8C4—C5—H51113.6
C3—C2—H21113.1C1—C5—H51112.0
C1—C2—H22108.7C4—C5—H52109.5
C3—C2—H22109.6C1—C5—H52109.1
H21—C2—H22108.3H51—C5—H52108.5
C2—C3—C4105.88 (8)C1—C6—H61111.0
C2—C3—H31110.1C1—C6—H62111.4
C4—C3—H31110.5H61—C6—H62107.0
C2—C3—H32110.6C1—C6—H63109.8
C4—C3—H32110.5H61—C6—H63108.7
H31—C3—H32109.2H62—C6—H63109.0
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKahn, R., Fourme, R., Andre, D. & Renaud, M. (1973). Acta Cryst. B29, 131–138.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWeast, R. C. (1978). Editor. CRC Handbook of Chemistry and Physics. Cleveland, Ohio: CRC Press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds