organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo­pyrene11

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and bCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 20 March 2006; accepted 22 March 2006; online 29 March 2006)

1-Bromo­pyrene, C16H9Br, is a planar, fused aromatic organic compound. The mol­ecule is approximately planar with an r.m.s. deviation of 0.0243 Å for the ring C atoms and 0.0261 Å for all non-H atoms. A herringbone packing motif based on π-π inter­actions is observed, with a perpendicular distance between adjacent stacked mol­ecules of 3.519 Å.

Comment

We report here the structural characterization of the title compound, (I)[link], which is a planar, fused aromatic organic compound. Its structure was determined to establish whether ππ stacking occurred in the solid state, and to relate the nature of the packing to some of the physical properties of the material, including triboluminescence. Similar fused aromatic compounds have exhibited ππ inter­actions (Desiraju & Gavezzotti, 1989[Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473-482.]) which, we believe, may be a requirement for aromatic materials to show triboluminescent activity (Sweeting et al., 1997[Sweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D. & Kim, T. J. (1997). Chem. Mater. 9, 1103-1115.]).

[Scheme 1]

The mol­ecule (Fig. 1[link]) is shown to be approximately planar, with an r.m.s. deviation of 0.0243 Å for the ring C atoms and 0.0261 Å for all non-H atoms. A herringbone packing motif based on π-π inter­actions is observed (Fig. 2[link]), with a perpendicular distance between adjacent stacked mol­ecules of 3.519 Å. No C—H⋯π contacts shorter than 2.91 Å are observed.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2]
Figure 2
Two views of the packing, perpendicular to (010) and to (001), with 50% probability ellipsoids for non-H atoms. H atoms have been omitted for clarity.

Experimental

1-Bromo­pyrene was purchased as a yellow powder from the Aldrich Chemical Company. Small orange crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in benzene stored at 278 K.

Crystal data
  • C16H9Br

  • Mr = 281.14

  • Monoclinic, P 21 /c

  • a = 14.530 (3) Å

  • b = 3.9490 (8) Å

  • c = 20.277 (4) Å

  • β = 108.163 (3)°

  • V = 1105.5 (4) Å3

  • Z = 4

  • Dx = 1.689 Mg m−3

  • Synchrotron radiation

  • λ = 0.6775 Å

  • Cell parameters from 1772 reflections

  • θ = 2.8–23.3°

  • μ = 3.69 mm−1

  • T = 200 (2) K

  • Block, orange

  • 0.05 × 0.05 × 0.03 mm

Data collection
  • Bruker APEX-II CCD diffractometer

  • Narrow–frame ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.817, Tmax = 0.895

  • 7895 measured reflections

  • 1888 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.149

  • θmax = 24.7°

  • h = −17 → 17

  • k = −4 → 4

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 0.95

  • 1888 reflections

  • 154 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0527P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.67 e Å−3

H atoms were constrained as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The value of Rint is rather high due to the poor quality of the crystal, which required the use of synchrotron radiation for any diffraction to be observed.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

(I) top
Crystal data top
C16H9BrF(000) = 560
Mr = 281.14Dx = 1.689 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.6775 Å
a = 14.530 (3) ÅCell parameters from 1772 reflections
b = 3.9490 (8) Åθ = 2.8–23.3°
c = 20.277 (4) ŵ = 3.69 mm1
β = 108.163 (3)°T = 200 K
V = 1105.5 (4) Å3Block, orange
Z = 40.05 × 0.05 × 0.03 mm
Data collection top
Bruker APEX-II CCD
diffractometer
1284 reflections with I > 2σ(I)
narrow–frame ω scansRint = 0.149
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 24.7°, θmin = 2.1°
Tmin = 0.817, Tmax = 0.895h = 1717
7895 measured reflectionsk = 44
1888 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.66 e Å3
1888 reflectionsΔρmin = 0.67 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1723 (3)0.1059 (12)0.1548 (2)0.0396 (11)
C20.1812 (3)0.1333 (11)0.2249 (2)0.0351 (11)
C30.1100 (3)0.2885 (10)0.2515 (3)0.0402 (11)
H30.05370.38790.22010.048*
C40.1221 (4)0.2940 (11)0.3195 (3)0.0432 (12)
H40.07260.39280.33460.052*
C50.2034 (4)0.1631 (11)0.3696 (3)0.0416 (12)
C60.2178 (4)0.1619 (12)0.4423 (3)0.0508 (14)
H60.16720.25130.45760.061*
C70.2964 (4)0.0459 (10)0.4911 (2)0.0382 (12)
H70.30340.06080.53920.046*
C80.3709 (4)0.1054 (13)0.4657 (3)0.0541 (15)
H80.42650.20030.49860.065*
C90.3644 (4)0.1172 (12)0.3960 (3)0.0409 (12)
C100.4363 (4)0.2660 (11)0.3704 (3)0.0428 (12)
H100.49310.35930.40230.051*
C110.4251 (4)0.2762 (11)0.3024 (3)0.0483 (13)
H110.47540.37150.28760.058*
C120.3405 (3)0.1496 (11)0.2511 (3)0.0390 (12)
C130.3274 (4)0.1702 (11)0.1800 (3)0.0414 (12)
H130.37620.26940.16410.05*
C140.2428 (4)0.0451 (11)0.1323 (3)0.0449 (13)
H140.23380.06410.08390.054*
C150.2672 (3)0.0006 (10)0.2747 (2)0.0339 (11)
C160.2778 (3)0.0149 (10)0.3464 (2)0.0349 (11)
Br10.06020 (4)0.26841 (12)0.08553 (2)0.0523 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.032 (2)0.050 (3)0.006 (2)0.009 (2)0.002 (2)
C20.037 (3)0.026 (2)0.040 (3)0.0095 (19)0.010 (2)0.0001 (18)
C30.028 (2)0.030 (2)0.057 (3)0.003 (2)0.006 (2)0.004 (2)
C40.035 (3)0.036 (3)0.062 (3)0.000 (2)0.022 (2)0.007 (2)
C50.039 (3)0.033 (2)0.054 (3)0.009 (2)0.016 (3)0.006 (2)
C60.059 (4)0.038 (3)0.065 (4)0.011 (2)0.033 (3)0.012 (2)
C70.056 (3)0.027 (2)0.027 (2)0.014 (2)0.006 (2)0.0023 (18)
C80.056 (4)0.040 (3)0.054 (3)0.011 (3)0.002 (3)0.011 (2)
C90.041 (3)0.030 (2)0.048 (3)0.008 (2)0.008 (2)0.005 (2)
C100.034 (3)0.034 (3)0.053 (3)0.003 (2)0.004 (2)0.005 (2)
C110.034 (3)0.035 (3)0.075 (4)0.002 (2)0.015 (3)0.000 (2)
C120.031 (3)0.027 (2)0.059 (3)0.0024 (18)0.014 (2)0.001 (2)
C130.040 (3)0.038 (3)0.051 (3)0.009 (2)0.021 (2)0.007 (2)
C140.048 (3)0.032 (3)0.055 (3)0.011 (2)0.018 (3)0.004 (2)
C150.030 (2)0.026 (2)0.047 (3)0.0077 (18)0.014 (2)0.0018 (18)
C160.030 (3)0.026 (2)0.045 (3)0.0083 (19)0.007 (2)0.0007 (18)
Br10.0461 (4)0.0499 (4)0.0509 (4)0.0028 (3)0.0007 (2)0.0080 (3)
Geometric parameters (Å, º) top
C1—C141.381 (7)C8—C91.389 (7)
C1—C21.392 (6)C8—H80.950
C1—Br11.900 (5)C9—C101.429 (7)
C2—C151.438 (6)C9—C161.441 (6)
C2—C31.444 (7)C10—C111.338 (7)
C3—C41.334 (7)C10—H100.950
C3—H30.950C11—C121.431 (7)
C4—C51.395 (7)C11—H110.950
C4—H40.950C12—C131.397 (7)
C5—C61.424 (7)C12—C151.425 (6)
C5—C161.433 (6)C13—C141.396 (7)
C6—C71.336 (7)C13—H130.950
C6—H60.950C14—H140.950
C7—C81.463 (7)C15—C161.414 (6)
C7—H70.950
C14—C1—C2121.9 (5)C8—C9—C10123.9 (5)
C14—C1—Br1117.1 (4)C8—C9—C16117.8 (5)
C2—C1—Br1121.0 (4)C10—C9—C16118.2 (4)
C1—C2—C15118.2 (4)C11—C10—C9121.2 (4)
C1—C2—C3124.4 (4)C11—C10—H10119.4
C15—C2—C3117.4 (4)C9—C10—H10119.4
C4—C3—C2120.8 (4)C10—C11—C12122.7 (5)
C4—C3—H3119.6C10—C11—H11118.7
C2—C3—H3119.6C12—C11—H11118.7
C3—C4—C5123.8 (5)C13—C12—C15119.7 (4)
C3—C4—H4118.1C13—C12—C11122.7 (5)
C5—C4—H4118.1C15—C12—C11117.6 (5)
C4—C5—C6125.0 (5)C14—C13—C12120.1 (5)
C4—C5—C16117.8 (4)C14—C13—H13119.9
C6—C5—C16117.1 (5)C12—C13—H13119.9
C7—C6—C5125.7 (5)C1—C14—C13120.5 (5)
C7—C6—H6117.1C1—C14—H14119.7
C5—C6—H6117.1C13—C14—H14119.7
C6—C7—C8115.8 (4)C16—C15—C12120.5 (4)
C6—C7—H7122.1C16—C15—C2119.9 (4)
C8—C7—H7122.1C12—C15—C2119.5 (4)
C9—C8—C7123.2 (5)C15—C16—C5120.2 (4)
C9—C8—H8118.4C15—C16—C9119.7 (4)
C7—C8—H8118.4C5—C16—C9120.2 (4)
 

Footnotes

1.

Acknowledgements

We thank the EPSRC and the CCLRC Centre for Molec­ular Structure and Dynamics for funding.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D. & Kim, T. J. (1997). Chem. Mater. 9, 1103–1115.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds