organic compounds
aDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and bCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk
1-Bromopyrene, C16H9Br, is a planar, fused aromatic organic compound. The molecule is approximately planar with an r.m.s. deviation of 0.0243 Å for the ring C atoms and 0.0261 Å for all non-H atoms. A herringbone packing motif based on π-π interactions is observed, with a perpendicular distance between adjacent stacked molecules of 3.519 Å.
Comment
We report here the structural characterization of the title compound, (I), which is a planar, fused aromatic organic compound. Its structure was determined to establish whether π–π stacking occurred in the solid state, and to relate the nature of the packing to some of the physical properties of the material, including Similar fused aromatic compounds have exhibited π–π interactions (Desiraju & Gavezzotti, 1989) which, we believe, may be a requirement for aromatic materials to show triboluminescent activity (Sweeting et al., 1997).
The molecule (Fig. 1) is shown to be approximately planar, with an r.m.s. deviation of 0.0243 Å for the ring C atoms and 0.0261 Å for all non-H atoms. A herringbone packing motif based on π-π interactions is observed (Fig. 2), with a perpendicular distance between adjacent stacked molecules of 3.519 Å. No C—H⋯π contacts shorter than 2.91 Å are observed.
Experimental
1-Bromopyrene was purchased as a yellow powder from the Aldrich Chemical Company. Small orange crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in benzene stored at 278 K.
Crystal data
|
H atoms were constrained as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The value of Rint is rather high due to the poor quality of the crystal, which required the use of synchrotron radiation for any diffraction to be observed.
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053680601052X/cf2017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680601052X/cf2017Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C16H9Br | F(000) = 560 |
Mr = 281.14 | Dx = 1.689 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6775 Å |
a = 14.530 (3) Å | Cell parameters from 1772 reflections |
b = 3.9490 (8) Å | θ = 2.8–23.3° |
c = 20.277 (4) Å | µ = 3.69 mm−1 |
β = 108.163 (3)° | T = 200 K |
V = 1105.5 (4) Å3 | Block, orange |
Z = 4 | 0.05 × 0.05 × 0.03 mm |
Bruker APEX-II CCD diffractometer | 1284 reflections with I > 2σ(I) |
narrow–frame ω scans | Rint = 0.149 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 24.7°, θmin = 2.1° |
Tmin = 0.817, Tmax = 0.895 | h = −17→17 |
7895 measured reflections | k = −4→4 |
1888 independent reflections | l = −23→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0527P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.126 | (Δ/σ)max < 0.001 |
S = 0.95 | Δρmax = 0.66 e Å−3 |
1888 reflections | Δρmin = −0.67 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1723 (3) | 0.1059 (12) | 0.1548 (2) | 0.0396 (11) | |
C2 | 0.1812 (3) | 0.1333 (11) | 0.2249 (2) | 0.0351 (11) | |
C3 | 0.1100 (3) | 0.2885 (10) | 0.2515 (3) | 0.0402 (11) | |
H3 | 0.0537 | 0.3879 | 0.2201 | 0.048* | |
C4 | 0.1221 (4) | 0.2940 (11) | 0.3195 (3) | 0.0432 (12) | |
H4 | 0.0726 | 0.3928 | 0.3346 | 0.052* | |
C5 | 0.2034 (4) | 0.1631 (11) | 0.3696 (3) | 0.0416 (12) | |
C6 | 0.2178 (4) | 0.1619 (12) | 0.4423 (3) | 0.0508 (14) | |
H6 | 0.1672 | 0.2513 | 0.4576 | 0.061* | |
C7 | 0.2964 (4) | 0.0459 (10) | 0.4911 (2) | 0.0382 (12) | |
H7 | 0.3034 | 0.0608 | 0.5392 | 0.046* | |
C8 | 0.3709 (4) | −0.1054 (13) | 0.4657 (3) | 0.0541 (15) | |
H8 | 0.4265 | −0.2003 | 0.4986 | 0.065* | |
C9 | 0.3644 (4) | −0.1172 (12) | 0.3960 (3) | 0.0409 (12) | |
C10 | 0.4363 (4) | −0.2660 (11) | 0.3704 (3) | 0.0428 (12) | |
H10 | 0.4931 | −0.3593 | 0.4023 | 0.051* | |
C11 | 0.4251 (4) | −0.2762 (11) | 0.3024 (3) | 0.0483 (13) | |
H11 | 0.4754 | −0.3715 | 0.2876 | 0.058* | |
C12 | 0.3405 (3) | −0.1496 (11) | 0.2511 (3) | 0.0390 (12) | |
C13 | 0.3274 (4) | −0.1702 (11) | 0.1800 (3) | 0.0414 (12) | |
H13 | 0.3762 | −0.2694 | 0.1641 | 0.05* | |
C14 | 0.2428 (4) | −0.0451 (11) | 0.1323 (3) | 0.0449 (13) | |
H14 | 0.2338 | −0.0641 | 0.0839 | 0.054* | |
C15 | 0.2672 (3) | 0.0006 (10) | 0.2747 (2) | 0.0339 (11) | |
C16 | 0.2778 (3) | 0.0149 (10) | 0.3464 (2) | 0.0349 (11) | |
Br1 | 0.06020 (4) | 0.26841 (12) | 0.08553 (2) | 0.0523 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (3) | 0.032 (2) | 0.050 (3) | −0.006 (2) | 0.009 (2) | −0.002 (2) |
C2 | 0.037 (3) | 0.026 (2) | 0.040 (3) | −0.0095 (19) | 0.010 (2) | −0.0001 (18) |
C3 | 0.028 (2) | 0.030 (2) | 0.057 (3) | −0.003 (2) | 0.006 (2) | −0.004 (2) |
C4 | 0.035 (3) | 0.036 (3) | 0.062 (3) | 0.000 (2) | 0.022 (2) | −0.007 (2) |
C5 | 0.039 (3) | 0.033 (2) | 0.054 (3) | −0.009 (2) | 0.016 (3) | −0.006 (2) |
C6 | 0.059 (4) | 0.038 (3) | 0.065 (4) | −0.011 (2) | 0.033 (3) | −0.012 (2) |
C7 | 0.056 (3) | 0.027 (2) | 0.027 (2) | −0.014 (2) | 0.006 (2) | 0.0023 (18) |
C8 | 0.056 (4) | 0.040 (3) | 0.054 (3) | −0.011 (3) | −0.002 (3) | 0.011 (2) |
C9 | 0.041 (3) | 0.030 (2) | 0.048 (3) | −0.008 (2) | 0.008 (2) | 0.005 (2) |
C10 | 0.034 (3) | 0.034 (3) | 0.053 (3) | 0.003 (2) | 0.004 (2) | 0.005 (2) |
C11 | 0.034 (3) | 0.035 (3) | 0.075 (4) | −0.002 (2) | 0.015 (3) | 0.000 (2) |
C12 | 0.031 (3) | 0.027 (2) | 0.059 (3) | −0.0024 (18) | 0.014 (2) | 0.001 (2) |
C13 | 0.040 (3) | 0.038 (3) | 0.051 (3) | −0.009 (2) | 0.021 (2) | −0.007 (2) |
C14 | 0.048 (3) | 0.032 (3) | 0.055 (3) | −0.011 (2) | 0.018 (3) | −0.004 (2) |
C15 | 0.030 (2) | 0.026 (2) | 0.047 (3) | −0.0077 (18) | 0.014 (2) | −0.0018 (18) |
C16 | 0.030 (3) | 0.026 (2) | 0.045 (3) | −0.0083 (19) | 0.007 (2) | 0.0007 (18) |
Br1 | 0.0461 (4) | 0.0499 (4) | 0.0509 (4) | −0.0028 (3) | 0.0007 (2) | 0.0080 (3) |
C1—C14 | 1.381 (7) | C8—C9 | 1.389 (7) |
C1—C2 | 1.392 (6) | C8—H8 | 0.950 |
C1—Br1 | 1.900 (5) | C9—C10 | 1.429 (7) |
C2—C15 | 1.438 (6) | C9—C16 | 1.441 (6) |
C2—C3 | 1.444 (7) | C10—C11 | 1.338 (7) |
C3—C4 | 1.334 (7) | C10—H10 | 0.950 |
C3—H3 | 0.950 | C11—C12 | 1.431 (7) |
C4—C5 | 1.395 (7) | C11—H11 | 0.950 |
C4—H4 | 0.950 | C12—C13 | 1.397 (7) |
C5—C6 | 1.424 (7) | C12—C15 | 1.425 (6) |
C5—C16 | 1.433 (6) | C13—C14 | 1.396 (7) |
C6—C7 | 1.336 (7) | C13—H13 | 0.950 |
C6—H6 | 0.950 | C14—H14 | 0.950 |
C7—C8 | 1.463 (7) | C15—C16 | 1.414 (6) |
C7—H7 | 0.950 | ||
C14—C1—C2 | 121.9 (5) | C8—C9—C10 | 123.9 (5) |
C14—C1—Br1 | 117.1 (4) | C8—C9—C16 | 117.8 (5) |
C2—C1—Br1 | 121.0 (4) | C10—C9—C16 | 118.2 (4) |
C1—C2—C15 | 118.2 (4) | C11—C10—C9 | 121.2 (4) |
C1—C2—C3 | 124.4 (4) | C11—C10—H10 | 119.4 |
C15—C2—C3 | 117.4 (4) | C9—C10—H10 | 119.4 |
C4—C3—C2 | 120.8 (4) | C10—C11—C12 | 122.7 (5) |
C4—C3—H3 | 119.6 | C10—C11—H11 | 118.7 |
C2—C3—H3 | 119.6 | C12—C11—H11 | 118.7 |
C3—C4—C5 | 123.8 (5) | C13—C12—C15 | 119.7 (4) |
C3—C4—H4 | 118.1 | C13—C12—C11 | 122.7 (5) |
C5—C4—H4 | 118.1 | C15—C12—C11 | 117.6 (5) |
C4—C5—C6 | 125.0 (5) | C14—C13—C12 | 120.1 (5) |
C4—C5—C16 | 117.8 (4) | C14—C13—H13 | 119.9 |
C6—C5—C16 | 117.1 (5) | C12—C13—H13 | 119.9 |
C7—C6—C5 | 125.7 (5) | C1—C14—C13 | 120.5 (5) |
C7—C6—H6 | 117.1 | C1—C14—H14 | 119.7 |
C5—C6—H6 | 117.1 | C13—C14—H14 | 119.7 |
C6—C7—C8 | 115.8 (4) | C16—C15—C12 | 120.5 (4) |
C6—C7—H7 | 122.1 | C16—C15—C2 | 119.9 (4) |
C8—C7—H7 | 122.1 | C12—C15—C2 | 119.5 (4) |
C9—C8—C7 | 123.2 (5) | C15—C16—C5 | 120.2 (4) |
C9—C8—H8 | 118.4 | C15—C16—C9 | 119.7 (4) |
C7—C8—H8 | 118.4 | C5—C16—C9 | 120.2 (4) |
Footnotes
1.
Acknowledgements
We thank the EPSRC and the CCLRC Centre for Molecular Structure and Dynamics for funding.
References
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D. & Kim, T. J. (1997). Chem. Mater. 9, 1103–1115. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.