metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium 4-nitro­phenyl­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bGlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 19 February 2006; accepted 3 March 2006; online 10 March 2006)

The title compound, K+·C6H4NO5S·H2O, forms a three-dimensional polymeric structure with an O8 coordination environment of the K+ cation.

Comment

As part of a programme aimed at developing new aza-Baeyer–Villiger reactions, we have examined the use of N-alkyl-O-aryl­sulfonyl­hydroxy­lamines as potential nitrene equivalents (Hoffman & Buntain, 1988[Hoffman, R. V. & Buntain, G. A. (1988). J. Org. Chem. 53, 3316-3321.]; Hoffman & Salvador, 1989a[Hoffman, R. V. & Salvador, J. (1989a). Tetrahedron Lett. 30, 4207-4210.], 1991[Hoffman, R. V. & Salvador, J. (1991). Tetrahedron Lett. 32, 2429-2432.]). Attempts have therefore been made to prepare a range of N-alkyl-O-aryl­sulfonyl­hydroxy­lamines p-XC6H4SO2NHR by reacting RNH2 with sulfonyl peroxides p-XC6H4SO2OOSO2C6H4-p-X, which in turn are accessible from sulfonyl chlorides p-XC6H4SO2Cl by reaction with t-BuOOH (Hoffman & Cadena, 1977[Hoffman, R. V. & Cadena, R. (1977). J. Am. Chem. Soc. 99, 8226-8232.]; Hoffman & Belfoure, 1983[Hoffman, R. V. & Belfoure, E. L. (1983). Synthesis, pp. 34-35.]; Hoffman & Salvador, 1989b[Hoffman, R. V. & Salvador, J. (1989b). J. Chem. Soc. Perkin Trans. 1, pp. 1375-1380.]). The title compound, (I)[link], was isolated as a by-product during this synthesis.

[Scheme 1]

Numerous esters of 4-nitro­phenyl­sulfonic acid have been structurally characterized, as well as some salts with organic cations (Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206-1217.]; Chan & Wong, 2002[Chan, K. W. Y. & Wong, W. T. (2002). Acta Cryst. E58, o1048-o1050.]; Tamura et al., 2002[Tamura, R., Fujimoto, D., Lepp, Z., Misaki, K., Miura, H., Takahashi, H., Ushio, T., Nakai, T. & Hirotsu, K. (2002). J. Am. Chem. Soc. 124, 13139-13153.]). However, no salt or complex of any metal with this anion has been studied previously.

(I)[link] has a three-dimensional polymeric (catena) crystal structure (Fig. 1[link]). The asymmetric unit comprises one formula unit. The potassium cation is coordinated by eight O atoms, viz. five from the sulfonate groups of four different anions, one from a nitro group of another anion, and two μ2-bridging water mol­ecules. The coordination polyhedron can be described as a distorted monocapped penta­gonal bipyramid. The anion links five K+ cations, four of them via one O atom each. There is only one case of chelation, the sulfonate atoms O1 and O2 coordinated to the same potassium ion, and even this one is highly asymmmetric. The K—O2 distance is 0.33 Å longer than K—O1 and is by far the longest in the structure.

The aqua bridge is highly asymmetric: the K—O distances differ by 0.176 Å and the stronger-bound potassium ion is practically coplanar with the H2O plane. The weakly coordinated O2 atom and the uncoordinated O5 atom of the nitro group act as acceptors of hydrogen bonds donated by the water mol­ecules. Notwithstanding these differences, both N—O bond lengths are equal within experimental error (mean 1.233 (3) Å), as are the three S—O bond lengths (mean 1.453 (3) Å). The benzene ring and the nitro group of the anion form a dihedral angle of 11.2 (1)°, whereas the S—O2 bond is nearly coplanar with the ring: the dihedral angle C2—C1—S—O2 is 9.0 (3)°.

[Figure 1]
Figure 1
The environment of a K+ cation in the structure of (I)[link] (50% displacement ellipsoids). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z, (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}]z, (iii) −x, 1 − y, 1 − z, (iv) x, [{1\over 2}]y, [{1\over 2}] + z, (v) 1 − x, y[{1\over 2}], [{3\over 2}]z.]

Experimental

4-Nitro­benzene­sulfonyl peroxide p-O2NC6H4SO2OOSO2C6H4NO2-p (II) was prepared according to Dannley et al. (1970[Dannley, R. L., Gagen, J. E. & Stewart, O. J. (1970). J. Org. Chem. 35, 3076-3079.]). To a solution of K2CO3 (5.10 g, 36.9 mmol) in water (76 ml), ethanol (38 ml) and hydrogen peroxide (35%, 8.75 g) at 253 K a cooled (253 K) solution of 4-nitro­benzene­sulfonyl chloride (7.88 g, 35.6 mmol) in chloro­form (10 ml) was added and the suspension was mixed at full power for 1 min using a Breville ClassiqueTM blender. Ethanol (80 ml) was added and the solution was mixed for 4 min at low power. The precipitate formed was filtered off, washed with distilled water and recrystallized from acetone to give (II) as a yellow solid (2.22 g, 31%). The filtrate was cooled at 253 K for 24 h, yielding (I)[link] as yellow crystals (0.160 g, 1.2%), m.p. >593 K, IR, ν, cm−1: 3065 (CH aromatic stretch), 1529 (NO2), 1461 (SO2) 819 (p-disubstituted aromatic). 1H NMR (200 MHz, CDCl3): 8.20 (d, 2H, CH aromatic, J 8.6 Hz), 8.49 (d, 2H, CH aromatic, J = 8.4 Hz). 13C NMR (100 MHz, CDCl3): 123.5 (2 × PhCNO2), 126.0 (4 × CH aromatic), 140.0 (4 × CH aromatic), 148.0 (2 × PhCSO2). The properties of (I)[link] agree with those reported by Kozlov & Davydov (1965[Kozlov V. V. & Davydov, A. A. (1965). Zh. Org. Khim. 1, 559-562. (In Russian.)]) or Dietze et al. (1989[Dietze, P. E.; Hariri R. & Khattak, J. (1989). J. Org. Chem. 54, 3317-3320.]).

Crystal data
  • K+·C6H4NO5S·H2O

  • Mr = 259.28

  • Monoclinic, P 21 /c

  • a = 10.794 (1) Å

  • b = 7.1516 (6) Å

  • c = 12.417 (1) Å

  • β = 106.15 (1)°

  • V = 920.70 (14) Å3

  • Z = 4

  • Dx = 1.871 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2733 reflections

  • θ = 3.3–27.5°

  • μ = 0.81 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.3 × 0.2 × 0.15 mm

Data collection
  • Siemens SMART 1K CCD area detector diffractometer

  • ω scans

  • Absorption correction: none

  • 9859 measured reflections

  • 2117 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.5°

  • h = −14 → 13

  • k = −9 → 9

  • l = −16 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.05

  • 2117 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0364P)2 + 0.9635P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

K—O1i 2.712 (2)
K—O3ii 2.765 (2)
K—O3 2.775 (2)
K—O6 2.779 (2)
K—O4iii 2.802 (2)
K—O1iv 2.819 (2)
K—O6v 2.955 (3)
K—O2iv 3.148 (2)
O1i—K—O3ii 87.93 (6)
O1i—K—O3 78.99 (6)
O3ii—K—O3 151.04 (3)
O1i—K—O6 66.46 (7)
O3ii—K—O6 81.82 (7)
O3—K—O6 115.27 (7)
O1i—K—O4iii 128.10 (7)
O3ii—K—O4iii 134.60 (7)
O3—K—O4iii 71.80 (7)
O6—K—O4iii 88.53 (7)
O1i—K—O1iv 146.95 (5)
O3ii—K—O1iv 91.85 (6)
O3—K—O1iv 85.63 (6)
O6—K—O1iv 146.11 (7)
O4iii—K—O1iv 72.37 (6)
O1i—K—O6v 85.46 (7)
O3ii—K—O6v 74.70 (7)
O3—K—O6v 78.56 (7)
O6—K—O6v 143.93 (7)
O4iii—K—O6v 127.38 (7)
O1iv—K—O6v 62.76 (7)
O1i—K—O2iv 156.06 (6)
O3ii—K—O2iv 70.29 (6)
O3—K—O2iv 124.93 (6)
O6—K—O2iv 99.66 (7)
O4iii—K—O2iv 67.84 (6)
O1iv—K—O2iv 47.52 (6)
O6v—K—O2iv 97.73 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H01⋯O2vi 0.78 (4) 2.15 (4) 2.922 (3) 172 (4)
O6—H02⋯O5vii 0.85 (4) 2.23 (4) 3.050 (3) 161 (4)
Symmetry codes: (vi) x, y+1, z; (vii) -x, -y+2, -z+1.

Water atoms H01 and H02 were located in a difference map and refined isotropically. Benzene H atoms were treated as riding on the C atoms, C—H 0.95 Å, Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Potassium 4-nitrophenylsulfonate monohydrate top
Crystal data top
K+·C6H4NO5S·H2OF(000) = 528
Mr = 259.28Dx = 1.871 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2733 reflections
a = 10.794 (1) Åθ = 3.3–27.5°
b = 7.1516 (6) ŵ = 0.81 mm1
c = 12.417 (1) ÅT = 120 K
β = 106.15 (1)°Block, colourless
V = 920.70 (14) Å30.3 × 0.2 × 0.15 mm
Z = 4
Data collection top
Siemens SMART 1K CCD area detector
diffractometer
1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
Detector resolution: 8 pixels mm-1h = 1413
ω scansk = 99
9859 measured reflectionsl = 1615
2117 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.9635P]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.43521 (6)0.53657 (9)0.74392 (5)0.01343 (16)
S0.37624 (7)0.22064 (10)0.46669 (6)0.01054 (17)
O10.4524 (2)0.2686 (3)0.39107 (17)0.0140 (5)
O20.3285 (2)0.0291 (3)0.45242 (18)0.0159 (5)
O30.4386 (2)0.2697 (3)0.58251 (17)0.0149 (5)
O40.1962 (2)0.6461 (3)0.31470 (18)0.0192 (5)
O50.0704 (2)0.8883 (3)0.35935 (18)0.0188 (5)
O60.3076 (2)0.8669 (3)0.6626 (2)0.0207 (5)
H010.315 (4)0.900 (5)0.605 (3)0.026 (11)*
H020.252 (4)0.945 (6)0.672 (3)0.039 (12)*
N0.0886 (2)0.7181 (4)0.3463 (2)0.0147 (5)
C10.2366 (3)0.3660 (4)0.4267 (2)0.0108 (6)
C20.1131 (3)0.2881 (4)0.4060 (2)0.0132 (6)
H20.10320.15680.41180.016*
C30.0058 (3)0.4025 (4)0.3772 (2)0.0136 (6)
H30.07870.35180.36220.016*
C40.0250 (3)0.5950 (4)0.3708 (2)0.0122 (6)
C50.1463 (3)0.6745 (4)0.3908 (2)0.0144 (6)
H50.15590.80600.38590.017*
C60.2534 (3)0.5582 (4)0.4183 (2)0.0139 (6)
H60.33760.60920.43120.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0157 (3)0.0116 (3)0.0132 (3)0.0007 (3)0.0043 (2)0.0000 (2)
S0.0110 (4)0.0094 (3)0.0109 (4)0.0007 (3)0.0023 (3)0.0001 (3)
O10.0159 (11)0.0149 (11)0.0126 (11)0.0009 (8)0.0063 (9)0.0003 (8)
O20.0161 (11)0.0095 (10)0.0212 (12)0.0010 (9)0.0036 (9)0.0014 (9)
O30.0169 (11)0.0159 (11)0.0097 (10)0.0022 (9)0.0000 (8)0.0016 (8)
O40.0121 (12)0.0241 (12)0.0207 (12)0.0035 (9)0.0032 (9)0.0018 (9)
O50.0191 (12)0.0150 (11)0.0217 (12)0.0042 (9)0.0046 (10)0.0011 (9)
O60.0237 (14)0.0214 (13)0.0197 (13)0.0069 (10)0.0106 (11)0.0055 (10)
N0.0137 (14)0.0205 (14)0.0107 (13)0.0018 (11)0.0047 (10)0.0033 (10)
C10.0109 (14)0.0142 (15)0.0061 (14)0.0007 (12)0.0003 (11)0.0015 (11)
C20.0177 (16)0.0117 (14)0.0110 (14)0.0015 (12)0.0055 (12)0.0023 (11)
C30.0127 (15)0.0168 (15)0.0115 (15)0.0049 (12)0.0039 (12)0.0005 (11)
C40.0126 (15)0.0154 (15)0.0070 (14)0.0023 (12)0.0002 (11)0.0002 (11)
C50.0175 (16)0.0120 (14)0.0137 (15)0.0002 (12)0.0045 (12)0.0010 (11)
C60.0129 (15)0.0164 (16)0.0128 (15)0.0002 (12)0.0041 (12)0.0009 (11)
Geometric parameters (Å, º) top
K—O1i2.712 (2)O6—H010.78 (4)
K—O3ii2.765 (2)O6—H020.85 (4)
K—O32.775 (2)N—C41.471 (4)
K—O62.779 (2)C1—C61.395 (4)
K—O4iii2.802 (2)C1—C21.401 (4)
K—O1iv2.819 (2)C2—C31.382 (4)
K—O6v2.955 (3)C2—H20.9500
K—O2iv3.148 (2)C3—C41.398 (4)
S—O11.451 (2)C3—H30.9500
S—O31.451 (2)C4—C51.384 (4)
S—O21.457 (2)C5—C61.388 (4)
S—C11.784 (3)C5—H50.9500
O4—N1.230 (3)C6—H60.9500
O5—N1.236 (3)
O1i—K—O3ii87.93 (6)S—O1—Kvi106.82 (10)
O1i—K—O378.99 (6)Ki—O1—Kvi87.55 (6)
O3ii—K—O3151.04 (3)S—O2—Kvi92.42 (10)
O1i—K—O666.46 (7)S—O3—Kv128.22 (11)
O3ii—K—O681.82 (7)S—O3—K141.86 (12)
O3—K—O6115.27 (7)Kv—O3—K87.38 (6)
O1i—K—O4iii128.10 (7)N—O4—Kiii175.69 (19)
O3ii—K—O4iii134.60 (7)K—O6—Kii83.67 (7)
O3—K—O4iii71.80 (7)K—O6—H01115 (3)
O6—K—O4iii88.53 (7)Kii—O6—H0185 (3)
O1i—K—O1iv146.95 (5)K—O6—H02144 (3)
O3ii—K—O1iv91.85 (6)Kii—O6—H02108 (3)
O3—K—O1iv85.63 (6)H01—O6—H02100 (4)
O6—K—O1iv146.11 (7)O4—N—O5123.7 (3)
O4iii—K—O1iv72.37 (6)O4—N—C4118.3 (2)
O1i—K—O6v85.46 (7)O5—N—C4118.0 (2)
O3ii—K—O6v74.70 (7)C6—C1—C2121.0 (3)
O3—K—O6v78.56 (7)C6—C1—S118.5 (2)
O6—K—O6v143.93 (7)C2—C1—S120.4 (2)
O4iii—K—O6v127.38 (7)C3—C2—C1119.9 (3)
O1iv—K—O6v62.76 (7)C3—C2—H2120.0
O1i—K—O2iv156.06 (6)C1—C2—H2120.0
O3ii—K—O2iv70.29 (6)C2—C3—C4118.1 (3)
O3—K—O2iv124.93 (6)C2—C3—H3121.0
O6—K—O2iv99.66 (7)C4—C3—H3121.0
O4iii—K—O2iv67.84 (6)C5—C4—C3122.8 (3)
O1iv—K—O2iv47.52 (6)C5—C4—N118.9 (3)
O6v—K—O2iv97.73 (7)C3—C4—N118.2 (3)
O1—S—O3113.22 (12)C4—C5—C6118.7 (3)
O1—S—O2112.87 (12)C4—C5—H5120.7
O3—S—O2113.49 (13)C6—C5—H5120.7
O1—S—C1105.61 (13)C5—C6—C1119.5 (3)
O3—S—C1104.94 (12)C5—C6—H6120.3
O2—S—C1105.73 (13)C1—C6—H6120.3
S—O1—Ki162.38 (12)
C2—C1—S—O29.0 (3)C5—C4—N—O59.6 (4)
C3—C4—N—O411.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H01···O2vii0.78 (4)2.15 (4)2.922 (3)172 (4)
O6—H02···O5viii0.85 (4)2.23 (4)3.050 (3)161 (4)
Symmetry codes: (vii) x, y+1, z; (viii) x, y+2, z+1.
 

Acknowledgements

We thank both the EPSRC and GlaxoSmithKline Pharmaceuticals for a CASE award (to AJB).

References

First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, K. W. Y. & Wong, W. T. (2002). Acta Cryst. E58, o1048–o1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDannley, R. L., Gagen, J. E. & Stewart, O. J. (1970). J. Org. Chem. 35, 3076–3079.  CrossRef CAS Google Scholar
First citationDietze, P. E.; Hariri R. & Khattak, J. (1989). J. Org. Chem. 54, 3317–3320.  Google Scholar
First citationHoffman, R. V. & Belfoure, E. L. (1983). Synthesis, pp. 34–35.  CrossRef Google Scholar
First citationHoffman, R. V. & Buntain, G. A. (1988). J. Org. Chem. 53, 3316–3321.  CrossRef CAS Web of Science Google Scholar
First citationHoffman, R. V. & Cadena, R. (1977). J. Am. Chem. Soc. 99, 8226–8232.  CrossRef CAS Web of Science Google Scholar
First citationHoffman, R. V. & Salvador, J. (1989a). Tetrahedron Lett. 30, 4207–4210.  CrossRef CAS Web of Science Google Scholar
First citationHoffman, R. V. & Salvador, J. (1989b). J. Chem. Soc. Perkin Trans. 1, pp. 1375–1380.  CrossRef Google Scholar
First citationHoffman, R. V. & Salvador, J. (1991). Tetrahedron Lett. 32, 2429–2432.  CrossRef CAS Web of Science Google Scholar
First citationKozlov V. V. & Davydov, A. A. (1965). Zh. Org. Khim. 1, 559–562. (In Russian.)  Google Scholar
First citationRussell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206–1217.  CSD CrossRef CAS Web of Science Google Scholar
First citationTamura, R., Fujimoto, D., Lepp, Z., Misaki, K., Miura, H., Takahashi, H., Ushio, T., Nakai, T. & Hirotsu, K. (2002). J. Am. Chem. Soc. 124, 13139–13153.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds