organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,2,3,5-tetra­methyl-4-nitro­pyrazolium) di­hydro­nium tris­­(4-methyl-3,5-di­nitro­benzene­sulfonate) forms C(8) chains through O—H⋯O bonding via the di­hydro­nium cation

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: j.skakle@abdn.ac.uk

(Received 20 February 2006; accepted 8 March 2006; online 15 March 2006)

In the title salt, 2C7H12N3O2+·H5O2+·3C7H5N2O7S, strong hydrogen bonding from the donor (H5O2+) group links to 4-methyl-3,5-dinitro­benzene­sulfonate anions. The dihydro­nium (H5O2+) cation could be considered inter­mediate between clearly distinct (H3O)+ and H2O entities and an `(H5O2)+' entity, although it tends to be closer to the former; the O⋯O distance is 2.434 (3) Å. Strong hydrogen bonding leads to the formation of chains along the [010] direction.

Comment

Reaction of 1,2,3,5-tetra­methyl­pyrazolium 4-toluene­sulfonate with fuming nitric acid and concentrated sulfuric acid leads to nitration of both the cation and the anion. The salt isolated after quenching in ice and recrystallization from ethanol was found to be the title salt, (I)[link].

[Scheme 1]

Two previous reports give support to this nitration reaction. A kinetic study has indicated that the cation of 1,2,3,5-tetra­methyl­pyrazolium bis­ulfate undergoes nitration to give the 1,2,3,5-tetra­methyl-4-nitro­pyrazolium cation in a mixture of fuming nitric acid and concentrated sulfuric acid (Burton et al., 1971[Burton, A. G., Forsythe, P. P., Johnson, C. D. & Katritzky, A. R. (1971). J. Chem. Soc. B, pp. 2365-2371.]). In another study, 4-toluene­sulfonyl chloride was reported to undergo nitration to give 4-methyl-3,5-dinitro­benzene­sulfonic acid in a similar medium (Schmidt et al., 1999[Schmidt, T. C., Steinbach, K., Buetehorn, U., Heck, K., Volkwein, U. & Stork, G. (1999). Chemosphere, 38, 3119-3130.]).

The existence of the dihydro­nium (H5O2+) unit was confirmed by the refinement. Initially, two O atoms (O1 and O2) were treated as water mol­ecules and the associated H atoms were allowed to refine freely. On consideration of charge balance and the hydrogen-bonding scheme, and on examination of difference maps (visually using PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), it was believed likely that an additional H atom was located between the two water mol­ecules [see, for example, Wells (1984[Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.]) and Bernal & Fowler (1933[Bernal, J. D. & Fowler, R. H. (1933). J. Chem. Phys. 1, 515-548.])] but slightly closer to O2. Thus, an H atom was placed in this position and also refined freely, resulting in a position that was closer to O2, at a distance of 1.01 (5) Å. The group could be considered inter­mediate between clearly distinct (H3O)+ and (H2O) entities and an `(H5O2)+' entity, although it tends to be closer to the former. The O1⋯O2 distance is 2.434 (3) Å, with an O—H⋯O angle of 174 (5)°; this distance is significantly shorter than for other O—H⋯O bonds within the structure (Table 1[link]), again supporting the above inter­pretation.

Strong hydrogen bonds (Table 1[link]) from the H2O⋯H3O+ unit link to sulfonate O atoms. Atom O1 hydrogen bonds within the asymmetric unit, whereas O2 not only hydrogen bonds to O1, but also to symmetry-related ions. This gives rise to C(8) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along the [010] direction (Fig. 2[link]), involving the three 4-methyl-3,5-dinitro­benzene­sulfonate groups and the H2O⋯H3O+ group.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing part of the atom-labelling scheme and indicating how it continues for similar ions within the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity, except those in the (H5O2)+ unit, which are shown as circles of arbitrary radii.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the formation of hydrogen-bonded C(8) chains along [010]. Atoms marked with an asterisk (*) or a prime (′) are at the symmetry positions (−x, 1 − y, −z) and (x, y − 1, z), respectively. The two 1,2,3,5-tetra­methyl-4-nitro­pyrazolium cations have been omitted for clarity, as have all H atoms, except those of the (H5O2)+ unit, which are shown as circles of arbitrary radii. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

1,2,3,5-Tetra­methyl­pyrazolium 4-toluene­sulfonate was prepared from 1,3,5-trimethyl­pyrazine and methyl 4-toluene­sulfonate following a similar procedure as used for 1,2,3,5-trimethyl-4-nitro­pyrazolium 4-toluene­sulfonate (Burton, et al., 1971[Burton, A. G., Forsythe, P. P., Johnson, C. D. & Katritzky, A. R. (1971). J. Chem. Soc. B, pp. 2365-2371.]). Nitration of 1,2,3,5-tetra­methyl­pyrazolium 4-toluene­sulfonate was carried out under similar conditions used for 4-toluene­sulfonyl chloride (Schmidt et al., 1999[Schmidt, T. C., Steinbach, K., Buetehorn, U., Heck, K., Volkwein, U. & Stork, G. (1999). Chemosphere, 38, 3119-3130.]). The title compound was obtained by recrystallization from EtOH of the product isolated on careful addition of the reaction mixture to ice (m.p. 330–332 K).

Crystal data
  • 2C7H12N3O2+·H5O2+·3C7H5N2O7S

  • Mr = 1161.00

  • Monoclinic, P 21 /c

  • a = 26.0927 (5) Å

  • b = 8.17230 (10) Å

  • c = 24.0602 (6) Å

  • β = 106.7241 (8)°

  • V = 4913.52 (17) Å3

  • Z = 4

  • Dx = 1.569 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 10634 reflections

  • θ = 2.9–27.5°

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • Slab, colourless

  • 0.45 × 0.20 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.834, Tmax = 0.990

  • 53726 measured reflections

  • 11088 independent reflections

  • 8214 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.5°

  • h = −33 → 33

  • k = −10 → 10

  • l = −29 → 31

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.06

  • 11088 reflections

  • 732 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0891P)2 + 0.908P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.59 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0067 (5)

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O1 1.02 (5) 1.42 (5) 2.433 (3) 176 (4)
O1—H1A⋯O541 0.83 (4) 1.85 (4) 2.681 (3) 176 (4)
O1—H1B⋯O341 0.90 (3) 1.79 (4) 2.690 (2) 173 (3)
O2—H2A⋯O441i 0.95 (3) 1.64 (4) 2.570 (2) 164 (3)
O2—H2B⋯O342ii 0.87 (3) 1.73 (3) 2.590 (2) 170 (3)
C43—H43⋯O462iii 0.95 2.46 3.401 (3) 172
C55—H55⋯O342ii 0.95 2.55 3.212 (3) 127
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z; (iii) x, y+1, z.

H atoms were located in difference maps and, except for those in the H5O2 group, were then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.96 Å (meth­yl) and Uiso(H) values of 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). The existence and location of the additional H atom in the H5O2 group was demonstrated from a difference map (see Comment); all H atoms of this group were allowed to refine freely.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Bis[1,2,3,5-tetramethyl-4-nitropyrazolium] dihydronium tris(4-methyl-3,5-dinitrobenzenesulfonate) top
Crystal data top
2C7H12N3O2+·H5O2+·3C7H5N2O7SF(000) = 2408
Mr = 1161.00Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10634 reflections
a = 26.0927 (5) Åθ = 2.9–27.5°
b = 8.1723 (1) ŵ = 0.26 mm1
c = 24.0602 (6) ÅT = 120 K
β = 106.7241 (8)°Slab, colourless
V = 4913.52 (17) Å30.45 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11088 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode8214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.834, Tmax = 0.990l = 2931
53726 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.908P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
11088 reflectionsΔρmax = 0.55 e Å3
732 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (5)
Special details top

Experimental. IR: 3408 (br), 3080–2932, 1562, 1543, 1482, 1411, 1372, 1359, 1240, 1195, 1052, 1017, 991, 865, 814, 767, 722, 665, 594.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.96 Å (methyl) or 0.93 Å (aromatic) and Uiso(H) values of -1.5Ueq (methyl) or -1.2Ueq (aromatic).

The exceptions were the H atoms for the two free O atoms. Initially these were treated as water molecules and the H atoms were allowed to refine freely. On consideration of charge balance and the hydrogen bonding scheme, and on examination of difference maps, visually using PLATON (Spek, 2003), it was believed likely that an additional H atom was located between the two water molecules, (see e.g. Wells, 1984 and Bernal & Fowler, 1933) but slightly closer to O2. Thus an H atom was placed at this position and also refined freely, resulting in a position that was closer to O2 but at a distance of 1.01 (5) Å. The moiety could be considered intermediate between clearly distinct (H3O)+ and (H2O) entities and a '(H5O2)+' entity, although tends to be closer to the former.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.14584 (8)0.6885 (2)0.13331 (9)0.0170 (4)
C120.14849 (8)0.8567 (2)0.12480 (9)0.0172 (4)
N130.12285 (7)0.88118 (19)0.06894 (8)0.0181 (4)
N140.10311 (6)0.73665 (19)0.04274 (7)0.0176 (4)
C150.11657 (8)0.6150 (2)0.08144 (9)0.0181 (4)
N1110.16869 (7)0.6022 (2)0.18640 (8)0.0201 (4)
O1110.19612 (6)0.67898 (19)0.22839 (7)0.0318 (4)
O1120.15918 (6)0.45560 (18)0.18771 (7)0.0269 (4)
C1210.16984 (9)0.9942 (3)0.16537 (10)0.0244 (5)
H12A0.20141.04060.15680.037*
H12B0.17990.95360.20540.037*
H12C0.14231.07880.16060.037*
C1310.11262 (9)1.0357 (2)0.03717 (10)0.0230 (5)
H13A0.07771.07860.03770.035*
H13B0.11271.01750.00310.035*
H13C0.14061.11480.05560.035*
C1410.07062 (9)0.7327 (3)0.01811 (9)0.0241 (5)
H14A0.09330.75610.04330.036*
H14B0.04230.81520.02440.036*
H14C0.05450.62400.02730.036*
C1510.10304 (9)0.4415 (2)0.06744 (10)0.0250 (5)
H15A0.08240.43180.02650.038*
H15B0.08170.40030.09190.038*
H15C0.13600.37740.07460.038*
C210.36486 (8)0.0935 (2)0.32727 (9)0.0181 (4)
C220.37418 (8)0.2611 (2)0.32547 (9)0.0176 (4)
N230.32645 (6)0.33193 (19)0.31675 (7)0.0167 (4)
N240.28810 (6)0.21495 (19)0.31325 (7)0.0155 (3)
C250.31055 (8)0.0670 (2)0.31977 (9)0.0178 (4)
N2110.40486 (7)0.0321 (2)0.33769 (8)0.0248 (4)
O2110.45073 (7)0.0073 (2)0.33971 (9)0.0413 (5)
O2120.39154 (7)0.17196 (19)0.34463 (9)0.0388 (5)
C2210.42372 (9)0.3577 (3)0.33218 (11)0.0278 (5)
H22A0.41890.43110.29890.042*
H22B0.45370.28340.33420.042*
H22C0.43130.42250.36790.042*
C2310.31238 (9)0.5053 (2)0.31111 (11)0.0253 (5)
H23A0.28670.52510.27310.050 (8)*
H23B0.34470.57060.31470.039 (7)*
H23C0.29640.53650.34170.030 (7)*
C2410.23266 (8)0.2629 (3)0.30653 (10)0.0241 (5)
H24A0.21140.16540.30860.036*
H24B0.21800.31650.26890.036*
H24C0.23150.33880.33760.036*
C2510.27972 (9)0.0856 (2)0.31932 (10)0.0248 (5)
H25A0.28340.15700.28800.062 (10)*
H25B0.24190.05870.31310.058 (9)*
H25C0.29350.14190.35660.050 (8)*
C310.38424 (8)0.7753 (2)0.10624 (9)0.0218 (5)
C320.33774 (9)0.8480 (3)0.11359 (9)0.0220 (4)
C330.29317 (9)0.8897 (2)0.06873 (9)0.0220 (5)
H330.26270.93680.07650.026*
C340.29387 (8)0.8613 (2)0.01216 (9)0.0187 (4)
C350.33820 (8)0.7894 (2)0.00160 (9)0.0204 (4)
H350.33850.76650.03700.024*
C360.38201 (8)0.7512 (3)0.04799 (9)0.0210 (4)
C3110.43059 (9)0.7198 (3)0.15595 (10)0.0297 (5)
H31A0.44960.63090.14290.045*
H31B0.41720.68070.18770.045*
H31C0.45510.81160.16960.045*
N3210.33497 (8)0.8851 (2)0.17263 (8)0.0306 (5)
O3210.37542 (8)0.9403 (2)0.20756 (8)0.0458 (5)
O3220.29261 (8)0.8644 (3)0.18257 (8)0.0502 (5)
S340.23781 (2)0.91534 (6)0.04691 (2)0.01945 (14)
O3410.19139 (6)0.85398 (19)0.03153 (7)0.0278 (4)
O3420.23841 (6)1.09346 (18)0.04892 (7)0.0297 (4)
O3430.24647 (7)0.8403 (2)0.09750 (7)0.0354 (4)
N3610.42865 (7)0.6844 (2)0.03287 (9)0.0280 (4)
O3610.47244 (7)0.7431 (3)0.05701 (8)0.0458 (5)
O3620.42053 (7)0.5792 (2)0.00455 (9)0.0432 (5)
C410.08216 (8)0.5906 (3)0.26649 (9)0.0206 (4)
C420.07623 (8)0.7576 (3)0.25463 (9)0.0192 (4)
C430.04739 (8)0.8248 (2)0.20219 (9)0.0185 (4)
H430.04580.93990.19640.022*
C440.02081 (8)0.7186 (2)0.15830 (9)0.0180 (4)
C450.02397 (8)0.5517 (2)0.16761 (9)0.0204 (4)
H450.00550.47870.13780.025*
C460.05424 (8)0.4915 (2)0.22064 (10)0.0203 (4)
C4110.11985 (9)0.5297 (3)0.32259 (10)0.0306 (5)
H41A0.10050.51920.35180.046*
H41B0.14940.60750.33630.046*
H41C0.13420.42280.31620.046*
N4210.10357 (7)0.8734 (2)0.30082 (8)0.0238 (4)
O4210.08983 (7)0.8740 (2)0.34507 (8)0.0398 (4)
O4220.13809 (6)0.9613 (2)0.29166 (8)0.0337 (4)
S440.01569 (2)0.79219 (6)0.08862 (2)0.02083 (14)
O4410.06957 (6)0.8249 (2)0.09217 (7)0.0317 (4)
O4420.01406 (7)0.65911 (19)0.04948 (7)0.0318 (4)
O4430.01169 (6)0.93806 (18)0.07960 (7)0.0293 (4)
N4610.05724 (7)0.3114 (2)0.22521 (9)0.0270 (4)
O4610.06066 (8)0.2483 (2)0.27143 (8)0.0404 (4)
O4620.05452 (8)0.23438 (19)0.18053 (8)0.0407 (5)
C510.42046 (9)0.2329 (3)0.07659 (10)0.0246 (5)
C520.41963 (8)0.2537 (3)0.13375 (9)0.0212 (4)
C530.37436 (8)0.2921 (2)0.15039 (9)0.0206 (4)
H530.37660.30470.19030.025*
C540.32621 (8)0.3118 (2)0.10830 (9)0.0208 (4)
C550.32425 (9)0.2940 (3)0.05017 (9)0.0259 (5)
H550.29150.30890.02050.031*
C560.37033 (9)0.2547 (3)0.03611 (9)0.0264 (5)
C5110.47115 (10)0.2021 (3)0.05949 (11)0.0337 (6)
H51A0.50170.25040.08860.051*
H51B0.46780.25200.02160.051*
H51C0.47670.08390.05720.051*
N5210.46878 (7)0.2319 (2)0.18215 (9)0.0281 (4)
O5210.47639 (6)0.3283 (2)0.22266 (7)0.0389 (4)
O5220.49822 (7)0.1174 (2)0.17959 (9)0.0418 (5)
S540.26573 (2)0.35056 (7)0.12659 (2)0.02321 (14)
O5410.24970 (7)0.51473 (19)0.10493 (8)0.0365 (4)
O5420.22889 (6)0.22807 (19)0.09453 (7)0.0293 (4)
O5430.27967 (7)0.3350 (2)0.18870 (7)0.0410 (5)
N5610.36349 (9)0.2307 (3)0.02629 (9)0.0391 (6)
O5610.33258 (8)0.3247 (3)0.05961 (8)0.0515 (6)
O5620.38745 (9)0.1174 (3)0.04106 (9)0.0545 (6)
O10.18732 (8)0.5355 (2)0.00492 (9)0.0378 (4)
H1A0.2077 (15)0.533 (4)0.0286 (17)0.067 (12)*
H1B0.1906 (12)0.640 (4)0.0153 (14)0.055 (9)*
O20.16226 (7)0.3084 (2)0.07275 (8)0.0326 (4)
H2A0.1267 (14)0.274 (4)0.0756 (14)0.058 (9)*
H2B0.1850 (12)0.229 (4)0.0640 (13)0.045 (8)*
H2C0.1741 (16)0.401 (5)0.0433 (19)0.089 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0159 (10)0.0177 (10)0.0160 (10)0.0021 (7)0.0025 (8)0.0016 (8)
C120.0151 (10)0.0181 (10)0.0180 (10)0.0007 (7)0.0041 (8)0.0013 (8)
N130.0186 (9)0.0135 (8)0.0202 (9)0.0002 (6)0.0026 (7)0.0009 (7)
N140.0180 (8)0.0154 (8)0.0166 (9)0.0011 (6)0.0004 (7)0.0011 (7)
C150.0162 (10)0.0169 (10)0.0194 (10)0.0016 (7)0.0025 (8)0.0000 (8)
N1110.0153 (9)0.0238 (10)0.0198 (9)0.0020 (7)0.0027 (7)0.0032 (7)
O1110.0335 (9)0.0332 (9)0.0210 (8)0.0032 (7)0.0046 (7)0.0003 (7)
O1120.0297 (8)0.0209 (8)0.0279 (9)0.0013 (6)0.0048 (7)0.0074 (6)
C1210.0279 (12)0.0237 (11)0.0202 (11)0.0050 (9)0.0046 (9)0.0040 (9)
C1310.0251 (11)0.0161 (10)0.0250 (11)0.0012 (8)0.0027 (9)0.0042 (8)
C1410.0245 (11)0.0233 (11)0.0190 (11)0.0013 (8)0.0027 (9)0.0007 (9)
C1510.0305 (12)0.0175 (10)0.0238 (12)0.0003 (9)0.0026 (9)0.0025 (9)
C210.0169 (10)0.0186 (10)0.0181 (10)0.0018 (7)0.0037 (8)0.0013 (8)
C220.0186 (10)0.0200 (10)0.0139 (10)0.0018 (8)0.0043 (8)0.0020 (8)
N230.0188 (9)0.0151 (8)0.0153 (8)0.0024 (6)0.0032 (7)0.0009 (6)
N240.0153 (8)0.0145 (8)0.0155 (8)0.0022 (6)0.0027 (6)0.0012 (6)
C250.0202 (10)0.0183 (10)0.0135 (10)0.0004 (8)0.0028 (8)0.0006 (8)
N2110.0222 (10)0.0233 (10)0.0267 (10)0.0030 (7)0.0033 (8)0.0048 (8)
O2110.0200 (9)0.0370 (10)0.0666 (14)0.0035 (7)0.0120 (8)0.0036 (9)
O2120.0325 (9)0.0179 (8)0.0616 (13)0.0045 (7)0.0065 (8)0.0037 (8)
C2210.0225 (11)0.0269 (12)0.0339 (13)0.0080 (9)0.0083 (10)0.0023 (10)
C2310.0303 (12)0.0137 (10)0.0312 (13)0.0002 (8)0.0075 (10)0.0007 (9)
C2410.0171 (10)0.0234 (11)0.0298 (12)0.0028 (8)0.0034 (9)0.0004 (9)
C2510.0244 (12)0.0171 (10)0.0311 (13)0.0035 (8)0.0050 (9)0.0022 (9)
C310.0202 (11)0.0213 (11)0.0205 (11)0.0009 (8)0.0004 (8)0.0012 (8)
C320.0257 (11)0.0231 (11)0.0166 (11)0.0019 (8)0.0051 (8)0.0009 (8)
C330.0231 (11)0.0231 (11)0.0196 (11)0.0031 (8)0.0061 (9)0.0000 (8)
C340.0179 (10)0.0173 (10)0.0195 (11)0.0011 (8)0.0029 (8)0.0008 (8)
C350.0220 (11)0.0208 (10)0.0181 (11)0.0004 (8)0.0055 (8)0.0021 (8)
C360.0158 (10)0.0223 (10)0.0240 (11)0.0014 (8)0.0043 (8)0.0018 (9)
C3110.0226 (12)0.0360 (13)0.0255 (12)0.0044 (9)0.0011 (9)0.0036 (10)
N3210.0319 (11)0.0387 (11)0.0200 (10)0.0074 (9)0.0054 (9)0.0010 (8)
O3210.0452 (11)0.0594 (12)0.0259 (10)0.0059 (9)0.0011 (8)0.0111 (9)
O3220.0471 (12)0.0781 (14)0.0307 (11)0.0063 (10)0.0198 (9)0.0012 (10)
S340.0177 (3)0.0218 (3)0.0172 (3)0.00331 (19)0.0023 (2)0.0008 (2)
O3410.0193 (8)0.0300 (8)0.0324 (9)0.0011 (6)0.0046 (7)0.0048 (7)
O3420.0256 (8)0.0246 (8)0.0337 (9)0.0026 (6)0.0001 (7)0.0036 (7)
O3430.0307 (9)0.0531 (11)0.0192 (8)0.0142 (8)0.0020 (7)0.0080 (8)
N3610.0213 (10)0.0313 (10)0.0304 (11)0.0046 (8)0.0058 (8)0.0003 (9)
O3610.0196 (9)0.0719 (13)0.0440 (11)0.0008 (8)0.0060 (8)0.0086 (10)
O3620.0377 (10)0.0424 (11)0.0527 (12)0.0071 (8)0.0179 (9)0.0135 (9)
C410.0168 (10)0.0263 (11)0.0204 (11)0.0024 (8)0.0080 (8)0.0058 (9)
C420.0149 (10)0.0238 (11)0.0186 (10)0.0033 (8)0.0045 (8)0.0019 (8)
C430.0167 (10)0.0169 (10)0.0213 (11)0.0013 (7)0.0044 (8)0.0007 (8)
C440.0139 (10)0.0202 (10)0.0184 (10)0.0003 (7)0.0021 (8)0.0009 (8)
C450.0175 (10)0.0207 (10)0.0232 (11)0.0030 (8)0.0059 (8)0.0023 (9)
C460.0190 (10)0.0153 (10)0.0277 (12)0.0011 (8)0.0083 (9)0.0040 (8)
C4110.0262 (12)0.0351 (13)0.0270 (13)0.0034 (10)0.0019 (10)0.0113 (10)
N4210.0203 (9)0.0278 (10)0.0211 (10)0.0014 (7)0.0022 (7)0.0020 (8)
O4210.0465 (11)0.0525 (11)0.0231 (9)0.0110 (8)0.0145 (8)0.0095 (8)
O4220.0290 (9)0.0377 (9)0.0349 (10)0.0134 (7)0.0102 (7)0.0108 (8)
S440.0176 (3)0.0246 (3)0.0172 (3)0.00078 (19)0.0000 (2)0.0009 (2)
O4410.0185 (8)0.0482 (10)0.0260 (9)0.0066 (7)0.0024 (6)0.0056 (7)
O4420.0358 (9)0.0337 (9)0.0218 (8)0.0033 (7)0.0017 (7)0.0073 (7)
O4430.0299 (9)0.0286 (8)0.0260 (9)0.0017 (7)0.0029 (7)0.0076 (7)
N4610.0292 (10)0.0193 (9)0.0352 (12)0.0034 (7)0.0134 (9)0.0057 (9)
O4610.0551 (12)0.0277 (9)0.0453 (11)0.0074 (8)0.0253 (9)0.0128 (8)
O4620.0608 (12)0.0204 (8)0.0401 (11)0.0018 (8)0.0133 (9)0.0040 (8)
C510.0283 (12)0.0231 (11)0.0251 (12)0.0057 (9)0.0119 (9)0.0028 (9)
C520.0210 (10)0.0220 (10)0.0194 (11)0.0004 (8)0.0041 (8)0.0006 (8)
C530.0257 (11)0.0215 (10)0.0145 (10)0.0002 (8)0.0055 (8)0.0011 (8)
C540.0208 (11)0.0221 (10)0.0188 (11)0.0026 (8)0.0044 (8)0.0006 (8)
C550.0250 (11)0.0347 (12)0.0155 (11)0.0097 (9)0.0019 (9)0.0004 (9)
C560.0331 (13)0.0332 (12)0.0147 (10)0.0127 (10)0.0095 (9)0.0040 (9)
C5110.0320 (13)0.0405 (14)0.0339 (14)0.0052 (10)0.0180 (11)0.0063 (11)
N5210.0223 (10)0.0365 (11)0.0263 (11)0.0052 (8)0.0082 (8)0.0050 (9)
O5210.0275 (9)0.0619 (12)0.0231 (9)0.0058 (8)0.0003 (7)0.0076 (8)
O5220.0337 (10)0.0433 (10)0.0493 (12)0.0172 (8)0.0133 (9)0.0091 (9)
S540.0204 (3)0.0285 (3)0.0194 (3)0.0016 (2)0.0036 (2)0.0006 (2)
O5410.0336 (9)0.0247 (9)0.0492 (11)0.0037 (7)0.0086 (8)0.0025 (8)
O5420.0223 (8)0.0295 (9)0.0367 (10)0.0041 (6)0.0093 (7)0.0040 (7)
O5430.0286 (9)0.0758 (13)0.0193 (9)0.0104 (9)0.0078 (7)0.0009 (9)
N5610.0392 (13)0.0603 (15)0.0200 (11)0.0264 (11)0.0118 (10)0.0077 (11)
O5610.0457 (12)0.0890 (16)0.0174 (9)0.0221 (11)0.0050 (8)0.0056 (10)
O5620.0687 (14)0.0712 (14)0.0332 (11)0.0224 (11)0.0299 (10)0.0256 (10)
O10.0469 (12)0.0250 (10)0.0378 (11)0.0014 (8)0.0063 (9)0.0065 (8)
O20.0240 (9)0.0292 (9)0.0431 (11)0.0052 (7)0.0071 (8)0.0008 (8)
Geometric parameters (Å, º) top
C11—C121.394 (3)C311—H31A0.9800
C11—C151.398 (3)C311—H31B0.9800
C11—N1111.430 (3)C311—H31C0.9800
C12—N131.333 (3)N321—O3221.208 (3)
C12—C1211.487 (3)N321—O3211.230 (3)
N13—N141.368 (2)S34—O3431.4375 (17)
N13—C1311.461 (3)S34—O3411.4536 (16)
N14—C151.338 (3)S34—O3421.4567 (16)
N14—C1411.466 (3)N361—O3621.219 (3)
C15—C1511.476 (3)N361—O3611.221 (3)
N111—O1121.226 (2)C41—C461.393 (3)
N111—O1111.229 (2)C41—C421.393 (3)
C121—H12A0.9800C41—C4111.507 (3)
C121—H12B0.9800C42—C431.383 (3)
C121—H12C0.9800C42—N4211.478 (3)
C131—H13A0.9800C43—C441.389 (3)
C131—H13B0.9800C43—H430.9500
C131—H13C0.9800C44—C451.381 (3)
C141—H14A0.9800C44—S441.778 (2)
C141—H14B0.9800C45—C461.383 (3)
C141—H14C0.9800C45—H450.9500
C151—H15A0.9800C46—N4611.476 (3)
C151—H15B0.9800C411—H41A0.9800
C151—H15C0.9800C411—H41B0.9800
C21—C251.393 (3)C411—H41C0.9800
C21—C221.394 (3)N421—O4211.217 (2)
C21—N2111.434 (3)N421—O4221.221 (2)
C22—N231.334 (3)S44—O4431.4379 (16)
C22—C2211.483 (3)S44—O4421.4472 (17)
N23—N241.369 (2)S44—O4411.4577 (16)
N23—C2311.460 (3)N461—O4611.206 (3)
N24—C251.333 (3)N461—O4621.230 (3)
N24—C2411.462 (3)C51—C521.392 (3)
C25—C2511.483 (3)C51—C561.399 (3)
N211—O2121.220 (2)C51—C5111.515 (3)
N211—O2111.227 (2)C52—C531.388 (3)
C221—H22A0.9800C52—N5211.474 (3)
C221—H22B0.9800C53—C541.378 (3)
C221—H22C0.9800C53—H530.9500
C231—H23A0.9800C54—C551.392 (3)
C231—H23B0.9800C54—S541.784 (2)
C231—H23C0.9800C55—C561.377 (3)
C241—H24A0.9800C55—H550.9500
C241—H24B0.9800C56—N5611.473 (3)
C241—H24C0.9800C511—H51A0.9800
C251—H25A0.9800C511—H51B0.9800
C251—H25B0.9800C511—H51C0.9800
C251—H25C0.9800N521—O5221.223 (2)
C31—C361.400 (3)N521—O5211.224 (3)
C31—C321.407 (3)S54—O5431.4385 (18)
C31—C3111.506 (3)S54—O5421.4472 (16)
C32—C331.382 (3)S54—O5411.4564 (17)
C32—N3211.475 (3)N561—O5621.225 (3)
C33—C341.386 (3)N561—O5611.229 (3)
C33—H330.9500O1—H1A0.83 (4)
C34—C351.385 (3)O1—H1B0.90 (3)
C34—S341.777 (2)O1—H2C1.42 (5)
C35—C361.384 (3)O2—H2A0.95 (3)
C35—H350.9500O2—H2B0.87 (3)
C36—N3611.472 (3)O2—H2C1.02 (5)
C12—C11—C15109.28 (18)C35—C36—C31124.23 (19)
C12—C11—N111126.27 (18)C35—C36—N361115.73 (19)
C15—C11—N111124.45 (18)C31—C36—N361120.03 (18)
N13—C12—C11105.33 (17)C31—C311—H31A109.5
N13—C12—C121122.20 (18)C31—C311—H31B109.5
C11—C12—C121132.31 (19)H31A—C311—H31B109.5
C12—N13—N14110.38 (16)C31—C311—H31C109.5
C12—N13—C131128.37 (17)H31A—C311—H31C109.5
N14—N13—C131121.18 (16)H31B—C311—H31C109.5
C15—N14—N13109.41 (16)O322—N321—O321124.7 (2)
C15—N14—C141129.72 (17)O322—N321—C32117.60 (19)
N13—N14—C141120.81 (16)O321—N321—C32117.6 (2)
N14—C15—C11105.57 (17)O343—S34—O341114.45 (10)
N14—C15—C151123.86 (18)O343—S34—O342113.10 (11)
C11—C15—C151130.54 (19)O341—S34—O342111.77 (9)
O112—N111—O111123.51 (18)O343—S34—C34106.10 (10)
O112—N111—C11117.99 (17)O341—S34—C34105.36 (10)
O111—N111—C11118.49 (17)O342—S34—C34105.11 (9)
C12—C121—H12A109.5O362—N361—O361124.6 (2)
C12—C121—H12B109.5O362—N361—C36117.64 (18)
H12A—C121—H12B109.5O361—N361—C36117.66 (19)
C12—C121—H12C109.5C46—C41—C42113.89 (18)
H12A—C121—H12C109.5C46—C41—C411125.07 (19)
H12B—C121—H12C109.5C42—C41—C411120.81 (19)
N13—C131—H13A109.5C43—C42—C41125.11 (19)
N13—C131—H13B109.5C43—C42—N421116.72 (18)
H13A—C131—H13B109.5C41—C42—N421118.16 (18)
N13—C131—H13C109.5C42—C43—C44117.80 (18)
H13A—C131—H13C109.5C42—C43—H43121.1
H13B—C131—H13C109.5C44—C43—H43121.1
N14—C141—H14A109.5C45—C44—C43120.07 (19)
N14—C141—H14B109.5C45—C44—S44118.56 (15)
H14A—C141—H14B109.5C43—C44—S44121.33 (15)
N14—C141—H14C109.5C44—C45—C46119.49 (19)
H14A—C141—H14C109.5C44—C45—H45120.3
H14B—C141—H14C109.5C46—C45—H45120.3
C15—C151—H15A109.5C45—C46—C41123.60 (19)
C15—C151—H15B109.5C45—C46—N461115.27 (19)
H15A—C151—H15B109.5C41—C46—N461121.08 (19)
C15—C151—H15C109.5C41—C411—H41A109.5
H15A—C151—H15C109.5C41—C411—H41B109.5
H15B—C151—H15C109.5H41A—C411—H41B109.5
C25—C21—C22109.20 (17)C41—C411—H41C109.5
C25—C21—N211124.98 (18)H41A—C411—H41C109.5
C22—C21—N211125.77 (18)H41B—C411—H41C109.5
N23—C22—C21105.53 (17)O421—N421—O422125.03 (19)
N23—C22—C221122.09 (18)O421—N421—C42117.41 (18)
C21—C22—C221132.37 (19)O422—N421—C42117.57 (18)
C22—N23—N24109.86 (15)O443—S44—O442114.57 (10)
C22—N23—C231129.34 (17)O443—S44—O441112.73 (10)
N24—N23—C231120.80 (16)O442—S44—O441112.66 (10)
C25—N24—N23109.72 (16)O443—S44—C44105.57 (9)
C25—N24—C241130.04 (17)O442—S44—C44104.55 (9)
N23—N24—C241120.15 (16)O441—S44—C44105.71 (9)
N24—C25—C21105.69 (17)O461—N461—O462123.85 (19)
N24—C25—C251122.90 (18)O461—N461—C46118.9 (2)
C21—C25—C251131.41 (18)O462—N461—C46117.18 (19)
O212—N211—O211123.63 (18)C52—C51—C56113.3 (2)
O212—N211—C21118.25 (18)C52—C51—C511123.5 (2)
O211—N211—C21118.12 (18)C56—C51—C511123.1 (2)
C22—C221—H22A109.5C53—C52—C51124.68 (19)
C22—C221—H22B109.5C53—C52—N521114.74 (19)
H22A—C221—H22B109.5C51—C52—N521120.57 (19)
C22—C221—H22C109.5C54—C53—C52119.1 (2)
H22A—C221—H22C109.5C54—C53—H53120.5
H22B—C221—H22C109.5C52—C53—H53120.5
N23—C231—H23A109.5C53—C54—C55119.2 (2)
N23—C231—H23B109.5C53—C54—S54121.58 (17)
H23A—C231—H23B109.5C55—C54—S54119.14 (16)
N23—C231—H23C109.5C56—C55—C54119.3 (2)
H23A—C231—H23C109.5C56—C55—H55120.4
H23B—C231—H23C109.5C54—C55—H55120.4
N24—C241—H24A109.5C55—C56—C51124.5 (2)
N24—C241—H24B109.5C55—C56—N561115.0 (2)
H24A—C241—H24B109.5C51—C56—N561120.5 (2)
N24—C241—H24C109.5C51—C511—H51A109.5
H24A—C241—H24C109.5C51—C511—H51B109.5
H24B—C241—H24C109.5H51A—C511—H51B109.5
C25—C251—H25A109.5C51—C511—H51C109.5
C25—C251—H25B109.5H51A—C511—H51C109.5
H25A—C251—H25B109.5H51B—C511—H51C109.5
C25—C251—H25C109.5O522—N521—O521124.9 (2)
H25A—C251—H25C109.5O522—N521—C52117.94 (19)
H25B—C251—H25C109.5O521—N521—C52117.15 (18)
C36—C31—C32113.35 (18)O543—S54—O542115.03 (11)
C36—C31—C311123.1 (2)O543—S54—O541114.45 (11)
C32—C31—C311123.5 (2)O542—S54—O541111.60 (10)
C33—C32—C31124.6 (2)O543—S54—C54105.28 (10)
C33—C32—N321115.96 (19)O542—S54—C54104.17 (10)
C31—C32—N321119.42 (18)O541—S54—C54105.00 (10)
C32—C33—C34118.7 (2)O562—N561—O561125.2 (2)
C32—C33—H33120.7O562—N561—C56118.3 (2)
C34—C33—H33120.7O561—N561—C56116.5 (2)
C35—C34—C33119.94 (19)H1A—O1—H1B102 (3)
C35—C34—S34119.84 (16)H1A—O1—H2C126 (3)
C33—C34—S34120.22 (16)H1B—O1—H2C126 (3)
C36—C35—C34119.2 (2)H2A—O2—H2B112 (3)
C36—C35—H35120.4H2A—O2—H2C111 (3)
C34—C35—H35120.4H2B—O2—H2C110 (3)
C15—C11—C12—N131.8 (2)C33—C34—S34—O343168.30 (17)
N111—C11—C12—N13178.77 (19)C35—C34—S34—O341132.94 (17)
C15—C11—C12—C121173.7 (2)C33—C34—S34—O34146.56 (19)
N111—C11—C12—C1215.8 (4)C35—C34—S34—O342108.87 (18)
C11—C12—N13—N141.7 (2)C33—C34—S34—O34271.64 (19)
C121—C12—N13—N14174.35 (18)C35—C36—N361—O36244.8 (3)
C11—C12—N13—C131178.4 (2)C31—C36—N361—O362136.4 (2)
C121—C12—N13—C1312.4 (3)C35—C36—N361—O361132.2 (2)
C12—N13—N14—C151.0 (2)C31—C36—N361—O36146.5 (3)
C131—N13—N14—C15178.01 (18)C46—C41—C42—C432.3 (3)
C12—N13—N14—C141176.53 (18)C411—C41—C42—C43172.5 (2)
C131—N13—N14—C1410.5 (3)C46—C41—C42—N421179.04 (18)
N13—N14—C15—C110.2 (2)C411—C41—C42—N4216.1 (3)
C141—N14—C15—C11177.4 (2)C41—C42—C43—C442.1 (3)
N13—N14—C15—C151178.23 (19)N421—C42—C43—C44179.27 (18)
C141—N14—C15—C1514.5 (3)C42—C43—C44—C450.4 (3)
C12—C11—C15—N141.2 (2)C42—C43—C44—S44178.08 (15)
N111—C11—C15—N14179.33 (18)C43—C44—C45—C460.7 (3)
C12—C11—C15—C151179.1 (2)S44—C44—C45—C46176.98 (16)
N111—C11—C15—C1511.4 (4)C44—C45—C46—C410.4 (3)
C12—C11—N111—O112174.5 (2)C44—C45—C46—N461177.05 (19)
C15—C11—N111—O1124.9 (3)C42—C41—C46—C451.0 (3)
C12—C11—N111—O1114.6 (3)C411—C41—C46—C45173.6 (2)
C15—C11—N111—O111176.05 (19)C42—C41—C46—N461178.36 (19)
C25—C21—C22—N230.4 (2)C411—C41—C46—N4613.7 (3)
N211—C21—C22—N23177.86 (19)C43—C42—N421—O421117.8 (2)
C25—C21—C22—C221178.5 (2)C41—C42—N421—O42163.5 (3)
N211—C21—C22—C2211.0 (4)C43—C42—N421—O42262.1 (3)
C21—C22—N23—N240.2 (2)C41—C42—N421—O422116.7 (2)
C221—C22—N23—N24178.82 (19)C45—C44—S44—O443146.56 (17)
C21—C22—N23—C231179.9 (2)C43—C44—S44—O44331.1 (2)
C221—C22—N23—C2311.2 (3)C45—C44—S44—O44225.34 (19)
C22—N23—N24—C250.1 (2)C43—C44—S44—O442152.36 (17)
C231—N23—N24—C25179.87 (18)C45—C44—S44—O44193.77 (18)
C22—N23—N24—C241177.07 (18)C43—C44—S44—O44188.53 (18)
C231—N23—N24—C2412.9 (3)C45—C46—N461—O461147.5 (2)
N23—N24—C25—C210.3 (2)C41—C46—N461—O46135.0 (3)
C241—N24—C25—C21176.9 (2)C45—C46—N461—O46230.5 (3)
N23—N24—C25—C251178.74 (19)C41—C46—N461—O462147.0 (2)
C241—N24—C25—C2512.2 (3)C56—C51—C52—C530.0 (3)
C22—C21—C25—N240.4 (2)C511—C51—C52—C53175.8 (2)
N211—C21—C25—N24177.95 (19)C56—C51—C52—N521178.73 (19)
C22—C21—C25—C251178.5 (2)C511—C51—C52—N5215.5 (3)
N211—C21—C25—C2511.0 (4)C51—C52—C53—C540.0 (3)
C25—C21—N211—O2125.4 (3)N521—C52—C53—C54178.77 (18)
C22—C21—N211—O212171.7 (2)C52—C53—C54—C550.5 (3)
C25—C21—N211—O211175.3 (2)C52—C53—C54—S54176.65 (16)
C22—C21—N211—O2117.6 (3)C53—C54—C55—C561.0 (3)
C36—C31—C32—C331.3 (3)S54—C54—C55—C56176.26 (17)
C311—C31—C32—C33175.3 (2)C54—C55—C56—C511.0 (3)
C36—C31—C32—N321178.28 (19)C54—C55—C56—N561177.1 (2)
C311—C31—C32—N3215.1 (3)C52—C51—C56—C550.5 (3)
C31—C32—C33—C341.1 (3)C511—C51—C56—C55175.3 (2)
N321—C32—C33—C34178.51 (18)C52—C51—C56—N561177.5 (2)
C32—C33—C34—C351.3 (3)C511—C51—C56—N5616.7 (3)
C32—C33—C34—S34179.18 (16)C53—C52—N521—O522137.4 (2)
C33—C34—C35—C361.9 (3)C51—C52—N521—O52241.5 (3)
S34—C34—C35—C36178.60 (16)C53—C52—N521—O52141.0 (3)
C34—C35—C36—C312.3 (3)C51—C52—N521—O521140.1 (2)
C34—C35—C36—N361176.42 (18)C53—C54—S54—O5436.6 (2)
C32—C31—C36—C351.9 (3)C55—C54—S54—O543170.62 (18)
C311—C31—C36—C35174.7 (2)C53—C54—S54—O542127.98 (18)
C32—C31—C36—N361176.76 (18)C55—C54—S54—O54249.20 (19)
C311—C31—C36—N3616.6 (3)C53—C54—S54—O541114.59 (18)
C33—C32—N321—O32238.2 (3)C55—C54—S54—O54168.23 (19)
C31—C32—N321—O322142.1 (2)C55—C56—N561—O562138.9 (2)
C33—C32—N321—O321139.3 (2)C51—C56—N561—O56239.3 (3)
C31—C32—N321—O32140.3 (3)C55—C56—N561—O56139.1 (3)
C35—C34—S34—O34311.2 (2)C51—C56—N561—O561142.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O11.02 (5)1.42 (5)2.433 (3)176 (4)
O1—H1A···O5410.83 (4)1.85 (4)2.681 (3)176 (4)
O1—H1B···O3410.90 (3)1.79 (4)2.690 (2)173 (3)
O2—H2A···O441i0.95 (3)1.64 (4)2.570 (2)164 (3)
O2—H2B···O342ii0.87 (3)1.73 (3)2.590 (2)170 (3)
C43—H43···O462iii0.952.463.401 (3)172
C55—H55···O342ii0.952.553.212 (3)127
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1, z.
 

Acknowledgements

We are indebted to the EPSRC for the use of both the Chemical Database Service at Daresbury, England (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]), primarily for access to the Cambridge Structural Database, and the X-ray service at the University of Southampton, England, for data collection. We thank CNPq, Brazil, for financial support.

References

First citationBernal, J. D. & Fowler, R. H. (1933). J. Chem. Phys. 1, 515–548.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurton, A. G., Forsythe, P. P., Johnson, C. D. & Katritzky, A. R. (1971). J. Chem. Soc. B, pp. 2365–2371.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565–565.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchmidt, T. C., Steinbach, K., Buetehorn, U., Heck, K., Volkwein, U. & Stork, G. (1999). Chemosphere, 38, 3119–3130.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds