organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-2-[(2RS,3SR,6SR)-3-methyl-4-oxo-2,6-di­phenyl­piperidin-1-ylcarbon­yl]-2-phenyl­ethenyl phenyl­acetate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 8 March 2006; accepted 8 March 2006; online 17 March 2006)

Mol­ecules of the title compound, C42H37NO4, are weakly linked into chains by a C—H⋯O hydrogen bond and pairs of such chains are linked by a single aromatic ππ stacking inter­action.

Comment

The reactions of acyl chlorides with piperidines in a 1:1 molar ratio in the presence of a suitable base yields the N-acyl derivatives, but the yields are sometimes low. This observation prompted us to carry out the reaction of 3-methyl-2,6-diphenyl­piperidin-4-one with an excess of phenyl­acetyl chloride. The 13C NMR spectrum of the product contained three absorptions at 168, 170 and 210 p.p.m. indicative of the presence of three different carbonyl environments. The present investigation was therefore undertaken to establish the constitution, configuration and conformation of the product, the title compound, (I)[link] (Fig. 1[link]).

[Scheme 1]

The piperidone ring adopts a boat conformation with a pseudo-mirror plane containing atoms C33 and C36; the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence N31–C32–C33–C34–C35–C36 are θ = 94.1 (2)° and φ = 122.0 (2)°, very close to the ideal values for a boat conformation of θ = 90° and φ = (60n)°. The substituents at C32 and C33 occupy equatorial sites and that at C36 occupies an axial site. In the selected reference mol­ecule, the configuration at C22 is R and those at C33 and C36 are both S. The centrosymmetric space group accommodates equal numbers of the RSS and SRR enanti­omers.

The presence of a vinylic ester is shown clearly by the geometry involving atoms C1 and C2 (Table 1[link]). There are two C—H⋯O hydrogen bonds within the mol­ecule, both involving atom O1 as the acceptor (Table 2[link]), and these may have some influence on the overall mol­ecular conformation. A third hydrogen bond (Table 2[link]) links the mol­ecules into chains: atom C47 at (x, y, z) acts as donor, via H47A, to atom O4 at (−1 + x, y, z), so generating by translation a C(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [100] direction (Fig. 2[link]). Two such chains, related to one another by inversion, pass through each unit cell and these chains are linked by a ππ stacking inter­action. The C61–C66 rings in the mol­ecules at (x, y, z) and (1 − x, 1 − y, −z) are strictly parallel, with an inter­planar spacing of 3.523 (2) Å; the ring-centroid separation is 3.868 (2) Å, corresponding to a ring offset of 1.597 (2) Å. Propagation of this inter­action by translation and inversion then links a pair of [100] chains into a mol­ecular ladder (Fig. 2[link]).

[Figure 1]
Figure 1
The RSS enanti­omer of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoscopic view of part of the crystal structure of (I)[link], showing the formation of a π-stacked pair of C(12) chains along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Experimental

The title compound was prepared by heating under reflux a benzene solution of 3-methyl-2,6-diphenylpiperidin-4-one with a fourfold molar excess of phenyl­acetyl chloride in the presence of triethyl­amine. The resulting solid product was crystallized from aqueous ethanol, yielding crystals suitable for single-crystal X-ray diffraction (yield 48%, m.p. 419–421 K).

Crystal data
  • C42H37NO4

  • Mr = 619.73

  • Triclinic, [P \overline 1]

  • a = 9.3027 (3) Å

  • b = 12.1333 (5) Å

  • c = 14.5927 (6) Å

  • α = 88.7510 (17)°

  • β = 78.574 (3)°

  • γ = 85.653 (2)°

  • V = 1609.79 (11) Å3

  • Z = 2

  • Dx = 1.279 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7258 reflections

  • θ = 2.9–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.13 × 0.07 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.985, Tmax = 0.997

  • 34829 measured reflections

  • 7423 independent reflections

  • 4485 reflections with I > 2σ(I)

  • Rint = 0.091

  • θmax = 27.7°

  • h = −12 → 10

  • k = −15 → 15

  • l = −19 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.153

  • S = 1.01

  • 7423 reflections

  • 425 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6078P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.332 (3)
C1—O1 1.415 (2)
C1—C17 1.494 (3)
C2—C3 1.519 (3)
C2—C21 1.485 (3)
C2—C1—O1 114.70 (18)
C2—C1—C17 130.9 (2)
O1—C1—C17 114.38 (17)
C1—C2—C3 116.53 (19)
C1—C2—C21 127.73 (19)
C3—C2—C21 115.55 (17)
O1—C1—C2—C3 −7.7 (3)
O1—C1—C2—C21 177.47 (18)
C17—C1—C2—C21 −1.3 (4)
C17—C1—C2—C3 173.5 (2)
C36—N31—C32—C51 −115.6 (2)
N31—C32—C33—C37 165.83 (19)
C34—C35—C36—C61 −77.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.95 2.42 3.075 (3) 126
C47—H47A⋯O4i 0.99 2.59 3.571 (3) 172
C66—H66⋯O1 0.95 2.53 3.469 (3) 172
Symmetry code: (i) x-1, y, z.

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

1-Benzyl-2-[(2RS,3SR,6SR)-3-methyl-4-oxo-2,6-diphenylpiperidin-1-ylcarbonyl]- 2-phenylethenyl phenylacetate top
Crystal data top
C42H37NO4Z = 2
Mr = 619.73F(000) = 656
Triclinic, P1Dx = 1.279 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3027 (3) ÅCell parameters from 7258 reflections
b = 12.1333 (5) Åθ = 2.9–27.5°
c = 14.5927 (6) ŵ = 0.08 mm1
α = 88.7510 (17)°T = 120 K
β = 78.574 (3)°Plate, colourless
γ = 85.653 (2)°0.13 × 0.07 × 0.03 mm
V = 1609.79 (11) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7423 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.0°
φ and ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.985, Tmax = 0.997l = 1918
34829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6078P]
where P = (Fo2 + 2Fc2)/3
7423 reflections(Δ/σ)max < 0.001
425 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.28 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2356 (2)0.43745 (17)0.33712 (14)0.0236 (5)
C170.1334 (2)0.53735 (18)0.36474 (14)0.0255 (5)
C110.0816 (2)0.60214 (18)0.28508 (15)0.0260 (5)
C120.0602 (3)0.5520 (2)0.20435 (16)0.0335 (6)
C130.0064 (3)0.6143 (2)0.13589 (17)0.0358 (6)
C140.0288 (3)0.7261 (2)0.14681 (17)0.0353 (6)
C150.0094 (3)0.7758 (2)0.22692 (18)0.0395 (6)
C160.0463 (3)0.7141 (2)0.29531 (17)0.0340 (6)
O10.16875 (15)0.34768 (12)0.30674 (10)0.0256 (3)
C40.0938 (2)0.28122 (18)0.37423 (16)0.0261 (5)
O20.06080 (17)0.30686 (13)0.45492 (11)0.0314 (4)
C470.0658 (3)0.17689 (19)0.32941 (16)0.0319 (5)
C410.0574 (2)0.11470 (18)0.38370 (15)0.0267 (5)
C420.1918 (3)0.1688 (2)0.42342 (17)0.0351 (6)
C430.3067 (3)0.1106 (2)0.47079 (18)0.0392 (6)
C440.2887 (3)0.0033 (2)0.47951 (17)0.0364 (6)
C450.1564 (3)0.0582 (2)0.44091 (17)0.0367 (6)
C460.0423 (3)0.00086 (19)0.39343 (17)0.0337 (6)
C20.3793 (2)0.41933 (17)0.33484 (14)0.0224 (5)
C210.4813 (2)0.49775 (18)0.35853 (14)0.0232 (5)
C220.5994 (2)0.4542 (2)0.39704 (15)0.0292 (5)
C230.7003 (3)0.5218 (2)0.41917 (16)0.0352 (6)
C240.6862 (3)0.6342 (2)0.40385 (16)0.0375 (6)
C250.5708 (3)0.6784 (2)0.36463 (16)0.0346 (6)
C260.4689 (2)0.61127 (18)0.34235 (15)0.0277 (5)
C30.4454 (2)0.30227 (18)0.31279 (15)0.0240 (5)
O30.42009 (17)0.22856 (12)0.37155 (10)0.0298 (4)
N310.53379 (19)0.28357 (14)0.22807 (12)0.0237 (4)
C320.6095 (2)0.17035 (17)0.21216 (15)0.0257 (5)
C510.5041 (2)0.08504 (18)0.19800 (16)0.0287 (5)
C520.4433 (3)0.0850 (2)0.11868 (18)0.0366 (6)
C530.3486 (3)0.0059 (2)0.1075 (2)0.0452 (7)
C540.3135 (3)0.0740 (2)0.1749 (2)0.0490 (7)
C550.3730 (3)0.0747 (2)0.2543 (2)0.0461 (7)
C560.4681 (3)0.0039 (2)0.26610 (18)0.0370 (6)
C330.7436 (2)0.17069 (19)0.13054 (16)0.0301 (5)
C370.8405 (3)0.0642 (2)0.13068 (19)0.0457 (7)
C340.8295 (3)0.2720 (2)0.12965 (16)0.0338 (6)
O40.96224 (18)0.26760 (16)0.11562 (14)0.0520 (5)
C350.7406 (2)0.3808 (2)0.14707 (16)0.0316 (5)
C360.5752 (2)0.37259 (18)0.15922 (15)0.0253 (5)
C610.5154 (2)0.35869 (17)0.07048 (14)0.0243 (5)
C620.6029 (2)0.35915 (19)0.01801 (15)0.0295 (5)
C630.5429 (3)0.3476 (2)0.09700 (16)0.0342 (6)
C640.3938 (3)0.3367 (2)0.08813 (16)0.0340 (6)
C650.3051 (3)0.3382 (2)0.00000 (16)0.0326 (5)
C660.3652 (2)0.34915 (19)0.07836 (16)0.0296 (5)
H17A0.18280.58780.39880.031*
H17B0.04570.51390.40890.031*
H120.08260.47470.19610.040*
H130.00630.57920.08080.043*
H140.06580.76830.09980.042*
H150.03420.85280.23560.047*
H160.06010.74980.34990.041*
H47A0.04370.19570.26710.038*
H47B0.15710.12740.31970.038*
H420.20490.24690.41800.042*
H430.39790.14880.49730.047*
H440.36740.04330.51200.044*
H450.14330.13620.44680.044*
H460.04860.03780.36690.040*
H220.61060.37690.40820.035*
H230.78020.49050.44520.042*
H240.75490.68070.42000.045*
H250.56130.75570.35280.042*
H260.38980.64300.31580.033*
H320.64750.14850.26990.031*
H520.46680.13970.07160.044*
H530.30750.00670.05280.054*
H540.24860.12820.16690.059*
H550.34870.12950.30110.055*
H560.50900.00250.32090.044*
H330.70490.17230.07130.036*
H37A0.92320.06440.07730.069*
H37B0.78280.00100.12590.069*
H37C0.87810.05850.18890.069*
H35A0.77300.43120.09400.038*
H35B0.76130.41400.20400.038*
H360.52720.44320.18850.030*
H620.70520.36750.02490.035*
H630.60450.34710.15730.041*
H640.35270.32820.14200.041*
H650.20240.33170.00670.039*
H660.30320.35020.13850.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (12)0.0210 (11)0.0216 (11)0.0050 (9)0.0061 (9)0.0001 (9)
C170.0254 (12)0.0272 (12)0.0237 (11)0.0018 (9)0.0046 (9)0.0010 (9)
C110.0192 (11)0.0290 (13)0.0299 (12)0.0029 (9)0.0048 (9)0.0031 (10)
C120.0340 (13)0.0337 (14)0.0328 (13)0.0056 (10)0.0093 (10)0.0022 (11)
C130.0361 (14)0.0428 (15)0.0304 (13)0.0023 (11)0.0132 (11)0.0018 (11)
C140.0327 (13)0.0391 (15)0.0364 (14)0.0060 (11)0.0127 (11)0.0114 (11)
C150.0467 (15)0.0276 (14)0.0475 (16)0.0042 (11)0.0177 (12)0.0083 (12)
C160.0392 (14)0.0305 (14)0.0352 (13)0.0064 (11)0.0125 (11)0.0007 (11)
O10.0261 (8)0.0255 (8)0.0259 (8)0.0076 (6)0.0048 (6)0.0006 (6)
C40.0216 (11)0.0270 (12)0.0297 (13)0.0027 (9)0.0049 (9)0.0030 (10)
O20.0341 (9)0.0326 (9)0.0269 (9)0.0061 (7)0.0034 (7)0.0005 (7)
C470.0313 (13)0.0311 (13)0.0335 (13)0.0067 (10)0.0049 (10)0.0009 (10)
C410.0285 (12)0.0285 (13)0.0252 (12)0.0057 (9)0.0093 (9)0.0019 (10)
C420.0309 (13)0.0271 (13)0.0473 (15)0.0012 (10)0.0087 (11)0.0053 (11)
C430.0276 (13)0.0425 (16)0.0462 (15)0.0024 (11)0.0038 (11)0.0011 (12)
C440.0339 (14)0.0398 (15)0.0374 (14)0.0151 (11)0.0073 (11)0.0045 (11)
C450.0413 (14)0.0257 (13)0.0446 (15)0.0090 (11)0.0097 (12)0.0020 (11)
C460.0316 (13)0.0287 (13)0.0405 (14)0.0020 (10)0.0053 (10)0.0058 (11)
C20.0235 (11)0.0232 (12)0.0203 (11)0.0021 (8)0.0043 (8)0.0020 (9)
C210.0229 (11)0.0251 (12)0.0213 (11)0.0033 (9)0.0034 (8)0.0005 (9)
C220.0248 (12)0.0332 (13)0.0293 (12)0.0007 (9)0.0054 (9)0.0004 (10)
C230.0268 (12)0.0494 (17)0.0318 (13)0.0053 (11)0.0105 (10)0.0003 (12)
C240.0332 (14)0.0483 (17)0.0326 (13)0.0167 (11)0.0048 (11)0.0055 (12)
C250.0417 (14)0.0307 (14)0.0319 (13)0.0118 (11)0.0045 (11)0.0012 (11)
C260.0307 (12)0.0274 (13)0.0264 (12)0.0052 (9)0.0078 (9)0.0009 (10)
C30.0237 (11)0.0239 (12)0.0253 (11)0.0021 (9)0.0070 (9)0.0008 (9)
O30.0367 (9)0.0245 (9)0.0268 (8)0.0008 (7)0.0032 (7)0.0038 (7)
N310.0265 (10)0.0216 (10)0.0225 (9)0.0010 (7)0.0039 (7)0.0001 (7)
C320.0268 (12)0.0226 (12)0.0266 (12)0.0032 (9)0.0046 (9)0.0000 (9)
C510.0298 (12)0.0223 (12)0.0320 (12)0.0016 (9)0.0023 (10)0.0040 (10)
C520.0406 (14)0.0281 (13)0.0430 (15)0.0047 (11)0.0123 (11)0.0015 (11)
C530.0504 (16)0.0360 (16)0.0533 (17)0.0042 (12)0.0191 (13)0.0095 (13)
C540.0417 (16)0.0321 (15)0.073 (2)0.0103 (12)0.0070 (14)0.0118 (14)
C550.0496 (16)0.0298 (15)0.0543 (18)0.0061 (12)0.0018 (13)0.0003 (13)
C560.0411 (14)0.0278 (13)0.0403 (14)0.0004 (11)0.0043 (11)0.0018 (11)
C330.0266 (12)0.0317 (13)0.0310 (12)0.0045 (10)0.0060 (10)0.0003 (10)
C370.0413 (15)0.0459 (17)0.0470 (16)0.0107 (12)0.0064 (12)0.0050 (13)
C340.0268 (13)0.0456 (15)0.0289 (13)0.0013 (10)0.0060 (10)0.0050 (11)
O40.0228 (10)0.0608 (13)0.0701 (13)0.0009 (8)0.0059 (8)0.0136 (10)
C350.0294 (13)0.0370 (14)0.0294 (12)0.0078 (10)0.0066 (10)0.0026 (10)
C360.0256 (11)0.0245 (12)0.0259 (11)0.0043 (9)0.0050 (9)0.0028 (9)
C610.0277 (12)0.0216 (12)0.0234 (11)0.0007 (9)0.0052 (9)0.0026 (9)
C620.0262 (12)0.0320 (13)0.0296 (12)0.0011 (10)0.0044 (10)0.0025 (10)
C630.0375 (14)0.0386 (15)0.0243 (12)0.0001 (11)0.0020 (10)0.0026 (10)
C640.0386 (14)0.0370 (14)0.0282 (13)0.0008 (11)0.0118 (10)0.0002 (11)
C650.0304 (13)0.0369 (14)0.0310 (13)0.0007 (10)0.0084 (10)0.0032 (11)
C660.0276 (12)0.0343 (13)0.0261 (12)0.0014 (10)0.0051 (9)0.0017 (10)
Geometric parameters (Å, º) top
C1—C21.332 (3)C25—H250.95
C1—O11.415 (2)C26—H260.95
C1—C171.494 (3)C3—O31.228 (2)
C17—C111.525 (3)C3—N311.355 (3)
C17—H17A0.99N31—C361.479 (3)
C17—H17B0.99N31—C321.497 (3)
C11—C161.377 (3)C32—C511.523 (3)
C11—C121.393 (3)C32—C331.545 (3)
C12—C131.389 (3)C32—H321.00
C12—H120.95C51—C521.385 (3)
C13—C141.377 (3)C51—C561.395 (3)
C13—H130.95C52—C531.384 (3)
C14—C151.376 (3)C52—H520.95
C14—H140.95C53—C541.376 (4)
C15—C161.393 (3)C53—H530.95
C15—H150.95C54—C551.379 (4)
C16—H160.95C54—H540.95
O1—C41.373 (3)C55—C561.384 (4)
C4—O21.198 (3)C55—H550.95
C4—C471.500 (3)C56—H560.95
C47—C411.502 (3)C33—C341.514 (3)
C47—H47A0.99C33—C371.518 (3)
C47—H47B0.99C33—H331.00
C41—C461.385 (3)C37—H37A0.98
C41—C421.391 (3)C37—H37B0.98
C42—C431.386 (3)C37—H37C0.98
C42—H420.95C34—O41.209 (3)
C43—C441.385 (3)C34—C351.502 (3)
C43—H430.95C35—C361.524 (3)
C44—C451.376 (3)C35—H35A0.99
C44—H440.95C35—H35B0.99
C45—C461.386 (3)C36—C611.525 (3)
C45—H450.95C36—H361.00
C46—H460.95C61—C621.384 (3)
C2—C31.519 (3)C61—C661.392 (3)
C2—C211.485 (3)C62—C631.390 (3)
C21—C261.392 (3)C62—H620.95
C21—C221.395 (3)C63—C641.384 (3)
C22—C231.380 (3)C63—H630.95
C22—H220.95C64—C651.383 (3)
C23—C241.378 (3)C64—H640.95
C23—H230.95C65—C661.382 (3)
C24—C251.382 (3)C65—H650.95
C24—H240.95C66—H660.95
C25—C261.386 (3)
C2—C1—O1114.70 (18)O3—C3—N31122.12 (19)
C2—C1—C17130.9 (2)O3—C3—C2119.98 (19)
O1—C1—C17114.38 (17)N31—C3—C2117.89 (18)
C1—C17—C11115.99 (18)C3—N31—C36123.03 (18)
C1—C17—H17A108.3C3—N31—C32116.59 (17)
C11—C17—H17A108.3C36—N31—C32119.65 (17)
C1—C17—H17B108.3N31—C32—C51112.01 (17)
C11—C17—H17B108.3N31—C32—C33111.09 (17)
H17A—C17—H17B107.4C51—C32—C33111.77 (18)
C16—C11—C12118.3 (2)N31—C32—H32107.2
C16—C11—C17118.8 (2)C51—C32—H32107.2
C12—C11—C17122.8 (2)C33—C32—H32107.2
C13—C12—C11120.4 (2)C52—C51—C56118.7 (2)
C13—C12—H12119.8C52—C51—C32121.8 (2)
C11—C12—H12119.8C56—C51—C32119.5 (2)
C14—C13—C12120.9 (2)C53—C52—C51120.5 (2)
C14—C13—H13119.5C53—C52—H52119.7
C12—C13—H13119.5C51—C52—H52119.7
C15—C14—C13118.9 (2)C54—C53—C52120.5 (3)
C15—C14—H14120.5C54—C53—H53119.7
C13—C14—H14120.5C52—C53—H53119.7
C14—C15—C16120.5 (2)C53—C54—C55119.5 (3)
C14—C15—H15119.8C53—C54—H54120.2
C16—C15—H15119.8C55—C54—H54120.2
C11—C16—C15121.1 (2)C54—C55—C56120.4 (3)
C11—C16—H16119.5C54—C55—H55119.8
C15—C16—H16119.5C56—C55—H55119.8
C4—O1—C1117.44 (16)C55—C56—C51120.3 (2)
O2—C4—O1122.7 (2)C55—C56—H56119.8
O2—C4—C47128.5 (2)C51—C56—H56119.8
O1—C4—C47108.83 (18)C34—C33—C37112.1 (2)
C4—C47—C41115.13 (19)C34—C33—C32112.89 (19)
C4—C47—H47A108.5C37—C33—C32110.36 (19)
C41—C47—H47A108.5C34—C33—H33107.1
C4—C47—H47B108.5C37—C33—H33107.1
C41—C47—H47B108.5C32—C33—H33107.1
H47A—C47—H47B107.5C33—C37—H37A109.5
C46—C41—C42117.7 (2)C33—C37—H37B109.5
C46—C41—C47120.9 (2)H37A—C37—H37B109.5
C42—C41—C47121.3 (2)C33—C37—H37C109.5
C43—C42—C41121.1 (2)H37A—C37—H37C109.5
C43—C42—H42119.5H37B—C37—H37C109.5
C41—C42—H42119.5O4—C34—C35120.7 (2)
C44—C43—C42120.0 (2)O4—C34—C33122.9 (2)
C44—C43—H43120.0C35—C34—C33116.39 (19)
C42—C43—H43120.0C34—C35—C36114.1 (2)
C45—C44—C43119.7 (2)C34—C35—H35A108.7
C45—C44—H44120.1C36—C35—H35A108.7
C43—C44—H44120.1C34—C35—H35B108.7
C44—C45—C46119.7 (2)C36—C35—H35B108.7
C44—C45—H45120.1H35A—C35—H35B107.6
C46—C45—H45120.1N31—C36—C35107.59 (17)
C41—C46—C45121.7 (2)N31—C36—C61111.84 (17)
C41—C46—H46119.2C35—C36—C61116.73 (18)
C45—C46—H46119.2N31—C36—H36106.7
C1—C2—C3116.53 (19)C35—C36—H36106.7
C1—C2—C21127.73 (19)C61—C36—H36106.7
C3—C2—C21115.55 (17)C62—C61—C66118.4 (2)
C26—C21—C22118.0 (2)C62—C61—C36122.89 (19)
C26—C21—C2124.25 (18)C66—C61—C36118.71 (19)
C22—C21—C2117.74 (19)C61—C62—C63120.8 (2)
C23—C22—C21121.0 (2)C61—C62—H62119.6
C23—C22—H22119.5C63—C62—H62119.6
C21—C22—H22119.5C64—C63—C62120.2 (2)
C24—C23—C22120.6 (2)C64—C63—H63119.9
C24—C23—H23119.7C62—C63—H63119.9
C22—C23—H23119.7C65—C64—C63119.3 (2)
C23—C24—C25119.1 (2)C65—C64—H64120.3
C23—C24—H24120.4C63—C64—H64120.3
C25—C24—H24120.4C66—C65—C64120.3 (2)
C24—C25—C26120.7 (2)C66—C65—H65119.9
C24—C25—H25119.7C64—C65—H65119.9
C26—C25—H25119.7C65—C66—C61121.0 (2)
C25—C26—C21120.6 (2)C65—C66—H66119.5
C25—C26—H26119.7C61—C66—H66119.5
C21—C26—H26119.7
C2—C1—C17—C11107.1 (3)O3—C3—N31—C36175.01 (18)
O1—C1—C17—C1171.6 (2)C2—C3—N31—C363.7 (3)
C1—C17—C11—C16151.1 (2)O3—C3—N31—C324.9 (3)
C1—C17—C11—C1232.8 (3)C2—C3—N31—C32173.88 (17)
C16—C11—C12—C130.8 (3)C3—N31—C32—C5173.9 (2)
C17—C11—C12—C13177.0 (2)C36—N31—C32—C51115.6 (2)
C11—C12—C13—C140.9 (4)C3—N31—C32—C33160.30 (18)
C12—C13—C14—C150.2 (4)C36—N31—C32—C3310.2 (3)
C13—C14—C15—C160.7 (4)N31—C32—C51—C5269.2 (3)
C12—C11—C16—C150.0 (3)C33—C32—C51—C5256.2 (3)
C17—C11—C16—C15176.3 (2)N31—C32—C51—C56111.3 (2)
C14—C15—C16—C110.7 (4)C33—C32—C51—C56123.2 (2)
C2—C1—O1—C499.5 (2)C56—C51—C52—C530.1 (4)
C17—C1—O1—C481.5 (2)C32—C51—C52—C53179.5 (2)
C1—O1—C4—O213.8 (3)C51—C52—C53—C540.0 (4)
C1—O1—C4—C47165.53 (17)C52—C53—C54—C550.2 (4)
O2—C4—C47—C4121.6 (3)C53—C54—C55—C560.3 (4)
O1—C4—C47—C41159.19 (18)C54—C55—C56—C510.3 (4)
C4—C47—C41—C46136.4 (2)C52—C51—C56—C550.2 (3)
C4—C47—C41—C4245.5 (3)C32—C51—C56—C55179.7 (2)
C46—C41—C42—C430.3 (3)N31—C32—C33—C3439.5 (2)
C47—C41—C42—C43177.8 (2)C51—C32—C33—C34165.45 (18)
C41—C42—C43—C440.2 (4)N31—C32—C33—C37165.83 (19)
C42—C43—C44—C450.0 (4)C51—C32—C33—C3768.3 (2)
C43—C44—C45—C460.2 (4)C37—C33—C34—O411.0 (3)
C42—C41—C46—C450.1 (3)C32—C33—C34—O4136.4 (2)
C47—C41—C46—C45178.1 (2)C37—C33—C34—C35169.2 (2)
C44—C45—C46—C410.1 (4)C32—C33—C34—C3543.8 (3)
O1—C1—C2—C37.7 (3)O4—C34—C35—C36177.4 (2)
O1—C1—C2—C21177.47 (18)C33—C34—C35—C362.4 (3)
C17—C1—C2—C211.3 (4)C3—N31—C36—C35114.8 (2)
C17—C1—C2—C3173.5 (2)C32—N31—C36—C3555.0 (2)
C1—C2—C21—C2633.8 (3)C3—N31—C36—C61115.7 (2)
C3—C2—C21—C26151.4 (2)C32—N31—C36—C6174.4 (2)
C1—C2—C21—C22148.1 (2)C34—C35—C36—N3149.4 (2)
C3—C2—C21—C2226.7 (3)C34—C35—C36—C6177.2 (2)
C26—C21—C22—C230.5 (3)N31—C36—C61—C62127.9 (2)
C2—C21—C22—C23178.8 (2)C35—C36—C61—C623.4 (3)
C21—C22—C23—C240.2 (3)N31—C36—C61—C6654.5 (3)
C22—C23—C24—C251.0 (4)C35—C36—C61—C66179.0 (2)
C23—C24—C25—C261.1 (4)C66—C61—C62—C631.6 (3)
C24—C25—C26—C210.4 (3)C36—C61—C62—C63179.2 (2)
C22—C21—C26—C250.4 (3)C61—C62—C63—C640.8 (4)
C2—C21—C26—C25178.5 (2)C62—C63—C64—C650.4 (4)
C1—C2—C3—O372.9 (3)C63—C64—C65—C660.8 (4)
C21—C2—C3—O3102.6 (2)C64—C65—C66—C610.1 (4)
C1—C2—C3—N31108.3 (2)C62—C61—C66—C651.3 (3)
C21—C2—C3—N3176.2 (2)C36—C61—C66—C65178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.423.075 (3)126
C47—H47A···O4i0.992.593.571 (3)172
C66—H66···O10.952.533.469 (3)172
Symmetry code: (i) x1, y, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds