organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination of 1,5-bis­­(4-meth­oxy­phen­yl)penta-1,4-dien-3-one at 120 (2) K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 March 2006; accepted 14 March 2006; online 22 March 2006)

The title compound, C19H18O3, is confirmed to crystallize with ortho­rhom­bic symmetry [Shan et al. (1999[Shan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381-382.]). Z. Kristallogr. New Cryst. Struct. 214, 381–382; Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]). Acta Cryst. B60, 252–253]. The mol­ecule has crystallographically imposed twofold symmetry and the only possible inter­molecular inter­action is a weak C—H⋯O bond.

Comment

Although the title compound (common name bis­chalcone), (I)[link], was first prepared over 100 years ago (von Baeyer & Villiger, 1902[Baeyer, A. von & Villiger, V. (1902). Chem. Ber. 35, 1201-1212.]), it was not until 1999 that its single-crystal structure was determined (Shan et al., 1999[Shan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381-382.]). These workers described its structure as monoclinic (space group Cc), with all atoms occupying general positions. Later, Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]) noted that the crystal symmetry of (I)[link] is better described as ortho­rhom­bic (space group Aba2), as confirmed by the present study. This compound is of inter­est to us on account of its substantial second harmonic generation (SHG) response (six times that of urea) to red light. The current structure determination at 120 (2) K represents a significant improvement in precision compared with the structure determined from room-temperature data.

[Scheme 1]

The geometric parameters for (I)[link] are normal. The complete mol­ecule is generated from the asymmetric unit by twofold symmetry, with atoms C1 and O1 lying on the rotation axis (Fig. 1[link]). The dihedral angle between the two benzene rings in (I)[link] is 56.92 (9)°. A short H3⋯H3i [symmetry code: (i) 1 − x, 1 − y, z] intra­molecular contact of 2.18 Å is present, which may help to explain the twisted conformation of the mol­ecule about the central ketone group [pseudo-torsion angle C3—C2⋯C2i—C3i = −45.1 (4)°]. Atoms C3, O2 and C10 are displaced from the mean plane of the C4–C9 benzene ring by 0.111 (5), 0.024 (4) and 0.128 (6) Å, respectively.

The packing in (I)[link], shown in Fig. 2[link], results in head-to-tail columns of mol­ecules which all propagate along [001] in the same sense; the large SHG signal of (I)[link] could be correlated with this lining-up effect. A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] identified a possible C—H⋯O inter­action (Table 1[link]) that might help to crosslink these mol­ecular columns. There are no ππ stacking inter­actions in (I)[link].

[Figure 1]
Figure 1
View of (I)[link], showing 50% displacement ellipsoids, with arbitrary spheres for H atoms. [Symmetry code: (i) 1 − x, 1 − y, z.]
[Figure 2]
Figure 2
The molecular packing in (I)[link], viewed along [100], with H atoms omitted for clarity.

Experimental

Compound (I)[link] was prepared according to a literature method (Vogel, 1999[Vogel, A. I. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed., edited by A. I. Vogel, B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, p. 1033. London: Longman Group.]) and recrystallized from acetone by slow evaporation (m.p. 378–381 K). Elemental analysis, found: C 77.25, H 6.02%; calculated for C19H18O3: C 77.55, H 6.12%.

Crystal data
  • C19H18O3

  • Mr = 294.33

  • Orthorhombic, A b a 2

  • a = 7.2756 (9) Å

  • b = 33.5830 (6) Å

  • c = 6.132 (5) Å

  • V = 1498.3 (12) Å3

  • Z = 4

  • Dx = 1.305 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1686 reflections

  • θ = 1.0–27.5°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Lath, pale yellow

  • 0.52 × 0.22 × 0.04 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.997

  • 8103 measured reflections

  • 942 independent reflections

  • 632 reflections with I > 2σ(I)

  • Rint = 0.093

  • θmax = 27.8°

  • h = −9 → 8

  • k = −43 → 43

  • l = −6 → 7

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.127

  • S = 1.10

  • 942 reflections

  • 102 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0604P)2 + 0.238P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.98 2.53 3.442 (4) 154
Symmetry code: (i) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement. The H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO(Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one top
Crystal data top
C19H18O3F(000) = 624
Mr = 294.33Dx = 1.305 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 1686 reflections
a = 7.2756 (9) Åθ = 1.0–27.5°
b = 33.5830 (6) ŵ = 0.09 mm1
c = 6.132 (5) ÅT = 120 K
V = 1498.3 (12) Å3Lath, pale yellow
Z = 40.52 × 0.22 × 0.04 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
942 independent reflections
Radiation source: fine-focus sealed tube632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
φ and ω scansθmax = 27.8°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 98
Tmin = 0.956, Tmax = 0.997k = 4343
8103 measured reflectionsl = 67
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: none
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
942 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50000.50000.3446 (9)0.0326 (13)
C20.4564 (4)0.46240 (9)0.4579 (6)0.0331 (9)
H20.37910.44410.38320.040*
C30.5145 (5)0.45178 (10)0.6529 (6)0.0302 (9)
H30.57280.47170.73810.036*
C40.4981 (4)0.41190 (9)0.7517 (6)0.0262 (8)
C50.4102 (4)0.38001 (10)0.6492 (6)0.0299 (8)
H50.35050.38420.51340.036*
C60.4086 (4)0.34238 (9)0.7415 (6)0.0288 (8)
H60.34730.32120.66900.035*
C70.4957 (4)0.33534 (10)0.9389 (5)0.0262 (8)
C80.5818 (4)0.36670 (9)1.0448 (6)0.0270 (8)
H80.64170.36241.18040.032*
C90.5801 (4)0.40439 (9)0.9520 (5)0.0284 (8)
H90.63690.42571.02800.034*
C100.5861 (5)0.28785 (10)1.2094 (5)0.0413 (10)
H10A0.56600.25991.24800.062*
H10B0.54140.30491.32770.062*
H10C0.71770.29251.18700.062*
O10.50000.50000.1441 (6)0.0465 (11)
O20.4879 (3)0.29697 (6)1.0122 (5)0.0323 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.033 (3)0.029 (4)0.003 (2)0.0000.000
C20.0354 (18)0.034 (2)0.030 (2)0.0011 (15)0.0052 (19)0.0039 (18)
C30.0305 (19)0.034 (2)0.026 (2)0.0038 (15)0.0008 (19)0.0055 (17)
C40.0258 (16)0.0304 (17)0.0225 (18)0.0024 (15)0.0025 (17)0.0029 (16)
C50.0272 (19)0.043 (2)0.0193 (15)0.0021 (15)0.0021 (16)0.0035 (17)
C60.0275 (17)0.0335 (18)0.0254 (18)0.0029 (15)0.0008 (18)0.0045 (17)
C70.0273 (16)0.0272 (16)0.024 (2)0.0012 (14)0.0050 (19)0.0007 (14)
C80.0266 (17)0.0331 (18)0.0212 (17)0.0019 (15)0.0022 (15)0.0016 (16)
C90.0273 (16)0.0267 (17)0.031 (2)0.0017 (14)0.0018 (19)0.0024 (18)
C100.057 (2)0.032 (2)0.034 (2)0.0021 (18)0.009 (2)0.0054 (19)
O10.071 (3)0.034 (2)0.034 (2)0.0016 (18)0.0000.000
O20.0397 (13)0.0251 (11)0.0320 (14)0.0027 (11)0.0040 (13)0.0013 (11)
Geometric parameters (Å, º) top
C1—O11.230 (6)C6—C71.386 (5)
C1—C2i1.476 (4)C6—H60.9500
C1—C21.476 (4)C7—O21.366 (4)
C2—C31.318 (5)C7—C81.387 (4)
C2—H20.9500C8—C91.388 (4)
C3—C41.475 (4)C8—H80.9500
C3—H30.9500C9—H90.9500
C4—C91.389 (5)C10—O21.438 (4)
C4—C51.397 (5)C10—H10A0.9800
C5—C61.385 (4)C10—H10B0.9800
C5—H50.9500C10—H10C0.9800
O1—C1—C2i118.1 (2)C7—C6—H6119.7
O1—C1—C2118.1 (2)O2—C7—C6115.4 (3)
C2i—C1—C2123.8 (5)O2—C7—C8125.5 (3)
C3—C2—C1126.1 (3)C6—C7—C8119.1 (3)
C3—C2—H2116.9C7—C8—C9119.8 (3)
C1—C2—H2116.9C7—C8—H8120.1
C2—C3—C4126.4 (4)C9—C8—H8120.1
C2—C3—H3116.8C8—C9—C4122.2 (3)
C4—C3—H3116.8C8—C9—H9118.9
C9—C4—C5117.1 (3)C4—C9—H9118.9
C9—C4—C3119.6 (3)O2—C10—H10A109.5
C5—C4—C3123.3 (4)O2—C10—H10B109.5
C6—C5—C4121.3 (3)H10A—C10—H10B109.5
C6—C5—H5119.4O2—C10—H10C109.5
C4—C5—H5119.4H10A—C10—H10C109.5
C5—C6—C7120.6 (3)H10B—C10—H10C109.5
C5—C6—H6119.7C7—O2—C10117.2 (2)
O1—C1—C2—C3152.1 (3)C5—C6—C7—C81.2 (4)
C2i—C1—C2—C327.9 (3)O2—C7—C8—C9179.8 (3)
C1—C2—C3—C4168.9 (3)C6—C7—C8—C90.2 (5)
C2—C3—C4—C9174.6 (3)C7—C8—C9—C41.6 (5)
C2—C3—C4—C52.3 (5)C5—C4—C9—C82.3 (4)
C9—C4—C5—C61.3 (5)C3—C4—C9—C8174.8 (3)
C3—C4—C5—C6175.6 (3)C6—C7—O2—C10176.3 (3)
C4—C5—C6—C70.4 (5)C8—C7—O2—C103.8 (4)
C5—C6—C7—O2178.9 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2ii0.982.533.442 (4)154
Symmetry code: (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for data collection. One of the authors (BKS) thanks AICTE, Government of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.

References

First citationBaeyer, A. von & Villiger, V. (1902). Chem. Ber. 35, 1201–1212.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381–382.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, A. I. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed., edited by A. I. Vogel, B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, p. 1033. London: Longman Group.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds