organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-1,4-Bis(2-iodo­phen­yl)-2,3-di­aza-1,3-butadiene

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 20 March 2006; accepted 21 March 2006; online 25 March 2006)

The mol­ecules of the title compound C14H10I2N2, which are almost planar, lie across centres of inversion. The structure contains no direction-specific inter­molecular inter­actions of any kind.

Comment

We recently reported that small quanti­ties (ca 10%) of the title compound (I)[link] (Fig.1) readily co-crystallized with (E,E)-1-(2-iodo­phen­yl)-4-(2-nitro­phen­yl)-2,3-diaza-1,3-butadiene (II), and that the presence of (I)[link] probably arose from some minor reorganization of the substituted aryl groups during either the synthesis or the recrystallization of (II) (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312-o316.]). In order to assess the relationship between the structures of (I)[link] and (II), we now report the structure of (I)[link].

[Scheme 1]

The mol­ecules of (I)[link] lie across inversion centres in space group P21/n, and they are almost planar, as shown by the key torsion angles (Table 1[link]). The bond lengths and angles present no unusual features, apart from the exocyclic bond angles at C2, most plausibly associated with the repulsive intra­molecular contact between atoms I2 and the H atom bonded to C7. There are no direction-specific inter­actions of any kind in the crystal structure of (I)[link]: C—H⋯N and C—H⋯π(arene) hydrogen bonds, aromatic ππ stacking inter­actions, and short I⋯I inter­actions are all absent.

The unit-cell dimensions for compounds (I)[link] and (II) are very different, and these compounds also crystallize in different space groups, with molar volumes which differ by some 5%. It is therefore not clear why compound (I)[link] so readily co-crystallizes with compound (II).

Isomeric with (I)[link] is compound (III) where, again, nearly planar mol­ecules lie across centres of inversion (Cho et al., 2005[Cho, H. M., Moore, J. S. & Wilson, S. R. (2005). Acta Cryst. E61, o3773-o3774.]).

[Figure 1]
Figure 1
The molecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and atoms labelled with suffix `a' are related by the symmetry operator (1 − x, 1 − y, 1 − z).

Experimental

A mixture of 2-iodo­benzaldehyde (1 mmol) and hydrazine hydrate (0.5 mmol) in methanol (20 cm3) was heated under reflux for 30 min. The mixture was cooled and the solvent was removed under reduced pressure. The product, (I)[link], was purified by chromatography on alumina, using CHCl3 as eluent: crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol.

Crystal data
  • C14H10I2N2

  • Mr = 460.04

  • Monoclinic, P 21 /n

  • a = 13.2667 (4) Å

  • b = 4.1070 (2) Å

  • c = 13.8207 (4) Å

  • β = 110.3140 (15)°

  • V = 706.20 (5) Å3

  • Z = 2

  • Dx = 2.163 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1818 reflections

  • θ = 1.0–27.4°

  • μ = 4.44 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.64 × 0.12 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.160, Tmax = 0.703

  • 9545 measured reflections

  • 1614 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −17 → 15

  • k = −5 → 5

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.075

  • S = 1.30

  • 1614 reflections

  • 82 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected bond and torsion angles (°)

C3—C2—C1 121.6 (3)
C3—C2—I2 116.2 (2)
C1—C2—I2 122.2 (2)
C6—C1—C7—N1 −5.2 (5)
C1—C7—N1—N1i −179.9 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

All H atoms were located in difference maps and they were then treated as riding atoms with C—H distances 0.95 Å and Uiso(H) = 1.2Ueq(C). The deepest hole is located 0.72 Åfrom atom I2.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius B. V., Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) & COLLECT); data reduction: DENZO & COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10, Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) & COLLECT); data reduction: DENZO & COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(E,E)-1,4-Bis(2-iodophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10I2N2F(000) = 428
Mr = 460.04Dx = 2.163 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1818 reflections
a = 13.2667 (4) Åθ = 1.0–27.4°
b = 4.1070 (2) ŵ = 4.44 mm1
c = 13.8207 (4) ÅT = 120 K
β = 110.3140 (15)°Lath, yellow
V = 706.20 (5) Å30.64 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker-Nonius KappaCCD
diffractometer
1614 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.8°
φ & ω scansh = 1715
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 55
Tmin = 0.160, Tmax = 0.703l = 1717
9545 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
1614 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 1.16 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7374 (3)0.4440 (7)0.5557 (2)0.0150 (6)
C20.8164 (2)0.3184 (8)0.5201 (2)0.0149 (6)
I20.777975 (15)0.09737 (5)0.373819 (14)0.01682 (12)
C30.9252 (3)0.3381 (8)0.5790 (3)0.0204 (7)
C40.9564 (3)0.4865 (10)0.6753 (3)0.0243 (7)
C50.8802 (3)0.6146 (7)0.7125 (3)0.0217 (8)
C60.7720 (3)0.5935 (7)0.6531 (3)0.0183 (7)
C70.6223 (3)0.4242 (7)0.4961 (3)0.0173 (7)
N10.5529 (2)0.5194 (8)0.5345 (2)0.0220 (6)
H30.97760.25100.55360.025*
H41.03050.50030.71600.029*
H50.90190.71630.77830.026*
H60.72020.68230.67880.022*
H70.59910.33930.42790.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (16)0.0159 (15)0.0130 (15)0.0026 (11)0.0064 (13)0.0050 (11)
C20.0177 (15)0.0163 (13)0.0112 (14)0.0006 (12)0.0056 (12)0.0030 (12)
I20.01818 (16)0.01792 (16)0.01565 (16)0.00262 (6)0.00751 (11)0.00004 (6)
C30.0167 (16)0.0255 (16)0.0198 (17)0.0041 (13)0.0072 (13)0.0064 (13)
C40.0149 (16)0.0342 (17)0.0203 (17)0.0014 (15)0.0017 (13)0.0048 (15)
C50.0231 (19)0.030 (2)0.0104 (17)0.0047 (12)0.0035 (14)0.0006 (11)
C60.0194 (18)0.0246 (17)0.0147 (16)0.0001 (11)0.0106 (14)0.0001 (11)
C70.0148 (16)0.0243 (17)0.0116 (16)0.0018 (11)0.0033 (13)0.0003 (11)
N10.0140 (14)0.0348 (15)0.0167 (14)0.0035 (13)0.0047 (11)0.0022 (13)
Geometric parameters (Å, º) top
C1—C21.402 (4)C4—H40.95
C1—C61.403 (5)C5—C61.387 (5)
C1—C71.464 (5)C5—H50.95
C2—C31.391 (4)C6—H60.95
C2—I22.111 (3)C7—N11.273 (5)
C3—C41.391 (5)C7—H70.95
C3—H30.95N1—N1i1.407 (6)
C4—C51.387 (6)
C2—C1—C6117.5 (3)C3—C4—H4119.7
C2—C1—C7122.9 (3)C6—C5—C4119.6 (3)
C6—C1—C7119.6 (3)C6—C5—H5120.2
C3—C2—C1121.6 (3)C4—C5—H5120.2
C3—C2—I2116.2 (2)C5—C6—C1121.5 (3)
C1—C2—I2122.2 (2)C5—C6—H6119.2
C4—C3—C2119.3 (3)C1—C6—H6119.2
C4—C3—H3120.4N1—C7—C1120.8 (3)
C2—C3—H3120.4N1—C7—H7119.6
C5—C4—C3120.5 (3)C1—C7—H7119.6
C5—C4—H4119.7C7—N1—N1i112.3 (4)
C6—C1—C2—C30.5 (5)C3—C4—C5—C60.2 (5)
C7—C1—C2—C3179.4 (3)C4—C5—C6—C10.2 (5)
C6—C1—C2—I2178.3 (2)C2—C1—C6—C50.5 (5)
C7—C1—C2—I21.8 (4)C7—C1—C6—C5179.4 (3)
C1—C2—C3—C40.2 (5)C2—C1—C7—N1174.7 (3)
I2—C2—C3—C4178.7 (3)C6—C1—C7—N15.2 (5)
C2—C3—C4—C50.2 (5)C1—C7—N1—N1i179.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-Ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationCho, H. M., Moore, J. S. & Wilson, S. R. (2005). Acta Cryst. E61, o3773–o3774.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312–o316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius B. V., Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10, Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds