organic compounds
Sulfathiazolium nitrate monohydrate
aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com
The title compound, C9H10N3O2S2+·NO3−·H2O, was obtained from a solution of sulfathiazole in dilute nitric acid at room temperature. The is stabilized by a network of hydrogen bonds and van der Waals interactions.
Comment
Sulfathiazole has a remarkable solvate-forming ability with interesting structural and conformational properties. Many solvent-containing sulfathiazoles are known and a lot of them have been studied crystallographically (Bingham et al., 2001).
Shirotani et al. (1983) described three solvates of sulfathiazole and Caira et al. (1994) reported the of the 1:1 complex of sulfathiazole and cyclodextrin, in which the molecules are hydrogen bonded with each other, forming a layer and these layers are linked by hydrogen bonds with water molecules.
The sulfathiazole molecule in the title complex, (I), is hydrogen bonded with a nitrate ion which is also hydrogen bonded with the water molecule. The sulfathiazole molecule is protonated on its terminal amino group.
The planes of the benzene and thiazole rings are inclined in a gauche conformation about the S12—N11 bond with a dihedral angle of 87.63 (6)°. The is stabilized by a network of hydrogen bonds and van der Waals interactions.
Experimental
Solid sulfathiazole (0.255 g; 1 mmol) was dissolved in 1M HNO3 acid (50 ml) and stirred for 30 minutes, filtered off and the clear solution was left at room temperature for crystallization. Pale-yellow platelike crystals of sulfathiazole nitrate were obtained by slow evaporation of the solution.
Crystal data
|
Refinement
|
|
C-bound H atoms were included in the riding model approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). H atoms attached to N and O were located in an and refined isotropically with the N—H and O—H bond lengths restrained to 0.95 (5) Å.
Data collection: COLLECT (Nonius, 1997–2000); cell HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806010312/sg2017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806010312/sg2017Isup2.hkl
Data collection: COLLECT (Nonius, 1997–2000); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C9H10N3O2S2+·NO3−·H2O | F(000) = 696 |
Mr = 336.35 | Dx = 1.635 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8182 reflections |
a = 12.1917 (2) Å | θ = 2.9–27.5° |
b = 7.6348 (2) Å | µ = 0.42 mm−1 |
c = 15.3895 (2) Å | T = 120 K |
β = 107.466 (1)° | Platelike, pale yellow |
V = 1366.43 (5) Å3 | 0.34 × 0.32 × 0.05 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 3117 independent reflections |
Radiation source: fine-focus sealed tube | 2669 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan Blessing (1995) | h = −15→15 |
Tmin = 0.869, Tmax = 0.979 | k = −9→9 |
17799 measured reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.5659P] where P = (Fo2 + 2Fc2)/3 |
3117 reflections | (Δ/σ)max = 0.001 |
214 parameters | Δρmax = 0.47 e Å−3 |
5 restraints | Δρmin = −0.61 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S11 | 1.03911 (4) | 0.33588 (6) | 0.62604 (3) | 0.02120 (14) | |
S12 | 0.80044 (4) | 0.12718 (6) | 0.62170 (3) | 0.01730 (13) | |
O11 | 0.70722 (11) | 0.07178 (17) | 0.65647 (8) | 0.0214 (3) | |
O12 | 0.90388 (11) | 0.02267 (17) | 0.64704 (8) | 0.0233 (3) | |
N11 | 0.81921 (13) | 0.32750 (19) | 0.64842 (10) | 0.0181 (3) | |
N12 | 0.91621 (12) | 0.5878 (2) | 0.64833 (9) | 0.0172 (3) | |
H12A | 0.8512 (12) | 0.648 (2) | 0.6541 (15) | 0.028 (6)* | |
N13 | 0.61384 (13) | 0.1154 (2) | 0.21568 (10) | 0.0190 (3) | |
H13A | 0.5326 (5) | 0.121 (3) | 0.2005 (17) | 0.039 (7)* | |
H13B | 0.6352 (18) | 0.0138 (17) | 0.1891 (13) | 0.025 (5)* | |
H13C | 0.641 (2) | 0.208 (4) | 0.1947 (17) | 0.041 (7)* | |
C11 | 0.91245 (14) | 0.4134 (2) | 0.64160 (11) | 0.0168 (3) | |
C12 | 1.09071 (15) | 0.5476 (3) | 0.62748 (12) | 0.0218 (4) | |
H12 | 1.1631 | 0.5768 | 0.6201 | 0.026* | |
C13 | 1.01555 (15) | 0.6644 (2) | 0.64025 (12) | 0.0203 (4) | |
H13 | 1.0289 | 0.7871 | 0.6435 | 0.024* | |
C14 | 0.74583 (14) | 0.1207 (2) | 0.50113 (11) | 0.0165 (3) | |
C15 | 0.80804 (14) | 0.0404 (2) | 0.45070 (12) | 0.0192 (4) | |
H15 | 0.8802 | −0.0122 | 0.4803 | 0.023* | |
C16 | 0.76426 (14) | 0.0371 (2) | 0.35615 (12) | 0.0199 (4) | |
H16 | 0.8058 | −0.0182 | 0.3205 | 0.024* | |
C17 | 0.65936 (14) | 0.1156 (2) | 0.31503 (11) | 0.0158 (3) | |
C18 | 0.59642 (15) | 0.1957 (3) | 0.36506 (12) | 0.0229 (4) | |
H18 | 0.5243 | 0.2481 | 0.3351 | 0.027* | |
C19 | 0.63940 (16) | 0.1989 (3) | 0.45914 (12) | 0.0240 (4) | |
H19 | 0.5973 | 0.2534 | 0.4946 | 0.029* | |
O1 | 0.37657 (11) | 0.1342 (2) | 0.16636 (9) | 0.0291 (3) | |
O2 | 0.42291 (11) | 0.1643 (2) | 0.04127 (9) | 0.0319 (4) | |
O3 | 0.24360 (11) | 0.15191 (19) | 0.03616 (9) | 0.0283 (3) | |
N1 | 0.34639 (13) | 0.1506 (2) | 0.08093 (10) | 0.0206 (3) | |
O4 | 0.31305 (11) | 0.19590 (17) | −0.14618 (9) | 0.0202 (3) | |
H4A | 0.346 (2) | 0.198 (3) | −0.0823 (4) | 0.047 (7)* | |
H4B | 0.308 (2) | 0.3159 (10) | −0.1620 (16) | 0.039 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S11 | 0.0173 (2) | 0.0231 (2) | 0.0236 (3) | 0.00481 (17) | 0.00666 (17) | −0.00234 (17) |
S12 | 0.0199 (2) | 0.0182 (2) | 0.0132 (2) | 0.00319 (16) | 0.00403 (16) | −0.00013 (15) |
O11 | 0.0271 (7) | 0.0204 (6) | 0.0189 (6) | −0.0015 (5) | 0.0104 (5) | 0.0007 (5) |
O12 | 0.0258 (7) | 0.0230 (7) | 0.0178 (6) | 0.0100 (5) | 0.0018 (5) | 0.0002 (5) |
N11 | 0.0179 (7) | 0.0190 (7) | 0.0171 (7) | 0.0012 (6) | 0.0048 (5) | −0.0019 (6) |
N12 | 0.0143 (7) | 0.0202 (8) | 0.0161 (7) | 0.0039 (6) | 0.0029 (5) | −0.0001 (6) |
N13 | 0.0157 (7) | 0.0260 (8) | 0.0149 (7) | 0.0007 (6) | 0.0038 (6) | 0.0015 (6) |
C11 | 0.0152 (8) | 0.0218 (9) | 0.0115 (8) | 0.0040 (7) | 0.0013 (6) | −0.0008 (6) |
C12 | 0.0177 (8) | 0.0266 (10) | 0.0216 (9) | 0.0000 (7) | 0.0064 (7) | −0.0014 (7) |
C13 | 0.0164 (8) | 0.0233 (9) | 0.0201 (9) | −0.0010 (7) | 0.0036 (7) | 0.0000 (7) |
C14 | 0.0185 (8) | 0.0176 (8) | 0.0128 (8) | 0.0008 (6) | 0.0037 (6) | 0.0000 (6) |
C15 | 0.0150 (8) | 0.0236 (9) | 0.0176 (8) | 0.0046 (7) | 0.0027 (6) | 0.0006 (7) |
C16 | 0.0181 (8) | 0.0246 (9) | 0.0183 (8) | 0.0044 (7) | 0.0077 (6) | −0.0017 (7) |
C17 | 0.0152 (8) | 0.0181 (8) | 0.0133 (8) | −0.0014 (6) | 0.0030 (6) | 0.0009 (6) |
C18 | 0.0167 (8) | 0.0307 (10) | 0.0207 (9) | 0.0065 (7) | 0.0049 (7) | 0.0011 (7) |
C19 | 0.0205 (9) | 0.0326 (11) | 0.0198 (9) | 0.0090 (8) | 0.0073 (7) | −0.0011 (7) |
O1 | 0.0212 (7) | 0.0483 (9) | 0.0166 (7) | 0.0021 (6) | 0.0041 (5) | 0.0039 (6) |
O2 | 0.0167 (6) | 0.0584 (10) | 0.0217 (7) | −0.0026 (6) | 0.0075 (5) | 0.0020 (6) |
O3 | 0.0135 (6) | 0.0431 (9) | 0.0252 (7) | −0.0013 (6) | 0.0010 (5) | 0.0031 (6) |
N1 | 0.0174 (7) | 0.0242 (8) | 0.0201 (8) | −0.0004 (6) | 0.0053 (6) | 0.0008 (6) |
O4 | 0.0189 (6) | 0.0212 (7) | 0.0205 (6) | −0.0012 (5) | 0.0061 (5) | 0.0010 (5) |
S11—C11 | 1.7362 (17) | C13—H13 | 0.9500 |
S11—C12 | 1.732 (2) | C14—C15 | 1.381 (2) |
S12—O11 | 1.4566 (13) | C14—C19 | 1.398 (2) |
S12—O12 | 1.4436 (13) | C15—C16 | 1.392 (2) |
S12—N11 | 1.5824 (15) | C15—H15 | 0.9500 |
S12—C14 | 1.7740 (17) | C16—C17 | 1.382 (2) |
N11—C11 | 1.344 (2) | C16—H16 | 0.9500 |
N12—C11 | 1.335 (2) | C17—C18 | 1.382 (2) |
N12—C13 | 1.384 (2) | C18—C19 | 1.384 (3) |
N12—H12A | 0.945 (5) | C18—H18 | 0.9500 |
N13—C17 | 1.462 (2) | C19—H19 | 0.9500 |
N13—H13A | 0.948 (5) | N1—O1 | 1.261 (2) |
N13—H13B | 0.949 (5) | N1—O2 | 1.2632 (19) |
N13—H13C | 0.88 (3) | N1—O3 | 1.236 (2) |
C12—C13 | 1.335 (3) | O4—H4A | 0.945 (5) |
C12—H12 | 0.9500 | O4—H4B | 0.945 (5) |
C11—S11—C12 | 90.84 (8) | C12—C13—H13 | 123.6 |
O11—S12—O12 | 117.06 (8) | N12—C13—H13 | 123.6 |
O11—S12—N11 | 104.67 (8) | C15—C14—C19 | 121.33 (15) |
O12—S12—N11 | 114.68 (8) | C15—C14—S12 | 120.22 (13) |
O11—S12—C14 | 106.67 (8) | C19—C14—S12 | 118.45 (13) |
O12—S12—C14 | 106.87 (8) | C14—C15—C16 | 119.52 (15) |
N11—S12—C14 | 106.17 (8) | C14—C15—H15 | 120.2 |
C11—N11—S12 | 120.76 (13) | C16—C15—H15 | 120.2 |
C11—N12—C13 | 115.14 (15) | C15—C16—C17 | 118.86 (15) |
C11—N12—H12A | 119.0 (13) | C17—C16—H16 | 120.6 |
C13—N12—H12A | 125.7 (13) | C15—C16—H16 | 120.6 |
C17—N13—H13A | 107.3 (15) | C16—C17—C18 | 121.95 (16) |
C17—N13—H13B | 112.6 (13) | C16—C17—N13 | 119.15 (15) |
H13A—N13—H13B | 109 (2) | C18—C17—N13 | 118.90 (15) |
C17—N13—H13C | 108.4 (17) | C17—C18—C19 | 119.43 (16) |
H13A—N13—H13C | 110 (2) | C17—C18—H18 | 120.3 |
H13B—N13—H13C | 109 (2) | C19—C18—H18 | 120.3 |
N12—C11—N11 | 119.41 (15) | C14—C19—C18 | 118.90 (16) |
N12—C11—S11 | 109.85 (12) | C18—C19—H19 | 120.5 |
N11—C11—S11 | 130.74 (14) | C14—C19—H19 | 120.5 |
C13—C12—S11 | 111.26 (14) | O1—N1—O2 | 119.04 (15) |
C13—C12—H12 | 124.4 | O1—N1—O3 | 120.80 (15) |
S11—C12—H12 | 124.4 | O2—N1—O3 | 120.16 (15) |
C12—C13—N12 | 112.90 (17) | H4A—O4—H4B | 103 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···O1 | 0.95 (1) | 1.82 (1) | 2.765 (2) | 177 (2) |
O4—H4A···O2 | 0.95 (1) | 1.87 (1) | 2.8027 (19) | 170 (2) |
N12—H12A···O4i | 0.95 (1) | 2.00 (1) | 2.9050 (19) | 159 (2) |
O4—H4B···O11i | 0.95 (1) | 1.97 (1) | 2.8807 (18) | 162 (2) |
N13—H13C···O11ii | 0.88 (3) | 2.03 (3) | 2.907 (2) | 176 (2) |
N13—H13B···O4iii | 0.95 (1) | 1.91 (1) | 2.857 (2) | 175 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z. |
Acknowledgements
GMGH acknowledges the Ministry of Science and Technology, Bangladesh Secretariat, Dhaka for awarding the Bangabandhu Fellowship.
References
Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S. & Threlfall, T. L. (2001). Chem. Commun. 7, 603–604. Web of Science CSD CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Caira, M. R., Griffith, V. J., Nassimbeni, L. R., Luigi, R. & Oudtshoom, B. V. (1994). J. Inclus. Phen. and Mol. Recog. in Chem. 17, 187–201. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Gοttingen, Germany. Google Scholar
Shirotani, K.-I., Suzuki, E. & Sekiguchi, K. (1983). Chem. Pharm. Bull. 31, 2085–2093. CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.