metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-pyridine-2-thiol­ato-bis­­[chloro­(tri­phenyl­phosphine)copper(I)]

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Teacher Training University, PO Box 15614, Tehran, Iran, bDepartment of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, England, cSchool of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, England, and dSchool of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk

(Received 21 February 2006; accepted 22 February 2006; online 10 March 2006)

The structure of the title compound, [Cu2(C5H5NS)2Cl2(C18H15P)2], shows two independent mol­ecules, each a dimer bridged through a Cu2S2 recta­ngular plane involving the two pyridine­thione S atoms and lying about a centre of symmetry. The Cu atoms have a distorted tetra­hedral geometry. There is intra­molecular hydrogen bonding between the pyridinium H atoms and the Cl ligands.

Comment

The dimeric title compound, [{CuCl(S{C5H5N})(P{C6H5}3)}2], or [{CuCl(S{C5H5N})(PPh3)}2], (I)[link], has two half-molecules per asymmetric unit; the virtually identical mol­ecules (Ia) and (Ib) each lie about a centre of symmetry (Fig. 1[link]). At the core of each mol­ecule there is a planar recta­ngular Cu2S2 ring, in which the Cu atoms have distorted tetrahedral geometry and the S atoms show a trigonal pyramidal arrangement. The largest difference in bond lengths between the two mol­ecules is 0.08 Å between the bonds C332—H332 in (Ia) and C632—H632 in (Ib), and the largest difference in bond angles is 5° between the angles C23—N22—H22 in (Ia) and C53—N52—H52 in (IIb).

[Scheme 1]

The monomer [CuCl(S{C5H5N})(PPh3)2], (II) (Lobana et al., 1989[Lobana, T. S., Bhatia, P. K. & Tiekink, E. R. T. (1989). J. Chem. Soc. Dalton Trans. pp. 749-751.]), has previously been reported. On forming the dimer (I)[link], the Cu—S′ bond [where the prime (′) indicates the symmetry-related atom] is significantly longer than the Cu—S bond; 2.374 (2) Å in (II) compared with 2.3745 (5) and 2.4375 (6) Å in (I)[link]. Several complexes analogous to (I)[link] have been reported, and comparisons are made with the Br complex [{CuBr(S{C5H5N})(PPh3)}2], (III) (Karagiannidis, 1989[Karagiannidis, P. (1989). Inorg. Chim. Acta, 156, 47-56.]). In (III) there is a single centrosymmetric mol­ecule which has dimensions (and distortions from ideal values) similar to those in (I)[link], apart from the closer equivalence of the Cu—S and Cu—S′ bonds [2.383 (1) and 2.392 (1) Å]. A third related structure, [Cu2(S{C5H5N})6]Cl2, (IV) (Constable & Raithby, 1987[Constable, E. C. & Raithby, P. R. (1987). J. Chem. Soc. Dalton Trans. pp. 2281-2283.]), is also a dimer lying about a centre of symmetry, and has geometries in the Cu2S2 core plane similar to those in the Cu2S2 core of (I)[link] [Cu—Sbridge = 2.308 (2) and 2.498 (3) Å], but different geometries about the bridging S atoms [Cu—S—Cu′ = 74.3 (1)°, compared with 90.64 (2) and 91.60 (2) in (I)].

Each Cu atom in (I)[link] is in a distorted tetra­hedral geometry, the major deviations from the ideal being the S—Cu—S′/S—Cu—P angles of 89.36 (2)/121.94 (2)° and 88.40 (2)/120.99 (2)° in (Ia) and (Ib), respectively (see Table 1[link]), where ′ indicates an atom related by an inversion centre. This distortion is similar to that found in (II) and (III), with that in (IV) being slightly less extreme [99.7 (1)/118.7 (1)°]. The bridging angles about the Cu atoms in (I)[link], together with the Cu—S—Cu′ angles, show a slightly distorted rectangular Cu2S2 plane, which is similar to the slightly distorted square plane in (III) [S—Cu—S′ = 88.5 (1)°] but different from the parallelogram formed in (IV) [S—Cu—S′ = 105.7 (1)°].

The C5N groups are essentially planar with the N atoms lying furthest from the mean planes at 0.007 (3) Å in both (Ia) and (Ib). The pyridinium H atoms in both mol­ecules lie 0.12 (3) Å from the respective planes. The S atoms lie 0.084 (3) and 0.109 (3) Å from the planes, which are tilted with respect to the Cu2S2 planes; the angles between the normals to these planes are 119.55 (5) and 123.09 (5)° respectively. The CuClP planes lie at approximate right angles to the Cu2S2 planes, with angles between the normals to the planes of 95.22 (2) and 94.27 (2)° in the two mol­ecules. The P atoms also have distorted tetra­hedral geometries, with angles in the ranges 102.76 (8)–120.59 (6)° in (Ia) and 102.59 (8)–120.54 (6)° in (Ib) (see Table 1[link]); this is similar to structures (II) and (III), where the angles lie in the ranges 99.58 (9)–119.92 (12)° and 102.4 (3)–122.5 (2)° respectively. Other bond dimensions within the ligands of (I)[link] are as expected.

There is intra­molecular hydrogen bonding between the pyridinium N—H H atoms and the Cl atoms at distances of 2.37 (3) and 2.30 (2) Å in (Ia) and (Ib), respectively. This is also evident in (II) and (III), with inter­molecular hydrogen bonding present in (IV) between both pyridinium H atoms of the terminal S{C5H5N} ligands and two chloride ions (see Table 2[link]).

In the crystal packing of (I)[link], the (PPh3) phenyl groups lie in layers parallel to the crystallographic ab plane with normal van der Waals contacts between groups in neighbouring layers, the closest being C21⋯C25iii = 3.298 (3) Å and C51⋯C55iv = 3.303 (3) Å [symmetry codes: (iii) 2 − x, 2 − y, 1 − z; (iv) 1 − x, −y, 2 − z); these layers alternate with the Cu2Cl2(S{C5H5N}) layers along the crystallographic c axis (Fig. 2[link]). When viewed along the crystallographic c axis, the mol­ecules form columns arranged with each column surrounded by six others. This arrangement is the same as that in (III) and similar to the packing of the monomer (II), where the full (PPh3) ligand forms layers alternating with the Cu2Cl2(S{C5H5N}) layers. It is also similar to the packing of (IV), where two (S{C5H5N}) ligands and the (C5H5N) groups of two further (S{C5H5N}) ligands form layers alternating with layers formed by the Cu atoms, the S atoms of two (S{C5H5N}) ligands and the remaining two (S{C5H5N}) ligands.

These results, with similarities in structure, hydrogen bonding and crystal packing between the title compound (I)[link] and the reported structures (II), (III) and (IV), show that bond dimensions and geometries in (I)[link] are not unusual.

[Figure 1]
Figure 1
A view of the two independent mol­ecules of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except the pyridinium H atoms, have been omitted for clarity. [Symmetry codes: (_1) 1-x, 1-y, -z; (_2) 1-x, 1-y, 2-z.]
[Figure 2]
Figure 2
Packing diagram of (I)[link], viewed along the crystallographic a axis. H atoms have been omitted for clarity.

Experimental

The compound SC5H4NH (0.2 g, 2.5 mmol) was added, under a dinitro­gen atmosphere, to a suspension of PPh3 (0.65 g, 2.5 mmol) and CuCl (0.2 g, 2.5 mmol) in CH2Cl2 (10 cm3). The mixture was stirred for 2 h, then filtered. The solid was washed with CH2Cl2 and dried in vacuo. The crude product was recrystallized from EtOH over CH2Cl2, giving crystals of [{CuCl(S{C5H5N})(P(C6H5)3)}2] (0.15 g 76%). IR: 1570 (s), 1430 (s), 1360 (m), 1125 (s), 1090 (w), 740 (s), 680 (s), 520 (m), 440 (w) cm−1.

Crystal data
  • [Cu2(C5H5NS)2Cl2(C18H15P)2]

  • Mr = 944.84

  • Triclinic, [P \overline 1]

  • a = 9.7076 (6) Å

  • b = 9.7875 (13) Å

  • c = 26.348 (3) Å

  • α = 96.918 (11)°

  • β = 91.942 (7)°

  • γ = 119.488 (8)°

  • V = 2150.7 (4) Å3

  • Z = 2

  • Dx = 1.459 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 24 reflections

  • θ = 10–11°

  • μ = 1.32 mm−1

  • T = 293 (2) K

  • Hexagonal plate, orange

  • 0.51 × 0.33 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: ψ scan(EMPABS; Sheldrick et al., 1977[Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.])Tmin = 0.666, Tmax = 0.709

  • 12901 measured reflections

  • 12512 independent reflections

  • 9568 reflections with I > 2σ(I)

  • Rint = 0.009

  • θmax = 30.0°

  • h = −13 → 13

  • k = −13 → 13

  • l = −1 → 37

  • 3 standard reflections frequency: 167 min intensity decay: 3.3%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.05

  • 12512 reflections

  • 665 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3413P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.007

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.3116 (6)
Cu1—S2 2.3745 (5)
Cu1—S2i 2.4375 (6)
Cu1—P3 2.2344 (5)
S2—C21 1.7184 (18)
P3—C311 1.8257 (17)
P3—C321 1.8283 (17)
P3—C331 1.8282 (17)
Cu2—Cl4 2.3127 (6)
Cu2—S5 2.3838 (6)
Cu2—S5ii 2.4296 (5)
Cu2—P6 2.2316 (5)
S5—Cu2ii 2.4296 (5)
P6—C611 1.8232 (17)
P6—C621 1.8269 (18)
P6—C631 1.8263 (18)
P3—Cu1—Cl1 114.15 (2)
P3—Cu1—S2 121.941 (19)
Cl1—Cu1—S2 111.82 (2)
P3—Cu1—S2i 105.65 (2)
Cl1—Cu1—S2i 110.26 (2)
S2—Cu1—S2i 89.362 (19)
Cu1—S2—Cu1i 90.638 (19)
C311—P3—C331 102.99 (8)
C311—P3—C321 102.76 (8)
C331—P3—C321 103.89 (8)
C311—P3—Cu1 120.59 (6)
C331—P3—Cu1 115.04 (6)
C321—P3—Cu1 109.71 (6)
P6—Cu2—Cl4 114.24 (2)
P6—Cu2—S5 120.99 (2)
Cl4—Cu2—S5 112.23 (2)
P6—Cu2—S5ii 107.029 (19)
Cl4—Cu2—S5ii 110.30 (2)
S5—Cu2—S5ii 88.403 (19)
Cu2—S5—Cu2ii 91.598 (18)
C611—P6—C631 102.77 (8)
C611—P6—C621 102.59 (8)
C631—P6—C621 104.63 (8)
C611—P6—Cu2 120.54 (6)
C631—P6—Cu2 113.53 (6)
C621—P6—Cu2 111.10 (6)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Table 2
Comparison of hydrogen-bond dimensions (Å, °)

Complex N—H N⋯X H⋯X N—H⋯X
(Ia) 0.84 (3) 3.144 (2) 2.37 (3) 153 (2)
(Ib) 0.91 (2) 3.140 (2) 2.30 (2) 154 (2)
(II) 1.01 3.079 (7) 2.22 142
(III) 0.93 3.3082 (3) 2.49 147
(IV) 1.01 3.058 (7) 2.13 151
  1.01 3.132 (8) 2.19 155
X = Cl in (I), (II) and (IV), and Br in (III).

H atoms were included initially in idealized positions, except for the N-bonded H atom, which was located in a difference electron density map, and all were subsequently refined freely [N—H = 0.84 (3) Å and C—H = 0.85 (3)–1.00 (2) Å].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Di-µ-pyridine-2-thiolato-bis[chloro(triphenylphosphine)copper(I)] top
Crystal data top
[Cu2(C5H5NS)2Cl2(C18H15P)2]Z = 2
Mr = 944.84F(000) = 968
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.7076 (6) ÅCell parameters from 24 reflections
b = 9.7875 (13) Åθ = 10–11°
c = 26.348 (3) ŵ = 1.32 mm1
α = 96.918 (11)°T = 293 K
β = 91.942 (7)°Hexagonal plate, orange
γ = 119.488 (8)°0.51 × 0.33 × 0.26 mm
V = 2150.7 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
9568 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 30.0°, θmin = 1.5°
scintillation counter; ω/θ scansh = 1313
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
k = 1313
Tmin = 0.666, Tmax = 0.709l = 137
12901 measured reflections3 standard reflections every 167 min
12512 independent reflections intensity decay: 3.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3413P]
where P = (Fo2 + 2Fc2)/3
12512 reflections(Δ/σ)max = 0.007
665 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were corrected for Lorentz-polarization effects and decay of the intensities (CAD-4 1992), absortption (Sheldrick et al. 1977) and negative intensities (French et al. 1978) before structure solution and refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40592 (3)0.58740 (3)0.473401 (8)0.04119 (6)
Cl10.24327 (6)0.65210 (6)0.52022 (2)0.05034 (11)
S20.65773 (5)0.68355 (5)0.52030 (2)0.03894 (9)
P30.38077 (5)0.59523 (5)0.38935 (2)0.03279 (9)
C210.8034 (2)0.7659 (2)0.48016 (7)0.0374 (3)
N220.9057 (2)0.7115 (2)0.47329 (7)0.0459 (4)
H220.890 (3)0.628 (3)0.4836 (10)0.061 (7)*
C231.0301 (3)0.7729 (3)0.44466 (10)0.0599 (6)
H231.091 (3)0.717 (4)0.4421 (12)0.089 (9)*
C241.0548 (3)0.8949 (3)0.42032 (9)0.0646 (6)
H241.143 (3)0.939 (3)0.4015 (10)0.068 (7)*
C250.9531 (3)0.9549 (3)0.42517 (9)0.0620 (6)
H250.965 (3)1.036 (3)0.4125 (10)0.069 (8)*
C260.8288 (2)0.8928 (2)0.45478 (9)0.0505 (5)
H260.767 (3)0.936 (3)0.4631 (9)0.057 (7)*
C3110.3635 (2)0.7561 (2)0.36688 (6)0.0364 (3)
C3120.4510 (2)0.9077 (2)0.39528 (9)0.0486 (4)
H3120.509 (3)0.923 (3)0.4242 (9)0.056 (7)*
C3130.4521 (3)1.0366 (3)0.37759 (11)0.0606 (6)
H3130.509 (3)1.132 (3)0.3976 (9)0.059 (7)*
C3140.3619 (3)1.0132 (3)0.33228 (11)0.0641 (6)
H3140.360 (3)1.099 (3)0.3220 (11)0.080 (8)*
C3150.2720 (3)0.8640 (3)0.30486 (9)0.0594 (6)
H3150.213 (3)0.847 (3)0.2738 (11)0.075 (8)*
C3160.2720 (3)0.7347 (3)0.32167 (7)0.0475 (4)
H3160.215 (3)0.629 (3)0.3010 (9)0.050 (6)*
C3210.1991 (2)0.4178 (2)0.35821 (6)0.0359 (3)
C3220.0595 (2)0.3779 (2)0.38083 (8)0.0429 (4)
H3220.065 (2)0.443 (2)0.4128 (8)0.044 (5)*
C3230.0823 (2)0.2436 (2)0.35970 (9)0.0515 (5)
H3230.176 (3)0.218 (3)0.3772 (9)0.055 (6)*
C3240.0849 (3)0.1473 (3)0.31685 (10)0.0584 (5)
H3240.178 (3)0.053 (3)0.3020 (11)0.078 (8)*
C3250.0534 (3)0.1841 (3)0.29438 (9)0.0612 (6)
H3250.054 (3)0.118 (3)0.2651 (11)0.076 (8)*
C3260.1953 (3)0.3199 (3)0.31510 (8)0.0491 (4)
H3260.286 (3)0.345 (3)0.3000 (9)0.059 (7)*
C3310.5380 (2)0.5914 (2)0.35402 (6)0.0363 (3)
C3320.5990 (2)0.6760 (3)0.31369 (7)0.0473 (4)
H3320.551 (3)0.732 (3)0.2996 (10)0.063 (7)*
C3330.7241 (3)0.6736 (3)0.29025 (9)0.0588 (5)
H3330.763 (3)0.733 (3)0.2626 (10)0.069 (7)*
C3340.7889 (3)0.5874 (3)0.30728 (10)0.0639 (6)
H3340.870 (3)0.583 (3)0.2895 (10)0.066 (7)*
C3350.7288 (3)0.5025 (3)0.34660 (10)0.0629 (6)
H3350.765 (4)0.440 (4)0.3557 (12)0.095 (10)*
C3360.6045 (3)0.5050 (3)0.37042 (8)0.0492 (4)
H3360.565 (3)0.448 (3)0.3969 (9)0.055 (6)*
Cu20.67700 (3)0.57400 (3)0.972730 (8)0.04193 (6)
Cl40.91200 (6)0.76884 (6)1.02008 (2)0.04906 (11)
S50.53029 (5)0.35694 (5)1.01763 (2)0.03940 (9)
P60.69444 (5)0.53304 (5)0.88861 (15)0.03279 (9)
C510.4583 (2)0.1774 (2)0.97822 (6)0.0369 (3)
N520.3007 (2)0.0718 (2)0.97295 (6)0.0443 (3)
H520.237 (3)0.108 (3)0.9851 (9)0.056 (6)*
C530.2329 (3)0.0763 (3)0.94562 (9)0.0543 (5)
H530.119 (4)0.142 (3)0.9440 (11)0.084 (9)*
C540.3230 (3)0.1262 (3)0.92092 (9)0.0573 (5)
H540.275 (3)0.233 (3)0.9013 (11)0.079 (8)*
C550.4853 (3)0.0221 (3)0.92406 (9)0.0567 (5)
H550.552 (3)0.046 (3)0.9081 (11)0.077 (8)*
C560.5528 (3)0.1272 (2)0.95219 (8)0.0470 (4)
H560.659 (3)0.197 (3)0.9552 (9)0.054 (6)*
C6110.86699 (19)0.52757 (19)0.86564 (6)0.0354 (3)
C6120.9391 (2)0.4646 (2)0.89408 (8)0.0448 (4)
H6120.904 (3)0.435 (3)0.9251 (9)0.056 (6)*
C6131.0626 (3)0.4459 (3)0.87622 (10)0.0560 (5)
H6131.099 (3)0.404 (3)0.8960 (10)0.070 (8)*
C6141.1174 (3)0.4939 (3)0.83021 (10)0.0589 (6)
H6141.199 (3)0.485 (3)0.8190 (10)0.075 (8)*
C6151.0508 (3)0.5608 (3)0.80242 (9)0.0570 (5)
H6151.087 (3)0.596 (3)0.7704 (11)0.073 (8)*
C6160.9258 (2)0.5779 (2)0.81962 (7)0.0459 (4)
H6160.882 (3)0.622 (3)0.7981 (9)0.060 (7)*
C6210.6913 (2)0.6879 (2)0.85701 (7)0.0375 (3)
C6220.7960 (2)0.8450 (2)0.87937 (9)0.0473 (4)
H6220.864 (3)0.863 (3)0.9088 (9)0.055 (6)*
C6230.8008 (3)0.9692 (3)0.85752 (11)0.0591 (6)
H6230.870 (3)1.071 (3)0.8738 (10)0.066 (7)*
C6240.6995 (3)0.9369 (3)0.81414 (11)0.0662 (7)
H6240.699 (3)1.024 (4)0.8017 (12)0.087 (9)*
C6250.5944 (4)0.7833 (4)0.79248 (10)0.0673 (7)
H6250.518 (3)0.755 (3)0.7643 (11)0.072 (8)*
C6260.5900 (3)0.6573 (3)0.81357 (8)0.0507 (5)
H6260.521 (3)0.554 (3)0.7991 (9)0.052 (6)*
C6310.5278 (2)0.3475 (2)0.85461 (6)0.0362 (3)
C6320.5436 (2)0.2483 (2)0.81579 (8)0.0462 (4)
H6320.638 (3)0.284 (3)0.8037 (9)0.058 (7)*
C6330.4137 (3)0.1016 (3)0.79546 (9)0.0575 (5)
H6330.429 (3)0.037 (3)0.7695 (10)0.068 (7)*
C6340.2677 (3)0.0541 (3)0.81331 (9)0.0597 (6)
H6340.178 (3)0.050 (3)0.8023 (10)0.073 (8)*
C6350.2497 (3)0.1526 (3)0.85091 (9)0.0596 (6)
H6350.159 (3)0.120 (3)0.8646 (11)0.073 (8)*
C6360.3788 (2)0.2982 (3)0.87186 (8)0.0477 (4)
H6360.369 (3)0.370 (3)0.9000 (9)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04120 (12)0.05046 (13)0.03162 (11)0.02147 (10)0.00559 (8)0.01180 (9)
Cl10.0484 (2)0.0510 (3)0.0555 (3)0.0274 (2)0.0132 (2)0.0085 (2)
S20.0327 (2)0.0374 (2)0.0409 (2)0.0123 (2)0.0035 (2)0.0105 (2)
P30.0346 (2)0.0373 (2)0.0285 (2)0.0187 (2)0.0041 (2)0.0088 (2)
C210.0299 (7)0.0348 (8)0.0380 (8)0.0085 (6)0.0018 (6)0.0091 (6)
N220.0443 (8)0.0412 (8)0.0513 (9)0.0187 (7)0.0116 (7)0.0151 (7)
C230.0526 (12)0.0588 (13)0.0663 (14)0.0245 (10)0.0220 (10)0.0137 (11)
C240.0548 (13)0.0641 (14)0.0580 (13)0.0139 (11)0.0189 (11)0.0200 (11)
C250.0586 (13)0.0527 (12)0.0565 (12)0.0099 (10)0.0016 (10)0.0303 (10)
C260.0410 (10)0.0472 (10)0.0579 (12)0.0155 (8)0.0039 (8)0.0219 (9)
C3110.0376 (8)0.0400 (8)0.0364 (8)0.0215 (7)0.0088 (6)0.0114 (6)
C3120.0422 (10)0.0469 (10)0.0574 (12)0.0239 (8)0.0002 (9)0.0051 (9)
C3130.0539 (12)0.0386 (10)0.0900 (18)0.0228 (9)0.0133 (12)0.0120 (11)
C3140.0699 (15)0.0595 (13)0.0852 (17)0.0418 (12)0.0291 (13)0.0399 (13)
C3150.0739 (15)0.0739 (15)0.0522 (12)0.0484 (13)0.0131 (11)0.0311 (11)
C3160.0585 (11)0.0528 (11)0.0384 (9)0.0318 (9)0.0049 (8)0.0137 (8)
C3210.0378 (8)0.0371 (8)0.0351 (8)0.0196 (7)0.0016 (6)0.0096 (6)
C3220.0420 (9)0.0407 (9)0.0490 (10)0.0224 (8)0.0067 (8)0.0090 (8)
C3230.0385 (9)0.0491 (11)0.0655 (13)0.0194 (8)0.0035 (9)0.0166 (9)
C3240.0482 (11)0.0468 (11)0.0647 (14)0.0137 (9)0.0124 (10)0.0058 (10)
C3250.0636 (14)0.0563 (12)0.0500 (12)0.0242 (11)0.0082 (10)0.0089 (10)
C3260.0482 (10)0.0541 (11)0.0407 (10)0.0239 (9)0.0023 (8)0.0010 (8)
C3310.0358 (8)0.0418 (8)0.0314 (7)0.0199 (7)0.0023 (6)0.0048 (6)
C3320.0494 (10)0.0570 (11)0.0413 (9)0.0289 (9)0.0135 (8)0.0153 (8)
C3330.0577 (13)0.0716 (14)0.0503 (12)0.0325 (11)0.0224 (10)0.0153 (10)
C3340.0509 (12)0.0798 (16)0.0626 (14)0.0367 (12)0.0148 (10)0.0047 (12)
C3350.0637 (14)0.0808 (16)0.0644 (14)0.0525 (13)0.0078 (11)0.0062 (12)
C3360.0534 (11)0.0577 (11)0.0486 (11)0.0357 (10)0.0087 (9)0.0131 (9)
Cu20.04974 (13)0.04424 (12)0.03210 (11)0.02372 (10)0.00784 (9)0.00510 (8)
Cl40.0427 (2)0.0490 (2)0.0527 (3)0.0216 (2)0.00076 (19)0.0057 (2)
S50.0467 (2)0.0353 (2)0.0420 (2)0.0237 (2)0.0100 (2)0.0103 (2)
P60.0348 (2)0.0365 (2)0.0288 (2)0.0189 (2)0.0054 (2)0.0056 (2)
C510.0466 (9)0.0357 (8)0.0374 (8)0.0248 (7)0.0124 (7)0.0156 (6)
N520.0447 (8)0.0421 (8)0.0515 (9)0.0255 (7)0.0099 (7)0.0080 (7)
C530.0540 (12)0.0438 (10)0.0610 (13)0.0224 (9)0.0017 (10)0.0050 (9)
C540.0787 (15)0.0453 (11)0.0521 (12)0.0352 (11)0.0066 (11)0.0025 (9)
C550.0817 (16)0.0585 (12)0.0524 (11)0.0491 (12)0.0303 (11)0.0163 (9)
C560.0527 (11)0.0452 (10)0.0529 (11)0.0284 (9)0.0238 (9)0.0185 (8)
C6110.0343 (8)0.0362 (8)0.0366 (8)0.0184 (7)0.0053 (6)0.0043 (6)
C6120.0414 (9)0.0450 (10)0.0490 (10)0.0211 (8)0.0045 (8)0.0140 (8)
C6130.0475 (11)0.0542 (12)0.0771 (15)0.0331 (10)0.0034 (10)0.0132 (11)
C6140.0472 (11)0.0621 (13)0.0746 (15)0.0341 (10)0.0154 (10)0.0026 (11)
C6150.0577 (12)0.0675 (13)0.0517 (12)0.0350 (11)0.0218 (10)0.0085 (10)
C6160.0515 (10)0.0575 (11)0.0389 (9)0.0337 (9)0.0120 (8)0.0115 (8)
C6210.0370 (8)0.0450 (9)0.0390 (8)0.0254 (7)0.0115 (7)0.0123 (7)
C6220.0413 (9)0.0459 (10)0.0609 (12)0.0249 (8)0.0090 (9)0.0144 (9)
C6230.0546 (12)0.0464 (11)0.0873 (17)0.0291 (10)0.0265 (12)0.0264 (11)
C6240.0823 (17)0.0750 (16)0.0742 (16)0.0557 (14)0.0362 (13)0.0438 (13)
C6250.0850 (17)0.0925 (19)0.0524 (13)0.0616 (16)0.0102 (12)0.0295 (13)
C6260.0591 (12)0.0599 (12)0.0401 (10)0.0345 (10)0.0029 (9)0.0113 (9)
C6310.0364 (8)0.0388 (8)0.0327 (8)0.0177 (7)0.0036 (6)0.0080 (6)
C6320.0443 (10)0.0478 (10)0.0421 (9)0.0212 (8)0.0030 (8)0.0001 (8)
C6330.0623 (13)0.0506 (11)0.0528 (12)0.0275 (10)0.0076 (10)0.0087 (9)
C6340.0510 (12)0.0475 (11)0.0576 (13)0.0085 (9)0.0103 (10)0.0067 (9)
C6350.0367 (10)0.0699 (14)0.0548 (12)0.0131 (10)0.0015 (9)0.0126 (11)
C6360.0396 (9)0.0554 (11)0.0429 (10)0.0203 (8)0.0060 (7)0.0052 (8)
Geometric parameters (Å, º) top
Cu1—Cl12.3116 (6)Cu2—Cl42.3127 (6)
Cu1—S22.3745 (5)Cu2—S52.3838 (6)
Cu1—S2i2.4375 (6)Cu2—S5ii2.4296 (5)
Cu1—P32.2344 (5)Cu2—P62.2316 (5)
S2—Cu1i2.4376 (6)S5—C511.7194 (18)
S2—C211.7184 (18)S5—Cu2ii2.4296 (5)
P3—C3111.8257 (17)P6—C6111.8232 (17)
P3—C3211.8283 (17)P6—C6211.8269 (18)
P3—C3311.8282 (17)P6—C6311.8263 (18)
C21—N221.346 (2)C51—N521.350 (2)
C21—C261.400 (3)C51—C561.399 (3)
N22—C231.359 (3)N52—C531.353 (3)
N22—H220.84 (3)N52—H520.91 (2)
C23—C241.344 (4)C53—C541.346 (3)
C23—H230.98 (3)C53—H530.97 (3)
C24—C251.377 (4)C54—C551.384 (4)
C24—H240.94 (3)C54—H540.98 (3)
C25—C261.375 (3)C55—C561.370 (3)
C25—H250.85 (3)C55—H550.89 (3)
C26—H260.90 (2)C56—H560.91 (2)
C311—C3121.390 (3)C611—C6121.389 (3)
C311—C3161.392 (3)C611—C6161.397 (2)
C312—C3131.392 (3)C612—C6131.389 (3)
C312—H3120.89 (2)C612—H6120.92 (2)
C313—C3141.382 (4)C613—C6141.381 (4)
C313—H3130.90 (2)C613—H6130.87 (3)
C314—C3151.365 (4)C614—C6151.372 (4)
C314—H3140.92 (3)C614—H6140.90 (3)
C315—C3161.389 (3)C615—C6161.387 (3)
C315—H3150.93 (3)C615—H6150.96 (3)
C316—H3160.97 (2)C616—H6160.95 (3)
C321—C3261.382 (3)C621—C6261.385 (3)
C321—C3221.391 (2)C621—C6221.396 (3)
C322—C3231.387 (3)C622—C6231.387 (3)
C322—H3220.98 (2)C622—H6220.94 (2)
C323—C3241.372 (3)C623—C6241.380 (4)
C323—H3230.97 (2)C623—H6230.92 (3)
C324—C3251.383 (4)C624—C6251.367 (4)
C324—H3240.94 (3)C624—H6240.95 (3)
C325—C3261.390 (3)C625—C6261.395 (3)
C325—H3250.95 (3)C625—H6250.94 (3)
C326—H3260.91 (2)C626—H6260.91 (2)
C331—C3361.386 (3)C631—C6321.390 (3)
C331—C3321.392 (2)C631—C6361.393 (2)
C332—C3331.390 (3)C632—C6331.387 (3)
C332—H3320.97 (3)C632—H6320.89 (2)
C333—C3341.380 (4)C633—C6341.377 (3)
C333—H3330.95 (3)C633—H6330.94 (3)
C334—C3351.369 (4)C634—C6351.374 (4)
C334—H3340.94 (3)C634—H6340.96 (3)
C335—C3361.389 (3)C635—C6361.383 (3)
C335—H3350.89 (3)C635—H6350.88 (3)
C336—H3360.92 (2)C636—H6361.00 (2)
P3—Cu1—Cl1114.15 (2)P6—Cu2—Cl4114.24 (2)
P3—Cu1—S2121.941 (19)P6—Cu2—S5120.99 (2)
Cl1—Cu1—S2111.82 (2)Cl4—Cu2—S5112.23 (2)
P3—Cu1—S2i105.65 (2)P6—Cu2—S5ii107.029 (19)
Cl1—Cu1—S2i110.26 (2)Cl4—Cu2—S5ii110.30 (2)
S2—Cu1—S2i89.362 (19)S5—Cu2—S5ii88.403 (19)
C21—S2—Cu1108.75 (6)C51—S5—Cu2111.47 (6)
C21—S2—Cu1i110.70 (7)C51—S5—Cu2ii110.75 (6)
Cu1—S2—Cu1i90.638 (19)Cu2—S5—Cu2ii91.598 (18)
C311—P3—C331102.99 (8)C611—P6—C631102.77 (8)
C311—P3—C321102.76 (8)C611—P6—C621102.59 (8)
C331—P3—C321103.89 (8)C631—P6—C621104.63 (8)
C311—P3—Cu1120.59 (6)C611—P6—Cu2120.54 (6)
C331—P3—Cu1115.04 (6)C631—P6—Cu2113.53 (6)
C321—P3—Cu1109.71 (6)C621—P6—Cu2111.10 (6)
N22—C21—C26116.15 (17)N52—C51—C56116.00 (17)
N22—C21—S2119.43 (13)N52—C51—S5119.27 (13)
C26—C21—S2124.38 (16)C56—C51—S5124.67 (15)
C21—N22—C23124.51 (19)C51—N52—C53124.13 (18)
C21—N22—H22121.6 (18)C51—N52—H52116.8 (15)
C23—N22—H22113.5 (18)C53—N52—H52118.5 (16)
C24—C23—N22119.5 (2)C54—C53—N52120.3 (2)
C24—C23—H23125.6 (18)C54—C53—H53122.2 (18)
N22—C23—H23114.8 (18)N52—C53—H53117.5 (18)
C23—C24—C25119.0 (2)C53—C54—C55118.3 (2)
C23—C24—H24118.8 (17)C53—C54—H54120.9 (17)
C25—C24—H24122.2 (16)C55—C54—H54120.8 (17)
C26—C25—C24121.0 (2)C56—C55—C54120.9 (2)
C26—C25—H25115.0 (18)C56—C55—H55115.8 (19)
C24—C25—H25123.9 (18)C54—C55—H55123.3 (19)
C25—C26—C21119.9 (2)C55—C56—C51120.4 (2)
C25—C26—H26124.9 (16)C55—C56—H56122.4 (15)
C21—C26—H26114.7 (16)C51—C56—H56117.2 (15)
C312—C311—C316118.74 (17)C612—C611—C616118.57 (17)
C312—C311—P3118.23 (14)C612—C611—P6118.52 (14)
C316—C311—P3122.98 (14)C616—C611—P6122.85 (14)
C313—C312—C311120.4 (2)C613—C612—C611120.83 (19)
C313—C312—H312119.9 (15)C613—C612—H612119.6 (15)
C311—C312—H312119.6 (15)C611—C612—H612119.6 (15)
C314—C313—C312119.9 (2)C614—C613—C612119.7 (2)
C314—C313—H313122.9 (16)C614—C613—H613125.6 (18)
C312—C313—H313117.1 (16)C612—C613—H613114.7 (18)
C315—C314—C313120.1 (2)C615—C614—C613120.2 (2)
C315—C314—H314121.2 (18)C615—C614—H614119.7 (18)
C313—C314—H314118.7 (18)C613—C614—H614120.0 (18)
C314—C315—C316120.6 (2)C614—C615—C616120.5 (2)
C314—C315—H315120.7 (17)C614—C615—H615122.1 (17)
C316—C315—H315118.6 (17)C616—C615—H615117.4 (16)
C315—C316—C311120.2 (2)C615—C616—C611120.19 (19)
C315—C316—H316121.0 (13)C615—C616—H616116.6 (15)
C311—C316—H316118.6 (13)C611—C616—H616123.2 (15)
C326—C321—C322119.10 (17)C626—C621—C622119.31 (18)
C326—C321—P3123.55 (14)C626—C621—P6123.84 (15)
C322—C321—P3117.30 (13)C622—C621—P6116.83 (14)
C323—C322—C321120.43 (19)C623—C622—C621120.2 (2)
C323—C322—H322121.0 (12)C623—C622—H622121.8 (15)
C321—C322—H322118.5 (12)C621—C622—H622117.9 (14)
C324—C323—C322120.0 (2)C624—C623—C622119.8 (2)
C324—C323—H323121.9 (14)C624—C623—H623122.5 (17)
C322—C323—H323117.9 (14)C622—C623—H623117.6 (17)
C323—C324—C325120.2 (2)C625—C624—C623120.5 (2)
C323—C324—H324122.7 (17)C625—C624—H624121.3 (19)
C325—C324—H324117.1 (17)C623—C624—H624118.0 (19)
C324—C325—C326119.8 (2)C624—C625—C626120.3 (2)
C324—C325—H325121.4 (17)C624—C625—H625123.5 (17)
C326—C325—H325118.8 (17)C626—C625—H625116.0 (17)
C321—C326—C325120.4 (2)C621—C626—C625119.9 (2)
C321—C326—H326119.8 (15)C621—C626—H626119.3 (15)
C325—C326—H326119.8 (15)C625—C626—H626120.8 (15)
C336—C331—C332118.82 (17)C632—C631—C636118.80 (17)
C336—C331—P3117.40 (14)C632—C631—P6123.90 (14)
C332—C331—P3123.70 (14)C636—C631—P6117.11 (14)
C333—C332—C331120.5 (2)C633—C632—C631120.3 (2)
C333—C332—H332118.2 (15)C633—C632—H632121.6 (15)
C331—C332—H332121.2 (15)C631—C632—H632118.0 (16)
C334—C333—C332119.8 (2)C634—C633—C632120.1 (2)
C334—C333—H333121.9 (16)C634—C633—H633121.9 (17)
C332—C333—H333118.4 (16)C632—C633—H633118.0 (17)
C335—C334—C333120.2 (2)C635—C634—C633120.1 (2)
C335—C334—H334121.6 (16)C635—C634—H634117.4 (16)
C333—C334—H334118.1 (16)C633—C634—H634122.3 (16)
C334—C335—C336120.4 (2)C634—C635—C636120.2 (2)
C334—C335—H335120 (2)C634—C635—H635120.9 (18)
C336—C335—H335119 (2)C636—C635—H635118.5 (18)
C331—C336—C335120.3 (2)C635—C636—C631120.4 (2)
C331—C336—H336120.2 (15)C635—C636—H636121.3 (14)
C335—C336—H336119.4 (15)C631—C636—H636118.3 (14)
P3—Cu1—S2—C214.03 (7)P6—Cu2—S5—C514.10 (7)
Cl1—Cu1—S2—C21136.22 (7)Cl4—Cu2—S5—C51135.62 (7)
S2i—Cu1—S2—C21112.15 (7)S5ii—Cu2—S5—C51113.07 (7)
P3—Cu1—S2—Cu1i108.12 (2)P6—Cu2—S5—Cu2ii108.97 (2)
Cl1—Cu1—S2—Cu1i111.63 (2)Cl4—Cu2—S5—Cu2ii111.31 (2)
S2i—Cu1—S2—Cu1i0.0S5ii—Cu2—S5—Cu2ii0.0
Cl1—Cu1—P3—C31141.80 (7)Cl4—Cu2—P6—C61142.17 (7)
S2—Cu1—P3—C31197.62 (7)S5—Cu2—P6—C61196.80 (7)
S2i—Cu1—P3—C311163.12 (7)S5ii—Cu2—P6—C611164.57 (6)
Cl1—Cu1—P3—C331166.17 (6)Cl4—Cu2—P6—C631164.64 (6)
S2—Cu1—P3—C33126.75 (7)S5—Cu2—P6—C63125.66 (7)
S2i—Cu1—P3—C33172.52 (6)S5ii—Cu2—P6—C63172.97 (6)
Cl1—Cu1—P3—C32177.17 (6)Cl4—Cu2—P6—C62177.76 (6)
S2—Cu1—P3—C321143.41 (6)S5—Cu2—P6—C621143.27 (6)
S2i—Cu1—P3—C32144.14 (6)S5ii—Cu2—P6—C62144.64 (6)
Cu1—S2—C21—N22123.41 (13)Cu2—S5—C51—N52124.42 (13)
Cu1i—S2—C21—N2225.32 (16)Cu2ii—S5—C51—N5223.99 (15)
Cu1—S2—C21—C2659.17 (17)Cu2—S5—C51—C5658.62 (17)
Cu1i—S2—C21—C26157.27 (15)Cu2ii—S5—C51—C56159.05 (14)
C26—C21—N22—C231.2 (3)C56—C51—N52—C531.6 (3)
S2—C21—N22—C23176.46 (17)S5—C51—N52—C53175.66 (16)
C21—N22—C23—C241.1 (4)C51—N52—C53—C540.9 (3)
N22—C23—C24—C250.1 (4)N52—C53—C54—C550.4 (3)
C23—C24—C25—C260.7 (4)C53—C54—C55—C560.9 (3)
C24—C25—C26—C210.6 (3)C54—C55—C56—C510.2 (3)
N22—C21—C26—C250.3 (3)N52—C51—C56—C551.0 (3)
S2—C21—C26—C25177.17 (17)S5—C51—C56—C55176.05 (16)
C331—P3—C311—C31293.35 (15)C631—P6—C611—C61293.21 (15)
C321—P3—C311—C312158.90 (15)C621—P6—C611—C612158.36 (15)
Cu1—P3—C311—C31236.51 (17)Cu2—P6—C611—C61234.31 (17)
C331—P3—C311—C31684.04 (16)C631—P6—C611—C61684.08 (17)
C321—P3—C311—C31623.71 (17)C621—P6—C611—C61624.35 (17)
Cu1—P3—C311—C316146.09 (14)Cu2—P6—C611—C616148.40 (14)
C316—C311—C312—C3132.7 (3)C616—C611—C612—C6132.6 (3)
P3—C311—C312—C313174.78 (17)P6—C611—C612—C613174.78 (16)
C311—C312—C313—C3142.0 (3)C611—C612—C613—C6141.6 (3)
C312—C313—C314—C3150.1 (4)C612—C613—C614—C6150.4 (4)
C313—C314—C315—C3161.0 (4)C613—C614—C615—C6161.3 (4)
C314—C315—C316—C3110.2 (3)C614—C615—C616—C6110.3 (3)
C312—C311—C316—C3151.7 (3)C612—C611—C616—C6151.7 (3)
P3—C311—C316—C315175.71 (16)P6—C611—C616—C615175.62 (17)
C311—P3—C321—C326102.17 (17)C611—P6—C621—C626101.18 (17)
C331—P3—C321—C3264.89 (18)C631—P6—C621—C6265.82 (18)
Cu1—P3—C321—C326128.38 (15)Cu2—P6—C621—C626128.72 (15)
C311—P3—C321—C32280.35 (15)C611—P6—C621—C62280.27 (15)
C331—P3—C321—C322172.59 (13)C631—P6—C621—C622172.73 (14)
Cu1—P3—C321—C32249.10 (14)Cu2—P6—C621—C62249.83 (15)
C326—C321—C322—C3231.5 (3)C626—C621—C622—C6231.5 (3)
P3—C321—C322—C323179.11 (15)P6—C621—C622—C623179.84 (16)
C321—C322—C323—C3241.4 (3)C621—C622—C623—C6241.3 (3)
C322—C323—C324—C3250.4 (3)C622—C623—C624—C6250.1 (4)
C323—C324—C325—C3260.5 (4)C623—C624—C625—C6260.9 (4)
C322—C321—C326—C3250.6 (3)C622—C621—C626—C6250.6 (3)
P3—C321—C326—C325178.04 (17)P6—C621—C626—C625179.07 (17)
C324—C325—C326—C3210.4 (4)C624—C625—C626—C6210.7 (4)
C311—P3—C331—C336166.35 (15)C611—P6—C631—C6328.33 (18)
C321—P3—C331—C33686.75 (16)C621—P6—C631—C63298.54 (17)
Cu1—P3—C331—C33633.18 (17)Cu2—P6—C631—C632140.16 (15)
C311—P3—C331—C33210.35 (18)C611—P6—C631—C636166.48 (15)
C321—P3—C331—C33296.54 (17)C621—P6—C631—C63686.65 (16)
Cu1—P3—C331—C332143.53 (14)Cu2—P6—C631—C63634.65 (16)
C336—C331—C332—C3330.1 (3)C636—C631—C632—C6331.3 (3)
P3—C331—C332—C333176.79 (17)P6—C631—C632—C633173.43 (17)
C331—C332—C333—C3340.4 (3)C631—C632—C633—C6340.6 (3)
C332—C333—C334—C3351.0 (4)C632—C633—C634—C6350.8 (4)
C333—C334—C335—C3361.4 (4)C633—C634—C635—C6361.5 (4)
C332—C331—C336—C3350.5 (3)C634—C635—C636—C6310.8 (3)
P3—C331—C336—C335177.38 (18)C632—C631—C636—C6350.5 (3)
C334—C335—C336—C3311.1 (4)P6—C631—C636—C635174.53 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22···Cl1i0.84 (3)2.37 (3)3.1436 (18)153 (2)
N52—H52···Cl4ii0.91 (2)2.30 (2)3.1398 (17)154 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Comparison of Hydrogen-bond dimensions (Å, °) top
ComplexN—HN···XH···XN—H···X
(Ia)0.84 (3)3.144 (2)2.37 (3)153 (2)
(Ib)0.91 (2)3.140 (2)2.30 (2)154 (2)
(II)1.013.079 (7)2.22142
(III)0.933.3082 (3)2.49147
(IV)1.013.058 (7)2.13151
1.013.132 (8)2.19155
X = Cl in (I), (II) and (IV) and Br in (III)
 

Acknowledgements

We thank the Chemical Database Service, Science and Engineering Research Council, Daresbury Laboratory, England.

References

First citationConstable, E. C. & Raithby, P. R. (1987). J. Chem. Soc. Dalton Trans. pp. 2281–2283.  CrossRef Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London, England.  Google Scholar
First citationKaragiannidis, P. (1989). Inorg. Chim. Acta, 156, 47–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationLobana, T. S., Bhatia, P. K. & Tiekink, E. R. T. (1989). J. Chem. Soc. Dalton Trans. pp. 749–751.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds