organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phenyl)-3-(4-meth­oxy­phen­yl)­prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore-574 153, India, dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and eDepartment of Physics, University College, Mangalore 575 001, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 23 March 2006; accepted 24 March 2006; online 31 March 2006)

The geometrical parameters for the title compound, C16H13ClO2, are normal. Packing in a non-centrosymmetric space group, which is consistent with the non-zero second harmonic generation response, may be influenced by a C—H⋯O inter­action.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies (Indira et al., 2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]; Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.], 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]) of the non-linear optical (NLO) properties of chalcone deriv­atives (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). The non-centrosymmetric, polar crystal structure of (I)[link] is consistent with its significant second harmonic generation (SHG) response of 0.8 times that of urea (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112-117.]).

[Scheme 1]

The geometrical parameters for (I)[link] are normal (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) and consistent with those of other recently reported chalcone derivatives (Rosli et al., 2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466-o1468.]; Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465-o1465.]). Compound (I)[link] complements several closely related mol­ecules with other 4-substituents X instead of Cl (see scheme), namely (II) with X = OH (Moorthi et al., 2005[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]), (III) with X = CH3 (Wang et al., 2005[Wang, L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 191-195. (In Chinese.)]), (IV) with X = H (Rabinovich & Schmidt, 1970[Rabinovich, D. & Schmidt, G. M. J. (1970). J. Chem. Soc. B. pp. 6-9.]), and (V) with X = OCH3 (Zheng et al., 1992[Zheng, J., Zhang, D., Sheng, P., Wang, H. & Yao, X. (1992). Yingyong Huaxue (Chin. J. Appl. Chem.), 9, 66-69. (In Chinese.)]). The space groups for (I)[link], (II), (III), (IV) and (V) are Pna21, Pbca, P21/c, P21 and P212121, respectively. The distribution of space groups for this small family is thus consistent with the observation that chalcones are prone to crystallize as non-centrosymmetric structures (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]).

The mol­ecule of (I)[link] is distinctly twisted about the C6—C7 and the C7—C8 bonds (Table 1[link]), as was also seen for 2-bromo-1-chloro­phenyl-3-(4-methoxy­phen­yl)-2-propen-1-one (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]). The dihedral angle between the benzene ring mean planes (C1–C6 and C10–C15) in (I)[link] is 21.82 (6)°. Cl1, C7 and O1 deviate from the former mean plane by 0.031 (3), 0.022 (3) and 0.346 (3) Å, respectively. The deviations of C9, O2 and C16 from the latter plane are 0.087 (3), 0.038 (3) and 0.049 (3) Å, respectively.

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated a possible intra­molecular C9—H9⋯O1 inter­action (Table 2[link]) that might help to maintain the mol­ecular conformation. A similar inter­action was proposed for 3-(4-bromo­phen­yl)-1-(4-nitro­phen­yl)-prop-2-en-1-one (Rosli et al., 2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466-o1468.]).

An inter­molecular C—H⋯O hydrogen bond (Fig. 2[link]) appears to help to assemble the mol­ecules of (I)[link] into helical stacks about the 21 screw axis, propagating in the polar [001] direction.

[Figure 1]
Figure 1
View of (I)[link], showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The possible intra­molecular C—H⋯O inter­action is indicated by a dashed line.
[Figure 2]
Figure 2
The packing for (I)[link], viewed down [001], with C—H⋯O inter­actions shown as dashed lines.

Experimental

4-Chloro­acetophenone in ethanol (1.54 g, 0.01 mol) (25 ml) was mixed with 4-meth­oxybenzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of potassium hydroxide (20 ml, 5%). This mixture was stirred well and left to stand for 24 hr. The resulting crude solid mass was collected by filtration and recrystallized from ethanol, yielding clear blocks of (I)[link]. Yield: 90%, m.p.: 380 K, analysis found (calc.) for C16H13ClO2, C 70.5 (70.4%); H 4.72 (4.76%).

Crystal data
  • C16H13ClO2

  • Mr = 272.71

  • Orthorhombic, P n a 21

  • a = 12.8179 (4) Å

  • b = 25.5550 (6) Å

  • c = 3.9175 (1) Å

  • V = 1283.22 (6) Å3

  • Z = 4

  • Dx = 1.412 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1708 reflections

  • θ = 2.9–27.5°

  • μ = 0.29 mm−1

  • T = 120 (2) K

  • Slab, colourless

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.944

  • 8514 measured reflections

  • 2815 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 27.5°

  • h = −9 → 16

  • k = −33 → 32

  • l = −5 → 5

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.04

  • 2815 reflections

  • 173 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2552P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1131 Friedel pairs

  • Flack parameter: 0.02 (6)

Table 1
Selected geometric parameters (Å, °)

C6—C7 1.496 (2)
C7—C8 1.479 (2)
C8—C9 1.342 (2)
C9—C10 1.461 (2)
C5—C6—C7—O1 16.7 (2)
O1—C7—C8—C9 6.4 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.95 2.46 2.8065 (19) 102
C12—H12⋯O1i 0.95 2.54 3.4828 (18) 175
Symmetry code: (i) [-x+1, -y, z-{\script{1\over 2}}].

H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. App. Cryst. 30, 565-565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1-(4-Chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13ClO2F(000) = 568
Mr = 272.71Dx = 1.412 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1708 reflections
a = 12.8179 (4) Åθ = 2.9–27.5°
b = 25.5550 (6) ŵ = 0.29 mm1
c = 3.9175 (1) ÅT = 120 K
V = 1283.22 (6) Å3Slab, colourless
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2815 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 916
Tmin = 0.868, Tmax = 0.944k = 3332
8514 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2552P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2815 reflectionsΔρmax = 0.23 e Å3
173 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1131 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19574 (12)0.20035 (6)0.2960 (4)0.0205 (4)
H10.26500.21120.24620.025*
C20.12683 (13)0.23537 (5)0.4453 (5)0.0218 (3)
H20.14830.27000.49760.026*
C30.02617 (12)0.21890 (6)0.5169 (4)0.0200 (3)
C40.00692 (12)0.16853 (6)0.4450 (5)0.0236 (3)
H40.07600.15770.49790.028*
C50.06269 (12)0.13431 (6)0.2947 (4)0.0222 (4)
H50.04070.09970.24240.027*
C60.16443 (10)0.14935 (5)0.2180 (5)0.0173 (3)
C70.23496 (12)0.11027 (6)0.0517 (4)0.0190 (3)
C80.34886 (12)0.11936 (6)0.0601 (4)0.0191 (3)
H80.37640.14800.18610.023*
C90.41349 (11)0.08728 (6)0.1098 (4)0.0185 (3)
H90.38130.06090.24400.022*
C100.52748 (12)0.08815 (5)0.1131 (4)0.0175 (3)
C110.57984 (11)0.04602 (5)0.2616 (4)0.0184 (3)
H110.54010.01930.36900.022*
C120.68784 (11)0.04173 (5)0.2580 (5)0.0195 (3)
H120.72150.01230.35690.023*
C130.74565 (12)0.08153 (6)0.1062 (4)0.0190 (3)
C140.69544 (12)0.12507 (6)0.0340 (5)0.0210 (3)
H140.73550.15270.12990.025*
C150.58780 (12)0.12813 (6)0.0338 (4)0.0197 (3)
H150.55430.15750.13390.024*
C160.90530 (12)0.03755 (6)0.2288 (5)0.0257 (4)
H16A0.98060.04150.19420.039*
H16B0.89030.03570.47380.039*
H16C0.88140.00540.11770.039*
O10.19706 (8)0.07117 (4)0.0837 (4)0.0237 (3)
O20.85193 (8)0.08157 (4)0.0835 (3)0.0234 (3)
Cl10.06159 (3)0.262892 (14)0.69857 (14)0.02734 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0165 (7)0.0197 (7)0.0252 (10)0.0001 (6)0.0015 (6)0.0032 (6)
C20.0235 (8)0.0168 (6)0.0252 (9)0.0001 (6)0.0030 (7)0.0002 (6)
C30.0198 (7)0.0225 (7)0.0179 (8)0.0074 (6)0.0012 (7)0.0017 (6)
C40.0178 (7)0.0275 (7)0.0256 (9)0.0026 (6)0.0001 (7)0.0017 (7)
C50.0202 (7)0.0205 (7)0.0257 (10)0.0025 (6)0.0007 (7)0.0004 (6)
C60.0168 (6)0.0186 (6)0.0167 (7)0.0017 (5)0.0036 (7)0.0015 (7)
C70.0206 (8)0.0188 (7)0.0176 (8)0.0009 (6)0.0022 (6)0.0047 (6)
C80.0179 (7)0.0189 (7)0.0204 (8)0.0006 (6)0.0018 (6)0.0017 (6)
C90.0211 (8)0.0182 (6)0.0161 (8)0.0015 (6)0.0007 (7)0.0018 (6)
C100.0182 (7)0.0186 (6)0.0157 (8)0.0011 (6)0.0008 (6)0.0016 (7)
C110.0223 (7)0.0171 (6)0.0159 (8)0.0025 (5)0.0003 (7)0.0013 (6)
C120.0215 (7)0.0174 (6)0.0198 (9)0.0024 (5)0.0037 (7)0.0005 (6)
C130.0178 (7)0.0204 (7)0.0189 (8)0.0010 (6)0.0007 (7)0.0030 (6)
C140.0219 (8)0.0176 (6)0.0234 (9)0.0018 (6)0.0018 (7)0.0016 (6)
C150.0228 (8)0.0163 (7)0.0201 (8)0.0027 (6)0.0012 (7)0.0012 (6)
C160.0195 (7)0.0276 (7)0.0300 (11)0.0052 (6)0.0002 (7)0.0050 (7)
O10.0211 (6)0.0198 (5)0.0301 (6)0.0011 (4)0.0028 (5)0.0037 (5)
O20.0150 (5)0.0235 (5)0.0318 (7)0.0017 (4)0.0007 (5)0.0046 (5)
Cl10.02487 (18)0.03005 (18)0.0271 (2)0.00920 (15)0.0001 (2)0.00342 (19)
Geometric parameters (Å, º) top
C1—C21.387 (2)C9—H90.9500
C1—C61.3976 (19)C10—C111.396 (2)
C1—H10.9500C10—C151.405 (2)
C2—C31.386 (2)C11—C121.3888 (19)
C2—H20.9500C11—H110.9500
C3—C41.384 (2)C12—C131.392 (2)
C3—Cl11.7423 (16)C12—H120.9500
C4—C51.381 (2)C13—O21.3653 (18)
C4—H40.9500C13—C141.398 (2)
C5—C61.392 (2)C14—C151.382 (2)
C5—H50.9500C14—H140.9500
C6—C71.496 (2)C15—H150.9500
C7—O11.2312 (19)C16—O21.4344 (19)
C7—C81.479 (2)C16—H16A0.9800
C8—C91.342 (2)C16—H16B0.9800
C8—H80.9500C16—H16C0.9800
C9—C101.461 (2)
C2—C1—C6120.75 (14)C10—C9—H9116.1
C2—C1—H1119.6C11—C10—C15117.85 (13)
C6—C1—H1119.6C11—C10—C9118.20 (13)
C3—C2—C1118.84 (14)C15—C10—C9123.91 (14)
C3—C2—H2120.6C12—C11—C10122.40 (14)
C1—C2—H2120.6C12—C11—H11118.8
C4—C3—C2121.77 (15)C10—C11—H11118.8
C4—C3—Cl1119.04 (12)C11—C12—C13118.51 (14)
C2—C3—Cl1119.19 (12)C11—C12—H12120.7
C5—C4—C3118.53 (15)C13—C12—H12120.7
C5—C4—H4120.7O2—C13—C12124.03 (13)
C3—C4—H4120.7O2—C13—C14115.67 (13)
C4—C5—C6121.49 (14)C12—C13—C14120.30 (14)
C4—C5—H5119.3C15—C14—C13120.29 (14)
C6—C5—H5119.3C15—C14—H14119.9
C5—C6—C1118.63 (14)C13—C14—H14119.9
C5—C6—C7118.40 (13)C14—C15—C10120.58 (14)
C1—C6—C7122.97 (13)C14—C15—H15119.7
O1—C7—C8121.77 (14)C10—C15—H15119.7
O1—C7—C6119.40 (14)O2—C16—H16A109.5
C8—C7—C6118.82 (13)O2—C16—H16B109.5
C9—C8—C7120.17 (14)H16A—C16—H16B109.5
C9—C8—H8119.9O2—C16—H16C109.5
C7—C8—H8119.9H16A—C16—H16C109.5
C8—C9—C10127.75 (14)H16B—C16—H16C109.5
C8—C9—H9116.1C13—O2—C16116.71 (12)
C6—C1—C2—C30.2 (2)C7—C8—C9—C10175.77 (14)
C1—C2—C3—C40.3 (3)C8—C9—C10—C11169.56 (16)
C1—C2—C3—Cl1179.03 (13)C8—C9—C10—C158.4 (3)
C2—C3—C4—C50.7 (3)C15—C10—C11—C122.2 (3)
Cl1—C3—C4—C5178.70 (13)C9—C10—C11—C12175.87 (15)
C3—C4—C5—C60.5 (3)C10—C11—C12—C131.3 (3)
C4—C5—C6—C10.1 (3)C11—C12—C13—O2179.30 (15)
C4—C5—C6—C7179.34 (15)C11—C12—C13—C141.0 (3)
C2—C1—C6—C50.3 (2)O2—C13—C14—C15178.00 (15)
C2—C1—C6—C7178.96 (16)C12—C13—C14—C152.3 (3)
C5—C6—C7—O116.7 (2)C13—C14—C15—C101.3 (3)
C1—C6—C7—O1162.55 (15)C11—C10—C15—C140.9 (3)
C5—C6—C7—C8162.25 (15)C9—C10—C15—C14177.08 (15)
C1—C6—C7—C818.5 (2)C12—C13—O2—C160.4 (2)
O1—C7—C8—C96.4 (2)C14—C13—O2—C16179.36 (14)
C6—C7—C8—C9174.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.952.462.8065 (19)102
C12—H12···O1i0.952.543.4828 (18)175
Symmetry code: (i) x+1, y, z1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi for financial assistance under the `Career Award for Young Teachers' scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. App. Cryst. 30, 565–565.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465–o1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRabinovich, D. & Schmidt, G. M. J. (1970). J. Chem. Soc. B. pp. 6–9.  CrossRef Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466–o1468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWang, L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 191–195. (In Chinese.)  Google Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112–117.  Google Scholar
First citationZheng, J., Zhang, D., Sheng, P., Wang, H. & Yao, X. (1992). Yingyong Huaxue (Chin. J. Appl. Chem.), 9, 66–69. (In Chinese.)  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds