metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-Ferrocenyl-4-hy­droxy­methyl-4,5-di­hydro-1,3-oxazole

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Sydney, NSW 2006, Australia, and bSchool of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England
*Correspondence e-mail: m.todd@chem.usyd.edu.au

(Received 3 February 2006; accepted 27 February 2006; online 8 March 2006)

The title compound, [Fe(C5H5)(C9H10NO2)], was prepared from ferrocenecarboxylic acid and serine. In the crystal structure, mol­ecules are arranged in chains with an inter­molecular hydrogen bond between hydr­oxy groups and N atoms.

Comment

A series of serine-derived oxazoles has been shown to be effective in asymmetric alkyl­ation reactions, and hence their crystal structures are of inter­est (Jones & Richards, 2004[Jones, G. & Richards, C. J. (2004). Tetrahedron Asymmetry, 15, 653-664.]). As representatives of the general amino alcohol class of ligands for these reactions, we have an inter­est in understanding their non-linear catalytic characteristics. A single-crystal X-ray structure has been reported for a related compound, viz. (4S)-4-(1-hydr­oxy-1-methyl­ethyl)-2-ferrocenyl-4,5-dihydro-1,3-oxa­zole monohydrate (Chesney et al., 1998[Chesney, A., Bryce, M. R., Chubb, R. W. J., Batsanov, A. S. & Howard, J. A. K. (1998). Synthesis, pp. 413-416.]).

[Scheme 1]

The structure of the title compound, (I)[link] (Fig. 1[link]), reveals that the two cyclo­penta­dienyl rings of ferrocene deviate by only four degrees from a fully eclipsed conformation. The torsion angle C1—C1cC2c—C11 (where C1c and C2c are the cycopenta­diene ring centroids) is −3.5 (6)°. The oxazoline ring is almost coplanar with the cyclo­penta­dienyl ring to which it is attached [inter­planar angle = 9.2 (5)° and C2—C1—C6—O1 = −6.3 (10)°], the O rather than the N atom being slightly closer to iron. The oxazoline hydroxy­methyl substituent is oriented away from the iron-cyclo­penta­dienyl group of ferrocene. Significantly, the opposite rotamer, with respect to rotation about the ferrocene-oxazoline C—C σ-bond, was observed in the structure reported by Chesney et al. (1998[Chesney, A., Bryce, M. R., Chubb, R. W. J., Batsanov, A. S. & Howard, J. A. K. (1998). Synthesis, pp. 413-416.]). This contains a larger 1-hydr­oxy-1-methyl­ethyloxazoline substituent, and in both cases the hydr­oxy group is oriented over the oxazoline ring; in the present structure, N1—C8—C9—O2 = −73.7 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The polymeric assembly of (I)[link], involving hydrogen-bonded (dashed lines) oxazole groups.

Experimental

LiAlH4 (68 mg, 1.797 mmol, 1.1 equivalent) was added to a solution of (S)-4-carbometh­oxy-2-ferrocenyl-1,3-oxazoline (513 mg, 1.634 mmol) in diethyl ether (15 ml) cooled to 273 K. After stirring for 15 min, ethyl acetate (25 ml) was added followed by water (38 ml), and the organic layer was then separated, dried (MgSO4), filtered and concentrated in vacuo to give the crude alcohol as an orange solid. The crude solid was recrystallized from dichloro­methane and hexane (ca 1:1) to give the pure oxazoline [434 mg, 93%; m.p. 390–392 K (literature 390–392 K]. 1H NMR (CDCl3): δ 3.59 (1H, dd, J = 11.4, 3.7 Hz, OCHH) and 3.86 (1H, dd, J = 11.4, 3.2 Hz OCHH), 4.16 (5H, s, Cp), 4.18–4.40 (5H, m, OCH2 + CHN + Cp × 2), 4.72 (2H, m, Cp).

Crystal data
  • [Fe(C5H5)(C9H10NO2)]

  • Mr = 285.12

  • Monoclinic, P 21

  • a = 5.808 (4) Å

  • b = 7.557 (3) Å

  • c = 13.716 (8) Å

  • β = 92.39 (6)°

  • V = 601.5 (6) Å3

  • Z = 2

  • Dx = 1.574 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 9.9–13.2°

  • μ = 1.25 mm−1

  • T = 160 (2) K

  • Prism, orange

  • 0.30 × 0.13 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan(North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])Tmin = 0.706, Tmax = 0.912

  • 1305 measured reflections

  • 1137 independent reflections

  • 877 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 25.0°

  • h = −1 → 6

  • k = 0 → 8

  • l = −16 → 16

  • 2 standard reflections every 100 reflections intensity decay: 5%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.03

  • 1137 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 171 Friedel Pairs

  • Flack parameter: 0.01 (4)

Table 1
Selected torsion angles (°)

C2—C1—C6—O1 −6.3 (10)
N1—C8—C9—O2 −73.7 (7)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H20⋯N1i 0.87 (7) 2.02 (8) 2.877 (7) 165 (7)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

H atoms were treated as riding atoms [C—H = 0.95 and 0.99 Å; Uiso(H) = 1.2Ueq(C)]), except for H20, which was refined freely with an isotropic displacement parameter.

Data collection: CAD-4/PC (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4/PC Software. Version 1.5c. Enraf-Nonius, Delft, Netherlands.]); cell refinement: CAD-4/PC; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888.]).

Supporting information


Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(R)-2-Ferrocenyl-4-hydroxymethyl-4,5-dihydrooxazole top
Crystal data top
[Fe(C5H5)(C9H10NO2)]F(000) = 296
Mr = 285.12Dx = 1.574 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.808 (4) Åθ = 9.9–13.2°
b = 7.557 (3) ŵ = 1.25 mm1
c = 13.716 (8) ÅT = 160 K
β = 92.39 (6)°Prism, orange
V = 601.5 (6) Å30.30 × 0.13 × 0.08 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
877 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
non–profiled ω/2θ scansh = 16
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.706, Tmax = 0.912l = 1616
1305 measured reflections2 standard reflections every 100 reflections
1137 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1137 reflectionsΔρmax = 0.54 e Å3
168 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 171 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Special details top

Experimental. Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6839 (10)0.0630 (10)0.6919 (4)0.0169 (15)
C20.8278 (11)0.0481 (10)0.7527 (5)0.0192 (15)
H20.98150.08230.74090.023*
C30.7001 (17)0.0974 (13)0.8332 (7)0.031 (3)
H30.75360.17080.88570.037*
C40.4774 (12)0.0190 (11)0.8232 (5)0.0254 (16)
H40.35660.03030.86740.030*
C50.4693 (10)0.0788 (9)0.7353 (4)0.0177 (15)
H50.34070.14410.70970.021*
C60.7433 (9)0.1413 (10)0.5996 (4)0.0171 (18)
C70.9844 (10)0.2045 (11)0.4816 (4)0.0221 (18)
H7A1.04780.12240.43330.026*
H7B1.08580.30950.48790.026*
C80.7372 (10)0.2586 (10)0.4514 (4)0.0208 (15)
H80.73140.38800.43620.025*
C90.6402 (11)0.1529 (12)0.3645 (4)0.0231 (16)
H9A0.47040.16590.36050.028*
H9B0.70120.20200.30390.028*
C101.0133 (12)0.3030 (13)0.8785 (7)0.047 (3)
H101.16790.26620.87080.056*
C110.8812 (19)0.4114 (13)0.8152 (6)0.052 (3)
H110.93220.46230.75660.063*
C120.664 (2)0.4326 (15)0.8517 (9)0.052 (3)
H120.53960.49820.82270.063*
C130.6638 (14)0.3415 (15)0.9372 (7)0.053 (3)
H130.53670.33570.97850.064*
C140.8715 (16)0.2591 (12)0.9560 (6)0.043 (2)
H140.91200.18661.01060.052*
Fe10.72777 (14)0.1715 (2)0.82749 (6)0.0192 (2)
N10.6050 (8)0.2214 (7)0.5395 (3)0.0196 (14)
O10.9634 (7)0.1180 (6)0.5750 (3)0.0209 (11)
O20.6970 (8)0.0304 (7)0.3711 (4)0.0269 (11)
H200.610 (11)0.094 (11)0.408 (5)0.04 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (3)0.019 (4)0.015 (3)0.001 (3)0.004 (3)0.002 (3)
C20.018 (3)0.017 (4)0.023 (4)0.005 (3)0.001 (3)0.006 (3)
C30.049 (7)0.015 (5)0.029 (5)0.003 (4)0.005 (5)0.011 (4)
C40.026 (4)0.028 (4)0.022 (4)0.001 (3)0.000 (3)0.003 (3)
C50.018 (3)0.018 (4)0.017 (3)0.001 (3)0.002 (3)0.002 (3)
C60.016 (3)0.021 (5)0.014 (3)0.002 (3)0.001 (2)0.005 (3)
C70.021 (3)0.024 (5)0.022 (3)0.000 (3)0.001 (3)0.005 (3)
C80.023 (4)0.017 (3)0.022 (4)0.002 (3)0.002 (3)0.000 (3)
C90.031 (3)0.020 (4)0.018 (3)0.004 (4)0.000 (2)0.004 (4)
C100.013 (4)0.053 (6)0.075 (7)0.003 (4)0.003 (4)0.046 (5)
C110.086 (8)0.044 (6)0.028 (5)0.032 (6)0.015 (6)0.006 (4)
C120.060 (7)0.043 (7)0.051 (7)0.011 (6)0.027 (6)0.029 (6)
C130.034 (5)0.079 (8)0.047 (6)0.016 (5)0.014 (4)0.040 (6)
C140.069 (6)0.036 (5)0.024 (4)0.010 (5)0.025 (4)0.002 (4)
Fe10.0192 (4)0.0216 (4)0.0165 (4)0.0002 (7)0.0009 (3)0.0051 (7)
N10.021 (3)0.019 (4)0.019 (3)0.002 (2)0.004 (2)0.000 (2)
O10.020 (2)0.025 (3)0.019 (2)0.0050 (18)0.0040 (19)0.0033 (18)
O20.030 (3)0.020 (3)0.031 (3)0.009 (2)0.006 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—C51.408 (8)C8—C91.523 (9)
C1—C21.429 (9)C8—H81.0000
C1—C61.452 (8)C9—O21.426 (10)
C1—Fe12.039 (6)C9—H9A0.9900
C2—C31.407 (11)C9—H9B0.9900
C2—Fe12.048 (7)C10—C111.398 (13)
C2—H20.9500C10—C141.412 (12)
C3—C41.425 (11)C10—Fe12.032 (7)
C3—Fe12.040 (11)C10—H100.9500
C3—H30.9500C11—C121.385 (15)
C4—C51.413 (9)C11—Fe12.030 (9)
C4—Fe12.045 (8)C11—H110.9500
C4—H40.9500C12—C131.360 (14)
C5—Fe12.046 (6)C12—Fe12.037 (12)
C5—H50.9500C12—H120.9500
C6—N11.279 (7)C13—C141.372 (12)
C6—O11.347 (7)C13—Fe12.025 (9)
C7—O11.447 (7)C13—H130.9500
C7—C81.533 (8)C14—Fe12.029 (7)
C7—H7A0.9900C14—H140.9500
C7—H7B0.9900O2—H200.88 (7)
C8—N11.485 (8)
C5—C1—C2108.0 (5)C11—C12—Fe169.8 (6)
C5—C1—C6125.5 (5)C13—C12—H12126.7
C2—C1—C6126.4 (6)C11—C12—H12126.7
C5—C1—Fe170.1 (3)Fe1—C12—H12125.2
C2—C1—Fe169.9 (4)C12—C13—C14111.0 (9)
C6—C1—Fe1127.3 (5)C12—C13—Fe170.9 (6)
C3—C2—C1107.4 (6)C14—C13—Fe170.4 (5)
C3—C2—Fe169.6 (5)C12—C13—H13124.5
C1—C2—Fe169.2 (4)C14—C13—H13124.5
C3—C2—H2126.3Fe1—C13—H13125.8
C1—C2—H2126.3C13—C14—C10106.8 (8)
Fe1—C2—H2126.5C13—C14—Fe170.1 (4)
C2—C3—C4108.7 (7)C10—C14—Fe169.8 (4)
C2—C3—Fe170.2 (5)C13—C14—H14126.6
C4—C3—Fe169.8 (5)C10—C14—H14126.6
C2—C3—H3125.7Fe1—C14—H14125.2
C4—C3—H3125.7C13—Fe1—C1165.8 (4)
Fe1—C3—H3126.0C13—Fe1—C1439.6 (3)
C5—C4—C3107.3 (6)C11—Fe1—C1467.3 (4)
C5—C4—Fe169.8 (4)C13—Fe1—C1066.8 (3)
C3—C4—Fe169.4 (5)C11—Fe1—C1040.3 (4)
C5—C4—H4126.3C14—Fe1—C1040.7 (3)
C3—C4—H4126.3C13—Fe1—C1239.1 (4)
Fe1—C4—H4126.0C11—Fe1—C1239.8 (4)
C1—C5—C4108.5 (6)C14—Fe1—C1267.2 (4)
C1—C5—Fe169.6 (3)C10—Fe1—C1267.8 (4)
C4—C5—Fe169.8 (4)C13—Fe1—C1156.0 (4)
C1—C5—H5125.7C11—Fe1—C1108.8 (3)
C4—C5—H5125.7C14—Fe1—C1162.7 (3)
Fe1—C5—H5126.5C10—Fe1—C1125.4 (3)
N1—C6—O1118.5 (5)C12—Fe1—C1121.4 (4)
N1—C6—C1126.1 (5)C13—Fe1—C3125.9 (4)
O1—C6—C1115.3 (5)C11—Fe1—C3158.1 (4)
O1—C7—C8104.3 (5)C14—Fe1—C3108.8 (4)
O1—C7—H7A110.9C10—Fe1—C3122.6 (4)
C8—C7—H7A110.9C12—Fe1—C3160.6 (4)
O1—C7—H7B110.9C1—Fe1—C368.1 (3)
C8—C7—H7B110.9C13—Fe1—C5121.6 (3)
H7A—C7—H7B108.9C11—Fe1—C5124.6 (4)
N1—C8—C9110.5 (5)C14—Fe1—C5156.0 (3)
N1—C8—C7103.9 (5)C10—Fe1—C5161.3 (3)
C9—C8—C7112.6 (6)C12—Fe1—C5107.4 (4)
N1—C8—H8109.9C1—Fe1—C540.3 (2)
C9—C8—H8109.9C3—Fe1—C568.0 (3)
C7—C8—H8109.9C13—Fe1—C4108.4 (3)
O2—C9—C8112.5 (5)C11—Fe1—C4160.1 (4)
O2—C9—H9A109.1C14—Fe1—C4121.4 (3)
C8—C9—H9A109.1C10—Fe1—C4157.4 (4)
O2—C9—H9B109.1C12—Fe1—C4123.6 (4)
C8—C9—H9B109.1C1—Fe1—C468.2 (3)
H9A—C9—H9B107.8C3—Fe1—C440.8 (3)
C11—C10—C14106.4 (7)C5—Fe1—C440.4 (2)
C11—C10—Fe169.8 (5)C13—Fe1—C2162.0 (4)
C14—C10—Fe169.6 (4)C11—Fe1—C2123.2 (3)
C11—C10—H10126.8C14—Fe1—C2125.8 (3)
C14—C10—H10126.8C10—Fe1—C2108.9 (3)
Fe1—C10—H10125.5C12—Fe1—C2157.5 (4)
C12—C11—C10109.2 (9)C1—Fe1—C240.9 (3)
C12—C11—Fe170.4 (6)C3—Fe1—C240.2 (3)
C10—C11—Fe170.0 (5)C5—Fe1—C268.2 (3)
C12—C11—H11125.4C4—Fe1—C268.4 (3)
C10—C11—H11125.4C6—N1—C8106.4 (5)
Fe1—C11—H11125.8C6—O1—C7106.2 (4)
C13—C12—C11106.7 (10)C9—O2—H20116 (5)
C13—C12—Fe169.9 (6)
C5—C1—C2—C30.7 (8)C13—C12—Fe1—C1436.0 (5)
C6—C1—C2—C3178.6 (7)C11—C12—Fe1—C1481.4 (6)
Fe1—C1—C2—C359.3 (5)C13—C12—Fe1—C1080.2 (6)
C5—C1—C2—Fe160.0 (4)C11—C12—Fe1—C1037.2 (6)
C6—C1—C2—Fe1122.1 (7)C13—C12—Fe1—C1160.9 (5)
C1—C2—C3—C40.3 (9)C11—C12—Fe1—C181.7 (7)
Fe1—C2—C3—C459.4 (6)C13—C12—Fe1—C345.9 (11)
C1—C2—C3—Fe159.1 (5)C11—C12—Fe1—C3163.3 (8)
C2—C3—C4—C50.2 (9)C13—C12—Fe1—C5119.0 (6)
Fe1—C3—C4—C559.8 (5)C11—C12—Fe1—C5123.6 (6)
C2—C3—C4—Fe159.6 (6)C13—C12—Fe1—C477.6 (7)
C2—C1—C5—C40.8 (7)C11—C12—Fe1—C4165.1 (5)
C6—C1—C5—C4178.7 (6)C13—C12—Fe1—C2166.0 (7)
Fe1—C1—C5—C459.0 (5)C11—C12—Fe1—C248.6 (12)
C2—C1—C5—Fe159.8 (4)C5—C1—Fe1—C1349.2 (9)
C6—C1—C5—Fe1122.2 (7)C2—C1—Fe1—C13168.1 (8)
C3—C4—C5—C10.6 (8)C6—C1—Fe1—C1370.8 (10)
Fe1—C4—C5—C158.9 (4)C5—C1—Fe1—C11121.8 (5)
C3—C4—C5—Fe159.5 (5)C2—C1—Fe1—C11119.3 (5)
C5—C1—C6—N17.2 (11)C6—C1—Fe1—C111.7 (7)
C2—C1—C6—N1170.3 (7)C5—C1—Fe1—C14164.3 (12)
Fe1—C1—C6—N198.3 (7)C2—C1—Fe1—C1445.4 (14)
C5—C1—C6—O1176.1 (6)C6—C1—Fe1—C1475.6 (14)
C2—C1—C6—O16.3 (10)C5—C1—Fe1—C10163.4 (5)
Fe1—C1—C6—O185.1 (7)C2—C1—Fe1—C1077.7 (6)
O1—C7—C8—N18.7 (6)C6—C1—Fe1—C1043.4 (7)
O1—C7—C8—C9110.9 (6)C5—C1—Fe1—C1279.7 (6)
N1—C8—C9—O273.7 (7)C2—C1—Fe1—C12161.4 (6)
C7—C8—C9—O241.9 (7)C6—C1—Fe1—C1240.3 (7)
C14—C10—C11—C120.6 (10)C5—C1—Fe1—C381.3 (4)
Fe1—C10—C11—C1259.7 (7)C2—C1—Fe1—C337.6 (4)
C14—C10—C11—Fe160.2 (5)C6—C1—Fe1—C3158.6 (6)
C10—C11—C12—C131.1 (11)C2—C1—Fe1—C5118.9 (5)
Fe1—C11—C12—C1360.6 (7)C6—C1—Fe1—C5120.1 (7)
C10—C11—C12—Fe159.4 (6)C5—C1—Fe1—C437.2 (4)
C11—C12—C13—C141.3 (11)C2—C1—Fe1—C481.7 (4)
Fe1—C12—C13—C1459.1 (7)C6—C1—Fe1—C4157.3 (6)
C11—C12—C13—Fe160.5 (7)C5—C1—Fe1—C2118.9 (5)
C12—C13—C14—C101.0 (10)C6—C1—Fe1—C2121.0 (7)
Fe1—C13—C14—C1060.4 (5)C2—C3—Fe1—C13164.3 (4)
C12—C13—C14—Fe159.4 (7)C4—C3—Fe1—C1376.0 (6)
C11—C10—C14—C130.2 (9)C2—C3—Fe1—C1148.0 (12)
Fe1—C10—C14—C1360.6 (6)C4—C3—Fe1—C11167.7 (8)
C11—C10—C14—Fe160.4 (5)C2—C3—Fe1—C14123.7 (5)
C12—C13—Fe1—C1138.6 (6)C4—C3—Fe1—C14116.6 (5)
C14—C13—Fe1—C1183.1 (6)C2—C3—Fe1—C1080.8 (6)
C12—C13—Fe1—C14121.7 (9)C4—C3—Fe1—C10159.5 (4)
C12—C13—Fe1—C1082.7 (7)C2—C3—Fe1—C12161.7 (9)
C14—C13—Fe1—C1039.0 (5)C4—C3—Fe1—C1242.0 (10)
C14—C13—Fe1—C12121.7 (9)C2—C3—Fe1—C138.2 (4)
C12—C13—Fe1—C143.3 (11)C4—C3—Fe1—C181.5 (5)
C14—C13—Fe1—C1165.0 (7)C2—C3—Fe1—C581.8 (5)
C12—C13—Fe1—C3162.9 (5)C4—C3—Fe1—C537.9 (4)
C14—C13—Fe1—C375.4 (7)C2—C3—Fe1—C4119.7 (7)
C12—C13—Fe1—C578.5 (7)C4—C3—Fe1—C2119.7 (7)
C14—C13—Fe1—C5159.8 (5)C1—C5—Fe1—C13158.8 (5)
C12—C13—Fe1—C4120.9 (7)C4—C5—Fe1—C1381.3 (6)
C14—C13—Fe1—C4117.3 (6)C1—C5—Fe1—C1178.0 (5)
C12—C13—Fe1—C2162.5 (10)C4—C5—Fe1—C11162.1 (5)
C14—C13—Fe1—C240.8 (13)C1—C5—Fe1—C14168.6 (9)
C12—C11—Fe1—C1337.9 (6)C4—C5—Fe1—C1448.7 (10)
C10—C11—Fe1—C1382.1 (5)C1—C5—Fe1—C1046.5 (12)
C12—C11—Fe1—C1481.2 (7)C4—C5—Fe1—C10166.5 (11)
C10—C11—Fe1—C1438.9 (5)C1—C5—Fe1—C12118.4 (6)
C12—C11—Fe1—C10120.1 (8)C4—C5—Fe1—C12121.7 (6)
C10—C11—Fe1—C12120.1 (8)C4—C5—Fe1—C1119.9 (6)
C12—C11—Fe1—C1116.9 (6)C1—C5—Fe1—C381.7 (4)
C10—C11—Fe1—C1123.1 (5)C4—C5—Fe1—C338.3 (4)
C12—C11—Fe1—C3165.1 (8)C1—C5—Fe1—C4119.9 (6)
C10—C11—Fe1—C345.1 (12)C1—C5—Fe1—C238.1 (4)
C12—C11—Fe1—C574.9 (7)C4—C5—Fe1—C281.8 (4)
C10—C11—Fe1—C5165.0 (4)C5—C4—Fe1—C13117.5 (5)
C12—C11—Fe1—C439.1 (12)C3—C4—Fe1—C13124.0 (6)
C10—C11—Fe1—C4159.1 (8)C5—C4—Fe1—C1148.0 (11)
C12—C11—Fe1—C2159.9 (6)C3—C4—Fe1—C11166.5 (9)
C10—C11—Fe1—C280.0 (6)C5—C4—Fe1—C14159.0 (5)
C10—C14—Fe1—C13117.4 (8)C3—C4—Fe1—C1482.5 (6)
C13—C14—Fe1—C1178.9 (6)C5—C4—Fe1—C10168.8 (8)
C10—C14—Fe1—C1138.5 (5)C3—C4—Fe1—C1050.3 (10)
C13—C14—Fe1—C10117.4 (8)C5—C4—Fe1—C1277.0 (6)
C13—C14—Fe1—C1235.6 (6)C3—C4—Fe1—C12164.5 (5)
C10—C14—Fe1—C1281.8 (6)C5—C4—Fe1—C137.2 (4)
C13—C14—Fe1—C1159.3 (12)C3—C4—Fe1—C181.3 (5)
C10—C14—Fe1—C141.9 (14)C5—C4—Fe1—C3118.5 (6)
C13—C14—Fe1—C3124.1 (6)C3—C4—Fe1—C5118.5 (6)
C10—C14—Fe1—C3118.5 (6)C5—C4—Fe1—C281.4 (4)
C13—C14—Fe1—C546.1 (11)C3—C4—Fe1—C237.1 (4)
C10—C14—Fe1—C5163.6 (9)C3—C2—Fe1—C1345.4 (12)
C13—C14—Fe1—C480.9 (7)C1—C2—Fe1—C13164.3 (9)
C10—C14—Fe1—C4161.7 (5)C3—C2—Fe1—C11160.7 (6)
C13—C14—Fe1—C2165.6 (6)C1—C2—Fe1—C1180.4 (5)
C10—C14—Fe1—C277.0 (6)C3—C2—Fe1—C1476.3 (6)
C11—C10—Fe1—C1379.3 (6)C1—C2—Fe1—C14164.9 (4)
C14—C10—Fe1—C1337.9 (5)C3—C2—Fe1—C10118.4 (6)
C14—C10—Fe1—C11117.3 (7)C1—C2—Fe1—C10122.7 (5)
C11—C10—Fe1—C14117.3 (7)C3—C2—Fe1—C12164.2 (8)
C11—C10—Fe1—C1236.8 (6)C1—C2—Fe1—C1245.3 (11)
C14—C10—Fe1—C1280.5 (6)C3—C2—Fe1—C1118.9 (6)
C11—C10—Fe1—C176.8 (6)C1—C2—Fe1—C3118.9 (6)
C14—C10—Fe1—C1165.9 (5)C3—C2—Fe1—C581.3 (5)
C11—C10—Fe1—C3161.8 (5)C1—C2—Fe1—C537.6 (4)
C14—C10—Fe1—C380.9 (6)C3—C2—Fe1—C437.6 (5)
C11—C10—Fe1—C541.6 (13)C1—C2—Fe1—C481.3 (4)
C14—C10—Fe1—C5158.9 (10)O1—C6—N1—C83.2 (7)
C11—C10—Fe1—C4161.6 (8)C1—C6—N1—C8173.4 (7)
C14—C10—Fe1—C444.3 (10)C9—C8—N1—C6113.6 (6)
C11—C10—Fe1—C2119.4 (5)C7—C8—N1—C67.3 (6)
C14—C10—Fe1—C2123.3 (5)N1—C6—O1—C72.7 (8)
C11—C12—Fe1—C13117.4 (9)C1—C6—O1—C7179.7 (6)
C13—C12—Fe1—C11117.4 (9)C8—C7—O1—C67.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H20···N1i0.87 (7)2.02 (8)2.877 (7)165 (7)
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank Queen Mary University of London for financial support.

References

First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationChesney, A., Bryce, M. R., Chubb, R. W. J., Batsanov, A. S. & Howard, J. A. K. (1998). Synthesis, pp. 413–416.  CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4/PC Software. Version 1.5c. Enraf–Nonius, Delft, Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–888.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJones, G. & Richards, C. J. (2004). Tetrahedron Asymmetry, 15, 653–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7-13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds