organic compounds
Ethyl 5-chloro-9-ethoxy-2-oxo-2H-pyrano[2,3-g]quinoline-8-carboxylate
aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Campus do Valonguinho–Centro, Niterói, RJ 24020-150, Brazil, bDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and dLaboratory of Organic Synthesis of Far-Manguinhos/FIOCRUZ, R. Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: j.skakle@abdn.ac.uk
The title compound, C17H14ClNO5 has been shown to be isostructural with the bromo analogue, confirming the site of alkylation within the structure and the pyranoquinoline ring system. As with the bromo analogue, the molecules are linked by a C—H⋯O hydrogen bond forming C(5) chains along [001].
Comment
Following from the successful bromination of a pyranoquinoline derivative (da Matta et al., 2000; de Oliveira, 2003) at the carbonyl site of compound (1) (see scheme) (de Oliveira, 2006), chlorination was also attempted. As with the bromo compound (de Oliveira et al., 2006), alkylation occurs at the carbonyl site (Fig. 1).
The structure also reveals the same hydrogen bonding scheme with intramolecular hydrogen bonds (Table 1) supporting the structure, and C(5) chains (Bernstein et al., 1995) forming along [001] (de Oliveira et al., 2006).
Experimental
The title compound was obtained from the reaction between EtBr and (1) in DMF solution in the presence of K2CO3 (de Oliveira, 2003). Pure product (2) was obtained from the reaction mixture by using hexane–ethyl acetate as the (gradient 1:4 to 1:1). Crystals suitable for X-ray crystallography were grown from ethyl acetate (65% yield; m.p. 433–434 K).
Crystal data
|
All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.96 Å (methyl) and Uiso(H) values of 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl). PLATON (Spek, 2003) was used for the hydrogen-bonding analysis.
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).
Supporting information
https://doi.org/10.1107/S160053680600715X/wk2004sup1.cif
contains datablocks global, 2. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S160053680600715X/wk20042sup2.hkl
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).C17H14ClNO5 | F(000) = 720 |
Mr = 347.74 | Dx = 1.479 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1346 reflections |
a = 7.1480 (9) Å | θ = 3.5–19.3° |
b = 19.653 (3) Å | µ = 0.27 mm−1 |
c = 11.1150 (14) Å | T = 291 K |
V = 1561.4 (3) Å3 | Needle, clear |
Z = 4 | 0.38 × 0.10 × 0.02 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 5017 independent reflections |
Radiation source: fine-focus sealed tube | 1745 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.100 |
ω scans | θmax = 32.5°, θmin = 2.1° |
Absorption correction: multi-scan | h = −10→10 |
Tmin = 0.866, Tmax = 0.995 | k = −29→29 |
15310 measured reflections | l = −16→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0131P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.79 | (Δ/σ)max < 0.001 |
5017 reflections | Δρmax = 0.27 e Å−3 |
219 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (7) |
Experimental. IR (KBr, cm-1): 2979, 1749, 1718, 1618, 1590, 1342, 1302. 1H NMR (DMSO-d6, 300 MHz): δ 1.51 (t, J = 7.2 Hz, 3H), 1.59 (t, J = 6.9 Hz, 3H), 4.46 (q, J = 6.9 Hz, 2H), 4.56 (q, J = 7.2 Hz, 2H), 6.93 (d, J = 9.9 Hz, 1H), 8.18 (s, 1H), 8.57 (d, J = 9.9 Hz, 1H), 9.25 (s, 1H). 13C NMR (DMSO-d6, 75 MHz): δ 13.9, 15.3, 61.7, 72.3, 107.2, 115.1, 120.3, 121.0, 125.3, 131.5, 139.4, 142.5, 150.3, 151.9, 158.5, 162.2, 164.3. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5477 (4) | 0.26739 (15) | 0.7928 (2) | 0.0384 (8) | |
C2 | 0.5707 (5) | 0.32697 (15) | 0.8673 (2) | 0.0396 (9) | |
O2 | 0.6140 (3) | 0.31280 (9) | 0.98103 (16) | 0.0554 (6) | |
C21 | 0.7298 (5) | 0.35674 (14) | 1.0542 (3) | 0.0515 (9) | |
H21A | 0.6546 | 0.3921 | 1.0911 | 0.062* | |
H21B | 0.8259 | 0.3780 | 1.0054 | 0.062* | |
C22 | 0.8169 (5) | 0.31246 (17) | 1.1489 (3) | 0.0742 (11) | |
H22A | 0.7203 | 0.2894 | 1.1929 | 0.111* | |
H22B | 0.8887 | 0.3401 | 1.2031 | 0.111* | |
H22C | 0.8972 | 0.2796 | 1.1114 | 0.111* | |
C3 | 0.5482 (4) | 0.38991 (15) | 0.8139 (3) | 0.0394 (8) | |
C31 | 0.5414 (5) | 0.45618 (17) | 0.8800 (3) | 0.0492 (9) | |
O31 | 0.6132 (4) | 0.50542 (10) | 0.81272 (17) | 0.0627 (7) | |
O32 | 0.4740 (3) | 0.46481 (10) | 0.9783 (2) | 0.0691 (7) | |
C32 | 0.5921 (6) | 0.57510 (16) | 0.8570 (3) | 0.0734 (12) | |
H32A | 0.6493 | 0.5799 | 0.9357 | 0.088* | |
H32B | 0.4608 | 0.5871 | 0.8632 | 0.088* | |
C33 | 0.6887 (5) | 0.61997 (15) | 0.7671 (3) | 0.0808 (13) | |
H33A | 0.8192 | 0.6086 | 0.7642 | 0.121* | |
H33B | 0.6745 | 0.6667 | 0.7906 | 0.121* | |
H33C | 0.6340 | 0.6133 | 0.6891 | 0.121* | |
C4 | 0.5045 (4) | 0.39197 (14) | 0.6895 (3) | 0.0448 (9) | |
H4 | 0.4947 | 0.4348 | 0.6544 | 0.054* | |
N5 | 0.4765 (4) | 0.33948 (13) | 0.6193 (2) | 0.0460 (7) | |
C6 | 0.4954 (4) | 0.27698 (14) | 0.6713 (2) | 0.0383 (7) | |
C7 | 0.4651 (4) | 0.21757 (16) | 0.6005 (2) | 0.0430 (8) | |
Cl7 | 0.39837 (12) | 0.22796 (4) | 0.45262 (8) | 0.0614 (2) | |
C8 | 0.4881 (4) | 0.15307 (15) | 0.6457 (3) | 0.0403 (8) | |
C9 | 0.4591 (4) | 0.09056 (16) | 0.5782 (3) | 0.0516 (9) | |
H9 | 0.4179 | 0.0926 | 0.4989 | 0.062* | |
C10 | 0.4911 (5) | 0.03104 (17) | 0.6289 (3) | 0.0591 (10) | |
H10 | 0.4684 | −0.0082 | 0.5843 | 0.071* | |
C11 | 0.5598 (5) | 0.02387 (17) | 0.7506 (3) | 0.0586 (10) | |
O11 | 0.6028 (4) | −0.02798 (11) | 0.8000 (2) | 0.0799 (9) | |
O12 | 0.5750 (3) | 0.08350 (10) | 0.81648 (17) | 0.0533 (6) | |
C13 | 0.5440 (4) | 0.14710 (14) | 0.7658 (3) | 0.0417 (8) | |
C14 | 0.5745 (4) | 0.20186 (14) | 0.8390 (2) | 0.0417 (8) | |
H14 | 0.6123 | 0.1957 | 0.9183 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.040 (2) | 0.0420 (19) | 0.0329 (17) | −0.0042 (16) | 0.0025 (14) | 0.0021 (15) |
C2 | 0.037 (2) | 0.049 (2) | 0.0322 (18) | −0.0073 (16) | −0.0010 (14) | 0.0006 (15) |
O2 | 0.0779 (18) | 0.0508 (13) | 0.0374 (14) | −0.0159 (12) | −0.0108 (12) | 0.0064 (10) |
C21 | 0.060 (3) | 0.055 (2) | 0.039 (2) | −0.0083 (18) | −0.0076 (16) | −0.0096 (15) |
C22 | 0.094 (3) | 0.075 (2) | 0.054 (2) | 0.000 (2) | −0.022 (2) | 0.0072 (18) |
C3 | 0.042 (2) | 0.045 (2) | 0.0313 (18) | −0.0024 (15) | 0.0027 (15) | −0.0029 (14) |
C31 | 0.060 (3) | 0.043 (2) | 0.045 (2) | 0.0036 (19) | −0.0045 (18) | 0.0000 (17) |
O31 | 0.094 (2) | 0.0416 (14) | 0.0527 (14) | −0.0067 (14) | 0.0116 (12) | −0.0089 (11) |
O32 | 0.102 (2) | 0.0574 (14) | 0.0482 (17) | 0.0106 (14) | 0.0127 (15) | −0.0039 (11) |
C32 | 0.104 (3) | 0.040 (2) | 0.076 (3) | 0.001 (2) | 0.005 (2) | −0.0202 (18) |
C33 | 0.108 (4) | 0.043 (2) | 0.091 (3) | −0.003 (2) | −0.002 (3) | −0.002 (2) |
C4 | 0.051 (2) | 0.0366 (18) | 0.047 (2) | 0.0034 (17) | −0.0014 (16) | 0.0078 (16) |
N5 | 0.056 (2) | 0.0437 (16) | 0.0382 (16) | 0.0017 (13) | −0.0065 (13) | 0.0011 (13) |
C6 | 0.047 (2) | 0.0358 (18) | 0.0323 (16) | −0.0019 (16) | −0.0014 (14) | −0.0012 (15) |
C7 | 0.038 (2) | 0.063 (2) | 0.0277 (16) | −0.0005 (17) | −0.0046 (14) | −0.0009 (15) |
Cl7 | 0.0839 (7) | 0.0643 (5) | 0.0361 (4) | 0.0005 (5) | −0.0135 (5) | −0.0033 (4) |
C8 | 0.041 (2) | 0.0401 (19) | 0.0400 (19) | −0.0002 (16) | 0.0013 (15) | −0.0015 (15) |
C9 | 0.063 (3) | 0.052 (2) | 0.0397 (19) | −0.0050 (19) | 0.0057 (17) | −0.0111 (16) |
C10 | 0.083 (3) | 0.042 (2) | 0.053 (2) | −0.003 (2) | −0.001 (2) | −0.0132 (17) |
C11 | 0.070 (3) | 0.043 (2) | 0.062 (3) | −0.003 (2) | 0.004 (2) | −0.0017 (19) |
O11 | 0.110 (3) | 0.0407 (16) | 0.0885 (18) | 0.0019 (16) | −0.0146 (16) | 0.0038 (14) |
O12 | 0.0716 (18) | 0.0401 (13) | 0.0482 (13) | −0.0033 (13) | −0.0040 (12) | 0.0032 (10) |
C13 | 0.044 (2) | 0.041 (2) | 0.0396 (19) | −0.0001 (16) | 0.0024 (16) | 0.0050 (15) |
C14 | 0.045 (2) | 0.0415 (19) | 0.0383 (17) | −0.0061 (16) | −0.0019 (15) | 0.0011 (15) |
C1—C14 | 1.400 (3) | C33—H33A | 0.9600 |
C1—C6 | 1.414 (4) | C33—H33B | 0.9600 |
C1—C2 | 1.444 (4) | C33—H33C | 0.9600 |
C2—O2 | 1.331 (3) | C4—N5 | 1.309 (3) |
C2—C3 | 1.381 (4) | C4—H4 | 0.9300 |
O2—C21 | 1.446 (3) | N5—C6 | 1.364 (3) |
C21—C22 | 1.501 (4) | C6—C7 | 1.425 (3) |
C21—H21A | 0.9700 | C7—C8 | 1.373 (4) |
C21—H21B | 0.9700 | C7—Cl7 | 1.724 (3) |
C22—H22A | 0.9600 | C8—C13 | 1.399 (4) |
C22—H22B | 0.9600 | C8—C9 | 1.454 (4) |
C22—H22C | 0.9600 | C9—C10 | 1.318 (4) |
C3—C4 | 1.418 (4) | C9—H9 | 0.9300 |
C3—C31 | 1.497 (4) | C10—C11 | 1.446 (4) |
C31—O32 | 1.206 (3) | C10—H10 | 0.9300 |
C31—O31 | 1.326 (3) | C11—O11 | 1.198 (3) |
O31—C32 | 1.463 (3) | C11—O12 | 1.386 (3) |
C32—C33 | 1.500 (4) | O12—C13 | 1.389 (3) |
C32—H32A | 0.9700 | C13—C14 | 1.367 (3) |
C32—H32B | 0.9700 | C14—H14 | 0.9300 |
C14—C1—C6 | 120.6 (3) | H33A—C33—H33B | 109.5 |
C14—C1—C2 | 121.3 (3) | C32—C33—H33C | 109.5 |
C6—C1—C2 | 118.0 (3) | H33A—C33—H33C | 109.5 |
O2—C2—C3 | 128.5 (3) | H33B—C33—H33C | 109.5 |
O2—C2—C1 | 113.7 (3) | N5—C4—C3 | 126.3 (3) |
C3—C2—C1 | 117.8 (3) | N5—C4—H4 | 116.8 |
C2—O2—C21 | 122.8 (2) | C3—C4—H4 | 116.8 |
O2—C21—C22 | 106.6 (2) | C4—N5—C6 | 116.2 (3) |
O2—C21—H21A | 110.4 | N5—C6—C1 | 123.4 (3) |
C22—C21—H21A | 110.4 | N5—C6—C7 | 119.3 (3) |
O2—C21—H21B | 110.4 | C1—C6—C7 | 117.3 (3) |
C22—C21—H21B | 110.4 | C8—C7—C6 | 122.4 (3) |
H21A—C21—H21B | 108.6 | C8—C7—Cl7 | 119.4 (2) |
C21—C22—H22A | 109.5 | C6—C7—Cl7 | 118.2 (2) |
C21—C22—H22B | 109.5 | C7—C8—C13 | 117.4 (3) |
H22A—C22—H22B | 109.5 | C7—C8—C9 | 125.0 (3) |
C21—C22—H22C | 109.5 | C13—C8—C9 | 117.5 (3) |
H22A—C22—H22C | 109.5 | C10—C9—C8 | 120.3 (3) |
H22B—C22—H22C | 109.5 | C10—C9—H9 | 119.8 |
C2—C3—C4 | 118.1 (3) | C8—C9—H9 | 119.8 |
C2—C3—C31 | 124.9 (3) | C9—C10—C11 | 123.0 (3) |
C4—C3—C31 | 116.6 (3) | C9—C10—H10 | 118.5 |
O32—C31—O31 | 124.3 (3) | C11—C10—H10 | 118.5 |
O32—C31—C3 | 125.5 (3) | O11—C11—O12 | 117.2 (3) |
O31—C31—C3 | 110.2 (3) | O11—C11—C10 | 126.8 (3) |
C31—O31—C32 | 117.0 (2) | O12—C11—C10 | 116.0 (3) |
O31—C32—C33 | 106.2 (2) | C11—O12—C13 | 122.3 (2) |
O31—C32—H32A | 110.5 | C14—C13—O12 | 116.2 (3) |
C33—C32—H32A | 110.5 | C14—C13—C8 | 123.2 (3) |
O31—C32—H32B | 110.5 | O12—C13—C8 | 120.5 (3) |
C33—C32—H32B | 110.5 | C13—C14—C1 | 119.0 (3) |
H32A—C32—H32B | 108.7 | C13—C14—H14 | 120.5 |
C32—C33—H33A | 109.5 | C1—C14—H14 | 120.5 |
C32—C33—H33B | 109.5 | ||
C14—C1—C2—O2 | −1.5 (4) | C2—C1—C6—C7 | −177.2 (3) |
C6—C1—C2—O2 | 177.9 (3) | N5—C6—C7—C8 | 177.6 (3) |
C14—C1—C2—C3 | 177.8 (3) | C1—C6—C7—C8 | −1.2 (4) |
C6—C1—C2—C3 | −2.8 (4) | N5—C6—C7—Cl7 | −2.0 (4) |
C3—C2—O2—C21 | −31.0 (5) | C1—C6—C7—Cl7 | 179.2 (2) |
C1—C2—O2—C21 | 148.2 (3) | C6—C7—C8—C13 | −0.2 (5) |
C2—O2—C21—C22 | −154.9 (3) | Cl7—C7—C8—C13 | 179.4 (2) |
O2—C2—C3—C4 | 179.0 (3) | C6—C7—C8—C9 | 179.9 (3) |
C1—C2—C3—C4 | −0.2 (4) | Cl7—C7—C8—C9 | −0.5 (4) |
O2—C2—C3—C31 | −9.4 (5) | C7—C8—C9—C10 | 177.7 (3) |
C1—C2—C3—C31 | 171.4 (3) | C13—C8—C9—C10 | −2.2 (4) |
C2—C3—C31—O32 | −34.8 (6) | C8—C9—C10—C11 | −1.6 (5) |
C4—C3—C31—O32 | 136.9 (4) | C9—C10—C11—O11 | −175.1 (4) |
C2—C3—C31—O31 | 148.0 (3) | C9—C10—C11—O12 | 5.6 (5) |
C4—C3—C31—O31 | −40.3 (4) | O11—C11—O12—C13 | 174.6 (3) |
O32—C31—O31—C32 | −5.9 (5) | C10—C11—O12—C13 | −6.1 (4) |
C3—C31—O31—C32 | 171.3 (3) | C11—O12—C13—C14 | −176.3 (3) |
C31—O31—C32—C33 | 178.5 (3) | C11—O12—C13—C8 | 2.6 (4) |
C2—C3—C4—N5 | 2.5 (5) | C7—C8—C13—C14 | 0.6 (5) |
C31—C3—C4—N5 | −169.8 (3) | C9—C8—C13—C14 | −179.5 (3) |
C3—C4—N5—C6 | −1.4 (5) | C7—C8—C13—O12 | −178.2 (3) |
C4—N5—C6—C1 | −1.9 (5) | C9—C8—C13—O12 | 1.7 (4) |
C4—N5—C6—C7 | 179.3 (3) | O12—C13—C14—C1 | 179.3 (3) |
C14—C1—C6—N5 | −176.6 (3) | C8—C13—C14—C1 | 0.4 (5) |
C2—C1—C6—N5 | 4.0 (5) | C6—C1—C14—C13 | −1.8 (4) |
C14—C1—C6—C7 | 2.2 (4) | C2—C1—C14—C13 | 177.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O11i | 0.93 | 2.55 | 3.357 (4) | 145 |
C4—H4···O31 | 0.93 | 2.40 | 2.730 (4) | 101 |
C9—H9···Cl7 | 0.93 | 2.71 | 3.071 (3) | 104 |
C21—H21A···O32 | 0.97 | 2.30 | 2.927 (4) | 122 |
Symmetry code: (i) −x+1, −y, z−1/2. |
Acknowledgements
We thank the University of Aberdeen for funding of the X-ray diffractometer, and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury Laboratory (Fletcher et al., 1996).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749. CrossRef CAS Web of Science Google Scholar
Matta, A. S. D. da, de Oliviera C. D. & Romeiro, G. A. (2000). Heterocycl. Commun. 6, 511–514. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland. Google Scholar
Oliveira, C. D. de (2003). PhD thesis, Universidade Federal Fluminense, Rio de Janeiro, Brazil. Google Scholar
Oliveira, C. D. de, Romeiro, G. A., Skakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, o1492–o1493. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 35, 3–17. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.