organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-1-(4-fluoro­phen­yl)-1,3-di­hydro­isobenzo­furan

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 March 2006; accepted 15 March 2006; online 22 March 2006)

The title compound, C14H10BrFO, possesses normal geometrical parameters. The dihedral angle between the two ring systems is 71.50 (9)°. An unusually short inter­molecular Br⋯Br contact of 3.4311 (5) Å occurs.

Comment

The title compound, (I)[link], is an inter­mediate in the synthesis of the anti­depressant drug citalopram (Liechti et al., 2000[Liechti, M. E., Baumann, C., Gamma, A. & Vollenweider, F. X. (2000). Neuropsychopharmacology, 22, 513-521.]). More generally, phthalans show distinctive redox chemistry (Azzena et al., 1996[Azzena, U., Demartis, S. & Melloni, G. (1996). J. Org. Chem. 61, 4913-4919.]). We have previously deposited (CSD-260624; Cambridge Structural Database; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) data for a poor quality structure from a twinned crystal of (I)[link].

[Scheme 1]

The geometrical parameters for (I)[link] are normal. Each mol­ecule of (I)[link] is chiral (the arbitrarily chosen asymmetric unit has an S conformation at C7), but crystal symmetry generates a racemic mixture of the two enanti­omers. The nine-membered isobenzofuran ring system (C7–C14/O1) is almost planar [r.m.s. deviation from the mean plane = 0.018 Å; maximum = 0.038 (3) Å for C14] and the dihedral angle between the two ring systems (C7–C14/O1 and C1–C6) is 71.50 (9)°.

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] identified two possible C—H⋯F inter­actions (Table 1[link]) that may help to stabilize the crystal packing (Fig. 2[link]). There are no significant ππ stacking inter­actions in (I)[link].

Inversion symmetry generates a short inter­molecular Br1⋯Br1i [symmetry code: (i) 2 − x, −y, 1 − z] separation of 3.4311 (5) Å which is significantly less than the van der Waals contact distance of 3.70 Å for two Br atoms (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Some workers have ascribed specific attractive forces to such short inter­molecular halogen–halogen contacts (Desiraju & Parthasarathy, 1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]). A database survey of such contacts by Eriksson & Hu (2001[Eriksson, L. & Hu, J. (2001). Acta Cryst. E57, o930-o932.]) shows that the present separation lies at the lower end of the observed range of inter­molecular Br⋯Br distances. However, these workers are less certain of the nature of such contacts, and suggest that they may be the consequence – rather than the cause – of the crystal packing.

In the related 1-(4-fluoro­phen­yl)-1,3-dihydro­isobenzo­furan-5-carbonitrile [i.e. where a cyanide group replaces the Br atom in (I)], there are two mol­ecules in the asymmetric unit with distinctly different degrees of twist between their ring systems (Yathirajan et al., 2004[Yathirajan, H. S., Nagaraj, B., Gaonkar, S. L., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2004). Acta Cryst. E60, 2225-2227.]).

[Figure 1]
Figure 1
View of (I)[link], showing 50% displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2]
Figure 2
Unit-cell packing in (I)[link], viewed down [100], showing 50% displacement ellipsoids and arbitrary spheres for the H atoms, with short C—H⋯F inter­actions shown as dashed lines.

Experimental

5-Bromo-3H-isobenzofuran-1-one (2.13 g, 10 mmol) was subjected to a Grignard reaction with 4-fluoro­phenyl magnesium bromide (2.4 g, 12 mmol) in tetra­hydro­furan (10 ml) at 273 K. The resulting product was treated with sodium borohydride (0.37 g, 10 mmol) in methanol (10 ml) to obtain the diol, which was cyclized with p-toluene sulfonic acid (1 g, 5.81 mmol) in toluene (10 ml) at 353 K, yielding crude (I)[link]. Diffraction-quality crystals were obtained by recrystallization from n-hexane (Bigler et al., 1977[Bigler, A. J., Bogeso, K. B. & Toft, A. (1977). Eur. J. Med. Chem. 12, 289-295.]) (m.p. 318 K).

Crystal data
  • C14H10BrFO

  • Mr = 293.13

  • Monoclinic, P 21 /c

  • a = 6.0560 (3) Å

  • b = 7.8659 (4) Å

  • c = 24.2289 (14) Å

  • β = 92.542 (3)°

  • V = 1153.03 (11) Å3

  • Z = 4

  • Dx = 1.689 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2707 reflections

  • θ = 1.0–27.5°

  • μ = 3.56 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.24 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.482, Tmax = 0.718

  • 12389 measured reflections

  • 2630 independent reflections

  • 1742 reflections with I > 2σ(I)

  • Rint = 0.072

  • θmax = 27.6°

  • h = −7 → 7

  • k = −10 → 10

  • l = −31 → 27

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.079

  • S = 1.02

  • 2630 reflections

  • 155 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0257P)2 + 0.4294P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.40 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0023 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F1i 0.95 2.54 3.324 (4) 140
C14—H14B⋯F1ii 0.99 2.52 3.265 (4) 132
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The H atoms were positioned geometrically, with C—H = 0.95–0.99 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

5-Bromo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran top
Crystal data top
C14H10BrFOF(000) = 584
Mr = 293.13Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2707 reflections
a = 6.0560 (3) Åθ = 1.0–27.5°
b = 7.8659 (4) ŵ = 3.56 mm1
c = 24.2289 (14) ÅT = 120 K
β = 92.542 (3)°Block, yellow
V = 1153.03 (11) Å30.24 × 0.15 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2630 independent reflections
Radiation source: fine-focus sealed tube1742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω and φ scansθmax = 27.6°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.482, Tmax = 0.718k = 1010
12389 measured reflectionsl = 3127
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.4294P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2630 reflectionsΔρmax = 0.56 e Å3
155 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3615 (5)0.6855 (5)0.26210 (15)0.0366 (9)
H10.50490.72530.27310.044*
C20.3091 (6)0.6559 (5)0.20662 (15)0.0420 (9)
H20.41440.67480.17940.050*
C30.1012 (6)0.5986 (4)0.19235 (14)0.0357 (9)
C40.0572 (6)0.5688 (4)0.22975 (14)0.0335 (8)
H40.20020.52910.21830.040*
C50.0007 (5)0.5990 (4)0.28501 (14)0.0311 (8)
H50.10700.57900.31190.037*
C60.2072 (5)0.6577 (4)0.30177 (13)0.0274 (7)
C70.2636 (5)0.6902 (4)0.36229 (13)0.0276 (7)
H70.12560.71990.38130.033*
C80.3774 (5)0.5441 (4)0.39220 (12)0.0232 (7)
C90.3061 (5)0.3792 (4)0.39959 (13)0.0274 (8)
H90.16720.34300.38410.033*
C100.4407 (5)0.2669 (4)0.43009 (13)0.0263 (8)
H100.39490.15290.43560.032*
C110.6416 (5)0.3234 (4)0.45219 (12)0.0258 (7)
C120.7142 (5)0.4893 (4)0.44546 (13)0.0272 (8)
H120.85280.52620.46100.033*
C130.5774 (5)0.5985 (4)0.41530 (13)0.0260 (7)
C140.6066 (5)0.7837 (4)0.40280 (15)0.0334 (8)
H14A0.61190.85160.43730.040*
H14B0.74490.80290.38340.040*
O10.4186 (4)0.8294 (3)0.36828 (10)0.0370 (6)
F10.0466 (3)0.5716 (3)0.13736 (8)0.0472 (6)
Br10.82479 (5)0.17116 (4)0.494648 (14)0.03340 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (17)0.046 (2)0.040 (2)0.0044 (16)0.0043 (15)0.0050 (18)
C20.040 (2)0.056 (3)0.031 (2)0.0112 (19)0.0092 (16)0.0047 (19)
C30.049 (2)0.030 (2)0.028 (2)0.0183 (17)0.0033 (18)0.0054 (16)
C40.037 (2)0.026 (2)0.036 (2)0.0035 (15)0.0035 (17)0.0044 (16)
C50.0331 (19)0.0271 (19)0.034 (2)0.0003 (15)0.0055 (16)0.0012 (15)
C60.0274 (17)0.0232 (18)0.0316 (19)0.0038 (14)0.0022 (14)0.0021 (15)
C70.0250 (17)0.031 (2)0.0277 (19)0.0014 (15)0.0053 (14)0.0019 (15)
C80.0251 (17)0.0210 (18)0.0237 (18)0.0002 (14)0.0026 (13)0.0020 (14)
C90.0272 (17)0.027 (2)0.0277 (19)0.0025 (14)0.0015 (14)0.0014 (14)
C100.0296 (18)0.0182 (17)0.032 (2)0.0031 (14)0.0058 (15)0.0008 (14)
C110.0278 (16)0.0277 (18)0.0220 (17)0.0078 (15)0.0002 (13)0.0012 (15)
C120.0214 (16)0.028 (2)0.032 (2)0.0000 (14)0.0025 (14)0.0051 (15)
C130.0306 (18)0.0206 (18)0.0270 (19)0.0013 (14)0.0054 (15)0.0037 (14)
C140.0291 (19)0.025 (2)0.046 (2)0.0034 (14)0.0020 (17)0.0010 (16)
O10.0387 (13)0.0231 (13)0.0484 (16)0.0017 (11)0.0072 (11)0.0028 (11)
F10.0592 (14)0.0534 (14)0.0284 (12)0.0208 (10)0.0033 (10)0.0057 (10)
Br10.0392 (2)0.0276 (2)0.0330 (2)0.00621 (16)0.00337 (14)0.00021 (16)
Geometric parameters (Å, º) top
C1—C21.387 (5)C8—C131.380 (4)
C1—C61.387 (4)C8—C91.381 (4)
C1—H10.9500C9—C101.392 (4)
C2—C31.367 (5)C9—H90.9500
C2—H20.9500C10—C111.381 (4)
C3—C41.369 (5)C10—H100.9500
C3—F11.375 (4)C11—C121.389 (4)
C4—C51.388 (4)C11—Br11.903 (3)
C4—H40.9500C12—C131.380 (4)
C5—C61.385 (4)C12—H120.9500
C5—H50.9500C13—C141.500 (4)
C6—C71.513 (4)C14—O11.428 (4)
C7—O11.445 (3)C14—H14A0.9900
C7—C81.509 (4)C14—H14B0.9900
C7—H71.0000
C2—C1—C6120.8 (3)C13—C8—C7109.4 (3)
C2—C1—H1119.6C9—C8—C7129.7 (3)
C6—C1—H1119.6C8—C9—C10119.1 (3)
C3—C2—C1118.0 (3)C8—C9—H9120.5
C3—C2—H2121.0C10—C9—H9120.5
C1—C2—H2121.0C11—C10—C9119.1 (3)
C2—C3—C4123.6 (3)C11—C10—H10120.4
C2—C3—F1118.3 (3)C9—C10—H10120.4
C4—C3—F1118.0 (3)C10—C11—C12122.3 (3)
C3—C4—C5117.3 (3)C10—C11—Br1119.3 (2)
C3—C4—H4121.3C12—C11—Br1118.3 (2)
C5—C4—H4121.3C13—C12—C11117.5 (3)
C6—C5—C4121.5 (3)C13—C12—H12121.3
C6—C5—H5119.3C11—C12—H12121.3
C4—C5—H5119.3C8—C13—C12121.1 (3)
C5—C6—C1118.7 (3)C8—C13—C14109.2 (3)
C5—C6—C7120.3 (3)C12—C13—C14129.7 (3)
C1—C6—C7121.0 (3)O1—C14—C13105.3 (2)
O1—C7—C8104.4 (2)O1—C14—H14A110.7
O1—C7—C6110.1 (2)C13—C14—H14A110.7
C8—C7—C6114.5 (2)O1—C14—H14B110.7
O1—C7—H7109.2C13—C14—H14B110.7
C8—C7—H7109.2H14A—C14—H14B108.8
C6—C7—H7109.2C14—O1—C7111.5 (2)
C13—C8—C9120.8 (3)
C6—C1—C2—C30.0 (5)C13—C8—C9—C101.0 (5)
C1—C2—C3—C40.1 (5)C7—C8—C9—C10178.7 (3)
C1—C2—C3—F1178.9 (3)C8—C9—C10—C110.1 (4)
C2—C3—C4—C50.1 (5)C9—C10—C11—C120.5 (5)
F1—C3—C4—C5179.1 (3)C9—C10—C11—Br1179.3 (2)
C3—C4—C5—C60.3 (5)C10—C11—C12—C130.2 (5)
C4—C5—C6—C10.4 (5)Br1—C11—C12—C13179.0 (2)
C4—C5—C6—C7179.7 (3)C9—C8—C13—C121.3 (5)
C2—C1—C6—C50.2 (5)C7—C8—C13—C12179.5 (3)
C2—C1—C6—C7179.9 (3)C9—C8—C13—C14177.4 (3)
C5—C6—C7—O1147.9 (3)C7—C8—C13—C140.8 (3)
C1—C6—C7—O132.2 (4)C11—C12—C13—C80.8 (4)
C5—C6—C7—C894.9 (3)C11—C12—C13—C14177.7 (3)
C1—C6—C7—C885.0 (4)C8—C13—C14—O13.6 (3)
O1—C7—C8—C132.3 (3)C12—C13—C14—O1177.8 (3)
C6—C7—C8—C13122.7 (3)C13—C14—O1—C75.2 (3)
O1—C7—C8—C9179.7 (3)C8—C7—O1—C144.7 (3)
C6—C7—C8—C959.3 (4)C6—C7—O1—C14128.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F1i0.952.543.324 (4)140
C14—H14B···F1ii0.992.523.265 (4)132
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service for data collection. HGA thanks the University of Mysore for provision of research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAzzena, U., Demartis, S. & Melloni, G. (1996). J. Org. Chem. 61, 4913–4919.  CrossRef CAS Web of Science Google Scholar
First citationBigler, A. J., Bogeso, K. B. & Toft, A. (1977). Eur. J. Med. Chem. 12, 289–295.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationEriksson, L. & Hu, J. (2001). Acta Cryst. E57, o930–o932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiechti, M. E., Baumann, C., Gamma, A. & Vollenweider, F. X. (2000). Neuropsychopharmacology, 22, 513–521.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Nagaraj, B., Gaonkar, S. L., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2004). Acta Cryst. E60, 2225–2227.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds