organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-De­­oxy-D-galactono-1,4-lactone (3-de­­oxy-D-xylo-hexono-1,4-lactone)

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it

(Received 17 January 2006; accepted 6 March 2006; online 10 March 2006)

On the basis of the known absolute configuration of D-galactose, the structural study of 3-de­oxy-D-xylo-galactono-1,4-lactone, C6H10O5 a valuable synthetic inter­mediate, allowed the unambiguous confirmation that the chiral centre at position 2 has the R configuration. This centre is formed during synthesis of the title compound from D-galactose under environmentally friendly conditions. Three symmetry-independent inter­molecular hydrogen bonds link the mol­ecules into layers parallel to the ac plane.

Comment

A number of useful synthetic carbohydrate scaffolds, including several branched carbohydrate lactones (Monneret & Florent, 1994[Monneret, C. & Florent, J. C. (1994). Synlett, pp. 305-318.]) can be obtained by the treatment of hexoses with aqueous calcium hydroxide (Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons Inc.]). In recent times, the de­oxy lactone (1), also known as α-D-galactometasaccharinic acid, has usually been obtained by a three-step synthesis from D-galactonolactone involving organic solvents and reagents (Bock et al., 1981[Bock, K., Lundt, I. & Pedersen, C. (1981). Acta Chem. Scand. Ser. B, 35, 155-162.], 1986[Bock, K., Lundt, I. & Pedersen, C. (1986). Acta Chem. Scand. Ser. B, 40, 163-171.]; Choquet-Farnier et al., 1997[Choquet-Farnier, C., Stasik, I. & Beaupere, D. (1997). Carbohydr. Res. 303, 185-191.]). However, a green aqueous procedure allows preparation of lactone (1) directly by treatment of galactose (2) with aqueous calcium hydroxide (Whistler & BeMiller, 1963[Whistler, R. L. & BeMiller, J. N. (1963). Method Carbohydr. Chem. 2, 483-484.]; Kiliani & Kleeman, 1884[Kiliani, H. & Kleeman, S. (1884). Berichte, 17, 1296-1310.]). This is the prefered route, not only because of the environmentally friendly conditions, but also due to the low cost of galactose (2), the starting material, whose price represents just a small fraction of the cost of D-galactonolactone. It is noteworthy that completely different products arise if sugar (2) is treated with a secondary amine such as dibenzyl­amine prior to the reaction with calcium hydroxide; in that case the major isolated product is the branched lyxono-1,4-lactone (3) (Punzo et al., 2006[Punzo, F., Watkin, D. J., Hotchkiss, D. J. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98-o100.]).

[Scheme 1]

Lactone (1) can be readily obtained and has a great potential as a chiral building block for the synthesis of complex highly functionalized targets. It has already been used for the synthesis of carnitine (Bols et al., 1992[Bols, M., Lundt, I. & Pedersen, C. (1992). Tetrahedron, 48, 319-324.]) and hydroxy­lated azepanes (Anderson et al., 2000[Anderson, S. M., Ekhart, C., Lundt, I. & Stutz, A. E. (2000). Carbohydr. Res. 326, 22-33.]); it can also prove useful for synthesis of bulgecinines and other highly substituted prolines and pyrrolidines.

This paper reports the crystal structure of (1), prepared from galactose and calcium hydroxide, and unambiguously establishes the relative stereochemistry (Fig. 1[link]). The use of D-galactose as starting material defines the absolute configuration of the two stereogenic centres at C4 and C5; the present structural study establishes unambiguously that the chiral centre at C2 has the R configuration.

The packing of (1) is shown in Fig. 2[link]. Each of the three symmetry-independent `active' H atoms in the mol­ecule of (1) is involved in hydrogen bonding (Table 2[link]). Atoms H11 and H9 form the hydrogen bonds which link mol­ecules into double chains along the c axis. These chains are further aggregated into layers parallel to the ac plane via hydrogen bonds involving H10.

[Figure 1]
Figure 1
The mol­ecular structure of (1), showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.
[Figure 2]
Figure 2
Packing diagram of (1), viewed down the b axis. Hydrogen bonds are shown as dotted lines.

Experimental

The title compound [m.p. 414–415 K, [α]21D −43.8 (c 1.24 in water)] was synthesized according to Sowden et al. (1957[Sowden, J. C., Blair, M. G. & Kuenne, D. J. (1957). J. Am. Chem. Soc. 79, 6450-6454.]) [literature m.p. 415–416 K, [α]25D −47.8 (c 1 in water); Sowden, 1957[Sowden, J. C. (1957). Adv. Carbohydr. Chem. 12, 35-80.]; Sowden et al., 1957[Sowden, J. C., Blair, M. G. & Kuenne, D. J. (1957). J. Am. Chem. Soc. 79, 6450-6454.])]. It was then dissolved in methanol in a small sealed glass flask and left for 24 h in an oven at 313 K and for a further night at room temperature. Thereafter, the flask was opened to let the solvent slowly evaporate and colourless prismatic crystals were formed. A suitable piece was cut from a larger crystal.

Crystal data
  • C6H10O5

  • Mr = 162.14

  • Orthorhombic, P 21 21 21

  • a = 5.3320 (2) Å

  • b = 8.4865 (3) Å

  • c = 15.7238 (8) Å

  • V = 711.50 (5) Å3

  • Z = 4

  • Dx = 1.514 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 787 reflections

  • θ = 5.1–27.5°

  • μ = 0.13 mm−1

  • T = 100 K

  • Prism, colourless

  • 0.60 × 0.50 × 0.40 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.935, Tmax = 0.948

  • 1521 measured reflections

  • 942 independent reflections

  • 896 reflections with I > 2σ(I)

  • Rint = 0.010

  • θmax = 27.4°

  • h = −6 → 6

  • k = −10 → 10

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.05

  • 942 reflections

  • 100 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.01P)2 + 0.2P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max <0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C5 1.5147 (19)
C1—O7 1.4782 (18)
C1—C4 1.528 (2)
C5—C6 1.518 (2)
C5—O10 1.4285 (17)
C6—O11 1.4357 (18)
O7—C2 1.3417 (16)
C2—C3 1.521 (2)
C2—O8 1.2126 (18)
C3—C4 1.519 (2)
C3—O9 1.4107 (16)
C5—C1—O7 108.12 (12)
C5—C1—C4 114.28 (12)
O7—C1—C4 104.57 (10)
C1—C5—C6 111.45 (13)
C1—C5—O10 109.23 (11)
C6—C5—O10 109.87 (11)
C5—C6—O11 111.07 (12)
C1—O7—C2 110.07 (11)
O7—C2—C3 110.84 (12)
O7—C2—O8 121.20 (14)
C3—C2—O8 127.95 (13)
C2—C3—C4 102.58 (11)
C2—C3—O9 111.85 (12)
C4—C3—O9 111.85 (12)
C1—C4—C3 103.33 (12)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11i 0.86 1.83 2.6814 (15) 177
O11—H11⋯O8ii 0.86 1.90 2.7384 (13) 166
O9—H9⋯O10iii 0.88 1.83 2.6966 (14) 167
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–98 Å and O—H = 0.82 Å) and isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C,O)], after which their positions were refined with riding constraints. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3-Deoxy-D-galactono-1,4-lactone (3-deoxy-D-xylo-hexono-1,4-lactone) top
Crystal data top
C6H10O5Dx = 1.514 Mg m3
Mr = 162.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 787 reflections
a = 5.3320 (2) Åθ = 5.1–27.5°
b = 8.4865 (3) ŵ = 0.13 mm1
c = 15.7238 (8) ÅT = 100 K
V = 711.50 (5) Å3Prism, colourless
Z = 40.60 × 0.50 × 0.40 mm
F(000) = 344
Data collection top
Nonius Kappa CCD
diffractometer
896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω scansθmax = 27.4°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.935, Tmax = 0.948k = 1010
1521 measured reflectionsl = 2020
942 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(F2) + (0.01P)2 + 0.2P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.05(Δ/σ)max < 0.001
942 reflectionsΔρmax = 0.18 e Å3
100 parametersΔρmin = 0.20 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2537 (3)0.48508 (18)0.13488 (8)0.0128
C50.1466 (3)0.38063 (17)0.20404 (9)0.0132
C60.3508 (3)0.28675 (17)0.24829 (9)0.0150
O110.5368 (2)0.38909 (12)0.28445 (6)0.0161
O100.0167 (2)0.47603 (12)0.26456 (6)0.0152
O70.0425 (2)0.56286 (12)0.09076 (6)0.0147
C20.0865 (3)0.56805 (16)0.00679 (9)0.0136
C30.3376 (3)0.49259 (17)0.01439 (8)0.0141
C40.3926 (3)0.39601 (19)0.06479 (9)0.0170
O90.3231 (2)0.39745 (12)0.08780 (6)0.0183
O80.0638 (2)0.62617 (12)0.04183 (6)0.0187
H10.35640.56730.16060.0150*
H50.02910.30900.17730.0154*
H610.43670.21980.20720.0185*
H620.26980.22170.29430.0191*
H30.45810.57670.02060.0171*
H410.32080.28900.05830.0204*
H420.57070.38910.07700.0200*
H100.13760.44870.26870.0258*
H110.51840.38940.33850.0266*
H90.36990.45260.13250.0289*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0112 (7)0.0146 (7)0.0127 (6)0.0008 (6)0.0023 (6)0.0006 (6)
C50.0132 (7)0.0141 (7)0.0122 (6)0.0022 (6)0.0003 (6)0.0028 (5)
C60.0149 (7)0.0136 (7)0.0166 (6)0.0004 (6)0.0015 (7)0.0001 (6)
O110.0123 (5)0.0238 (5)0.0122 (4)0.0021 (5)0.0010 (4)0.0002 (4)
O100.0116 (5)0.0206 (5)0.0132 (5)0.0001 (4)0.0015 (4)0.0038 (4)
O70.0145 (5)0.0189 (5)0.0107 (4)0.0046 (5)0.0003 (5)0.0004 (4)
C20.0155 (7)0.0135 (7)0.0118 (6)0.0012 (6)0.0007 (6)0.0013 (6)
C30.0145 (7)0.0146 (7)0.0131 (6)0.0003 (6)0.0022 (6)0.0016 (6)
C40.0155 (8)0.0215 (7)0.0139 (6)0.0049 (7)0.0014 (6)0.0008 (6)
O90.0287 (6)0.0148 (5)0.0114 (4)0.0004 (5)0.0058 (5)0.0019 (4)
O80.0178 (6)0.0243 (6)0.0139 (5)0.0034 (5)0.0011 (5)0.0013 (5)
Geometric parameters (Å, º) top
C1—C51.5147 (19)O10—H100.857
C1—O71.4782 (18)O7—C21.3417 (16)
C1—C41.528 (2)C2—C31.521 (2)
C1—H10.975C2—O81.2126 (18)
C5—C61.518 (2)C3—C41.519 (2)
C5—O101.4285 (17)C3—O91.4107 (16)
C5—H50.969C3—H30.965
C6—O111.4357 (18)C4—H410.991
C6—H610.975C4—H420.971
C6—H621.008O9—H90.880
O11—H110.855
C5—C1—O7108.12 (12)C5—O10—H10111.2
C5—C1—C4114.28 (12)C1—O7—C2110.07 (11)
O7—C1—C4104.57 (10)O7—C2—C3110.84 (12)
C5—C1—H1109.4O7—C2—O8121.20 (14)
O7—C1—H1107.7C3—C2—O8127.95 (13)
C4—C1—H1112.4C2—C3—C4102.58 (11)
C1—C5—C6111.45 (13)C2—C3—O9111.85 (12)
C1—C5—O10109.23 (11)C4—C3—O9111.85 (12)
C6—C5—O10109.87 (11)C2—C3—H3107.2
C1—C5—H5107.4C4—C3—H3110.7
C6—C5—H5109.5O9—C3—H3112.1
O10—C5—H5109.3C1—C4—C3103.33 (12)
C5—C6—O11111.07 (12)C1—C4—H41109.9
C5—C6—H61109.8C3—C4—H41109.6
O11—C6—H61106.9C1—C4—H42111.2
C5—C6—H62108.0C3—C4—H42112.6
O11—C6—H62110.1H41—C4—H42110.1
H61—C6—H62111.0C3—O9—H9109.5
C6—O11—H11108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O11i0.861.832.6814 (15)177
O11—H11···O8ii0.861.902.7384 (13)166
O9—H9···O10iii0.881.832.6966 (14)167
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1, z1/2.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA England

Acknowledgements

Financial support from the EPSRC (to DH) is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationAnderson, S. M., Ekhart, C., Lundt, I. & Stutz, A. E. (2000). Carbohydr. Res. 326, 22–33.  Web of Science CrossRef PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBock, K., Lundt, I. & Pedersen, C. (1981). Acta Chem. Scand. Ser. B, 35, 155–162.  CrossRef Google Scholar
First citationBock, K., Lundt, I. & Pedersen, C. (1986). Acta Chem. Scand. Ser. B, 40, 163–171.  CrossRef Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons Inc.  Google Scholar
First citationBols, M., Lundt, I. & Pedersen, C. (1992). Tetrahedron, 48, 319–324.  CrossRef CAS Web of Science Google Scholar
First citationChoquet-Farnier, C., Stasik, I. & Beaupere, D. (1997). Carbohydr. Res. 303, 185–191.  CrossRef CAS Web of Science Google Scholar
First citationKiliani, H. & Kleeman, S. (1884). Berichte, 17, 1296–1310.  Google Scholar
First citationMonneret, C. & Florent, J. C. (1994). Synlett, pp. 305–318.  CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPunzo, F., Watkin, D. J., Hotchkiss, D. J. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98–o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSowden, J. C. (1957). Adv. Carbohydr. Chem. 12, 35–80.  PubMed CAS Web of Science Google Scholar
First citationSowden, J. C., Blair, M. G. & Kuenne, D. J. (1957). J. Am. Chem. Soc. 79, 6450–6454.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWhistler, R. L. & BeMiller, J. N. (1963). Method Carbohydr. Chem. 2, 483–484.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds