organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 1:1 mol­ecular complex of di­cyclo­hexyl­amine and cyclo­hexa­none oxime

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: d.s.yufit@durham.ac.uk

(Received 24 March 2006; accepted 19 April 2006; online 26 April 2006)

The mol­ecules of the title complex, C12H23N·C6H11N, are linked together in chains by O—H⋯N and N—H⋯O hydrogen bonds.

Comment

Both components of the title complex, (I)[link] (Fig. 1[link]), show the expected mol­ecular geometries and both cyclo­hexane rings of the dicyclo­hexyl­amine mol­ecule adopt the chair conformation. The conformation of the oxime six-membered ring is half-chair, very similar to that observed in the structure of cyclo­hexa­none oxime itself (Olivato et al., 2001[Olivato, P. R., Ribeiro, D. S., Zukerman-Schpector, J. & Bombieri, G. (2001). Acta Cryst. B57, 705-713.]). The geometrical parameters of the oxime fragment show standard values for oximes (Chertanova et al.,1994[Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708-716.]). The most inter­esting feature of this structure is the system of hydrogen bonds. The oxime hydrogen bonds were first classified by Bertolasi et al. (1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]) and divided into three groups. The structures where the oxime unit is a donor group and forms one hydrogen bond are in group A. The structures with an additional hydrogen bond (oxime N atom is a hydrogen-bond acceptor) form group B and the structures with one more hydrogen bond, where the oxime O atom is the acceptor, are regarded as group C. The later and more elaborate classification introduced by Chertanova et al. (1994[Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708-716.]) shows very few examples of other motifs. In both cases the analyses did not include the directionality of the hydrogen bonds and supposed them to be in the plane of oxime group. In the case of complex (I)[link], one of the two hydrogen bonds is the classical type A O—H⋯N bond (Table 1[link] and Fig. 2[link]). However, the geometry of the second hydrogen bond cannot be regarded as a pure B- or C-type bond. The N—H vector is not in the plane of the oxime group and is pointed toward the centre of the oxime O—N bond of an adjacent mol­ecule. Therefore, this can be classified as a weak bifurcated hydrogen bond and the overall resulting bonding of the oxime unit in complex (I)[link] is inter­mediate between B- and C-types.

[Scheme 1]

The hydrogen bonds link the mol­ecules into chains, parallel to the c axis. The oxime mol­ecules in the chains are also connected by weak C1—H21⋯O1 (H⋯O = 2.71 Å) inter­actions. The chains form loose layers perpendicular to the a direction (Fig. 3[link])

[Figure 1]
Figure 1
Structure of the mol­ecular complex (I)[link]. Displacement ellipsoids are shown at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
Hydrogen bonds (dashed lines) in the structure of (I)[link]. H atoms not involved in the inter­actions shown have been omitted.
[Figure 3]
Figure 3
Packing of the mol­ecules in the structure of (I)[link], viewed along the b axis. H atoms not involved in the hydrogen bonds (dashed lines) shown have been omitted.

Experimental

A solution of an organic compound (10 mg) in dicyclo­hexyl­amine (0.3 ml) was heated at 423 K in an open vessel for 2–3 min. The mol­ecular complex (I)[link] crystallized serendipitously as colourless needles after cooling of the solution, followed by standing at room temperature for several months. Presumably, the compound is a product of some oxidative conversion of the solvent.

Crystal data
  • C12H23N·C6H11NO

  • Mr = 294.47

  • Orthorhombic, P n a 21

  • a = 29.599 (6) Å

  • b = 11.359 (2) Å

  • c = 5.1586 (10) Å

  • V = 1734.3 (6) Å3

  • Z = 4

  • Dx = 1.128 Mg m−3

  • Mo- Kα radiation

  • μ = 0.07 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.70 × 0.04 × 0.03 mm

Data collection
  • Bruker SMART CCD 6000 diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.998

  • 12334 measured reflections

  • 2118 independent reflections

  • 1714 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.05

  • 2118 reflections

  • 326 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.03P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—N1 1.419 (3)
N1—C1 1.292 (3)
N2—C13 1.477 (3)
N2—C7 1.484 (3)
C1—N1—O1 111.7 (2)
C13—N2—C7 115.91 (16)
N1—C1—C6 116.7 (2)
N1—C1—C2 127.0 (2)
C6—C1—C2 116.3 (2)
N2—C7—C12 109.04 (18)
N2—C7—C8 113.1 (2)
C12—C7—C8 110.0 (2)
N2—C13—C18 111.0 (2)
N2—C13—C14 108.67 (18)
C18—C13—C14 109.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.98 (5) 1.85 (5) 2.818 (3) 167 (4)
N2—H2N⋯O1i 0.90 (3) 2.62 (3) 3.509 (3) 167 (2)
N2—H2N⋯N1i 0.90 (3) 2.59 (3) 3.451 (3) 160 (2)
C2—H21⋯O1ii 1.04 (3) 2.71 (3) 3.686 (3) 155 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

All H atoms were located in a difference Fourier map and refined isotropically [C—H = 0.94 (3)–1.05 (4) Å].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

dicyclohexylamine–cyclohexanone oxime (1/1) top
Crystal data top
C12H23N·C6H11NODx = 1.128 Mg m3
Mr = 294.47Melting point: 58°C decomp. K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2345 reflections
a = 29.599 (6) Åθ = 2.3–25.1°
b = 11.359 (2) ŵ = 0.07 mm1
c = 5.1586 (10) ÅT = 120 K
V = 1734.3 (6) Å3Needle, colorless
Z = 40.70 × 0.04 × 0.03 mm
F(000) = 656
Data collection top
Bruker SMART CCD 6000
diffractometer
2118 independent reflections
Radiation source: fine-focus sealed tube1714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
0.30° ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3737
Tmin = 0.953, Tmax = 0.998k = 1314
12334 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.094All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.03P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
2118 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32558 (6)0.20740 (15)0.0708 (4)0.0284 (4)
N10.30521 (6)0.10559 (17)0.1791 (5)0.0261 (5)
N20.38448 (6)0.16297 (17)0.3470 (5)0.0195 (4)
C10.27735 (8)0.1321 (2)0.3629 (6)0.0265 (6)
C20.26491 (8)0.2533 (2)0.4549 (6)0.0298 (6)
C30.21338 (8)0.2667 (3)0.4673 (6)0.0316 (6)
C40.19196 (8)0.1679 (3)0.6259 (7)0.0351 (7)
C50.20409 (9)0.0486 (3)0.5094 (7)0.0358 (7)
C60.25526 (9)0.0314 (3)0.5012 (7)0.0324 (6)
C70.41017 (8)0.0510 (2)0.3611 (5)0.0188 (5)
C80.43432 (8)0.0337 (2)0.6211 (5)0.0218 (5)
C90.45906 (8)0.0847 (2)0.6313 (6)0.0236 (5)
C100.42696 (9)0.1864 (2)0.5793 (6)0.0243 (5)
C110.40268 (9)0.1698 (2)0.3212 (6)0.0255 (6)
C120.37805 (8)0.0514 (2)0.3108 (6)0.0235 (5)
C130.41173 (7)0.27190 (19)0.3537 (5)0.0188 (5)
C140.38047 (8)0.3757 (2)0.4116 (6)0.0226 (5)
C150.40585 (8)0.4933 (2)0.4109 (5)0.0237 (6)
C160.43019 (9)0.5120 (2)0.1532 (6)0.0252 (6)
C170.46156 (8)0.4084 (2)0.0964 (6)0.0244 (6)
C180.43562 (8)0.2919 (2)0.0967 (5)0.0215 (5)
H1O0.3443 (13)0.180 (4)0.074 (11)0.094 (15)*
H2N0.3656 (8)0.167 (2)0.484 (6)0.014 (6)*
H210.2766 (11)0.265 (3)0.644 (8)0.052 (10)*
H220.2792 (9)0.311 (2)0.338 (6)0.031 (7)*
H310.2015 (10)0.265 (3)0.276 (7)0.037 (8)*
H320.2057 (9)0.346 (2)0.539 (6)0.032 (8)*
H410.1600 (9)0.179 (2)0.621 (6)0.030 (7)*
H420.2033 (11)0.170 (3)0.814 (8)0.050 (10)*
H510.1910 (9)0.014 (3)0.609 (6)0.035 (8)*
H520.1931 (10)0.043 (3)0.320 (7)0.045 (9)*
H610.2671 (9)0.032 (3)0.693 (7)0.036 (8)*
H620.2613 (9)0.041 (3)0.420 (7)0.041 (9)*
H70.4340 (8)0.056 (2)0.217 (6)0.014 (6)*
H810.4567 (8)0.097 (2)0.652 (6)0.026 (7)*
H820.4121 (9)0.039 (2)0.755 (6)0.026 (8)*
H910.4727 (9)0.094 (2)0.801 (7)0.025 (7)*
H920.4848 (9)0.085 (2)0.508 (6)0.026 (7)*
H1010.4425 (7)0.261 (2)0.585 (6)0.020 (6)*
H1020.4043 (9)0.188 (2)0.721 (6)0.027 (7)*
H1110.3807 (8)0.236 (2)0.295 (6)0.027 (7)*
H1120.4229 (10)0.173 (3)0.174 (7)0.041 (9)*
H1210.3541 (8)0.047 (2)0.436 (6)0.011 (6)*
H1220.3618 (8)0.043 (2)0.131 (6)0.017 (6)*
H130.4362 (7)0.272 (2)0.488 (5)0.013 (6)*
H1410.3560 (8)0.379 (2)0.279 (6)0.014 (6)*
H1420.3664 (9)0.361 (2)0.574 (7)0.029 (8)*
H1510.4288 (8)0.496 (2)0.555 (6)0.023 (7)*
H1520.3842 (8)0.562 (2)0.446 (6)0.025 (7)*
H1610.4075 (8)0.520 (2)0.016 (6)0.025 (7)*
H1620.4466 (8)0.587 (2)0.161 (6)0.030 (7)*
H1710.4783 (9)0.419 (2)0.064 (6)0.023 (7)*
H1720.4842 (10)0.406 (2)0.244 (7)0.034 (8)*
H1810.4111 (8)0.292 (2)0.043 (6)0.022 (7)*
H1820.4567 (8)0.228 (2)0.065 (6)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (8)0.0263 (8)0.0313 (11)0.0048 (7)0.0057 (9)0.0009 (8)
N10.0236 (9)0.0232 (10)0.0315 (12)0.0010 (8)0.0008 (10)0.0015 (10)
N20.0184 (8)0.0180 (9)0.0221 (11)0.0000 (8)0.0005 (10)0.0014 (8)
C10.0205 (10)0.0295 (12)0.0296 (15)0.0005 (10)0.0019 (11)0.0012 (12)
C20.0239 (11)0.0301 (13)0.0355 (16)0.0034 (10)0.0017 (12)0.0012 (13)
C30.0247 (12)0.0322 (14)0.0380 (17)0.0040 (10)0.0018 (13)0.0003 (13)
C40.0208 (11)0.0431 (15)0.0414 (19)0.0032 (12)0.0046 (14)0.0062 (13)
C50.0317 (14)0.0314 (14)0.044 (2)0.0061 (11)0.0032 (14)0.0082 (14)
C60.0312 (13)0.0285 (14)0.0376 (17)0.0015 (11)0.0056 (13)0.0044 (13)
C70.0193 (10)0.0174 (10)0.0197 (13)0.0011 (8)0.0000 (10)0.0016 (10)
C80.0229 (11)0.0207 (11)0.0218 (14)0.0009 (9)0.0031 (11)0.0013 (11)
C90.0238 (12)0.0203 (11)0.0269 (15)0.0008 (9)0.0053 (12)0.0011 (11)
C100.0281 (12)0.0180 (11)0.0269 (14)0.0007 (10)0.0035 (12)0.0031 (11)
C110.0312 (12)0.0195 (11)0.0260 (15)0.0026 (10)0.0054 (13)0.0008 (12)
C120.0225 (11)0.0212 (11)0.0267 (13)0.0020 (9)0.0069 (13)0.0014 (11)
C130.0190 (10)0.0149 (11)0.0224 (13)0.0002 (8)0.0012 (10)0.0004 (10)
C140.0251 (11)0.0195 (11)0.0232 (13)0.0029 (9)0.0044 (11)0.0004 (11)
C150.0289 (12)0.0175 (11)0.0246 (14)0.0005 (9)0.0017 (12)0.0025 (11)
C160.0287 (12)0.0190 (12)0.0278 (14)0.0007 (10)0.0007 (12)0.0029 (11)
C170.0229 (12)0.0217 (12)0.0286 (15)0.0039 (9)0.0040 (12)0.0025 (11)
C180.0207 (10)0.0190 (11)0.0247 (14)0.0001 (9)0.0029 (11)0.0021 (11)
Geometric parameters (Å, º) top
O1—N11.419 (3)C9—C101.519 (3)
O1—H1O0.98 (5)C9—H910.97 (3)
N1—C11.292 (3)C9—H920.99 (3)
N2—C131.477 (3)C10—C111.524 (4)
N2—C71.484 (3)C10—H1010.97 (3)
N2—H2N0.90 (3)C10—H1020.99 (3)
C1—C61.499 (4)C11—C121.530 (3)
C1—C21.503 (4)C11—H1111.00 (3)
C2—C31.534 (3)C11—H1120.97 (4)
C2—H211.04 (4)C12—H1210.96 (3)
C2—H220.98 (3)C12—H1221.05 (3)
C3—C41.527 (4)C13—C181.520 (4)
C3—H311.05 (4)C13—C141.528 (3)
C3—H321.00 (3)C13—H131.00 (3)
C4—C51.525 (5)C14—C151.532 (3)
C4—H410.95 (3)C14—H1411.00 (3)
C4—H421.03 (4)C14—H1420.95 (3)
C5—C61.528 (4)C15—C161.527 (4)
C5—H510.96 (3)C15—H1511.01 (3)
C5—H521.03 (4)C15—H1521.03 (3)
C6—H611.05 (4)C16—C171.528 (3)
C6—H620.94 (3)C16—H1610.98 (3)
C7—C121.525 (3)C16—H1620.98 (3)
C7—C81.532 (3)C17—C181.529 (3)
C7—H71.03 (3)C17—H1710.97 (3)
C8—C91.532 (3)C17—H1721.01 (4)
C8—H810.99 (3)C18—H1811.02 (3)
C8—H820.96 (3)C18—H1820.97 (2)
N1—O1—H1O106 (2)H91—C9—H92105 (2)
C1—N1—O1111.7 (2)C9—C10—C11110.8 (2)
C13—N2—C7115.91 (16)C9—C10—H101111.4 (14)
C13—N2—H2N105.8 (15)C11—C10—H101111.0 (17)
C7—N2—H2N109.1 (15)C9—C10—H102107.7 (16)
N1—C1—C6116.7 (2)C11—C10—H102109.2 (17)
N1—C1—C2127.0 (2)H101—C10—H102107 (2)
C6—C1—C2116.3 (2)C10—C11—C12111.3 (2)
C1—C2—C3110.3 (2)C10—C11—H111109.5 (17)
C1—C2—H21109.2 (19)C12—C11—H111110.0 (14)
C3—C2—H21106.1 (19)C10—C11—H112113.0 (19)
C1—C2—H22108.2 (17)C12—C11—H112107.2 (18)
C3—C2—H22112.7 (17)H111—C11—H112106 (2)
H21—C2—H22110 (2)C7—C12—C11111.54 (19)
C4—C3—C2111.2 (2)C7—C12—H121107.8 (14)
C4—C3—H31110.5 (17)C11—C12—H121111.9 (14)
C2—C3—H31107.0 (16)C7—C12—H122111.3 (13)
C4—C3—H32111.8 (17)C11—C12—H122109.5 (14)
C2—C3—H32109.3 (15)H121—C12—H122104.6 (19)
H31—C3—H32107 (2)N2—C13—C18111.0 (2)
C5—C4—C3110.1 (3)N2—C13—C14108.67 (18)
C5—C4—H41109.8 (17)C18—C13—C14109.7 (2)
C3—C4—H41107.5 (17)N2—C13—H13114.3 (14)
C5—C4—H42108.4 (18)C18—C13—H13105.5 (14)
C3—C4—H42110.8 (18)C14—C13—H13107.6 (14)
H41—C4—H42110 (3)C13—C14—C15112.03 (19)
C4—C5—C6111.0 (2)C13—C14—H141109.4 (14)
C4—C5—H51110.5 (18)C15—C14—H141109.0 (14)
C6—C5—H51108.7 (16)C13—C14—H142107.7 (17)
C4—C5—H52110.8 (18)C15—C14—H142111.5 (17)
C6—C5—H52106.2 (18)H141—C14—H142107 (2)
H51—C5—H52109 (3)C16—C15—C14110.8 (2)
C1—C6—C5110.4 (2)C16—C15—H151108.8 (16)
C1—C6—H61107.6 (16)C14—C15—H151110.6 (15)
C5—C6—H61107.7 (16)C16—C15—H152110.1 (17)
C1—C6—H62112 (2)C14—C15—H152110.8 (13)
C5—C6—H62108.2 (17)H151—C15—H152106 (2)
H61—C6—H62111 (3)C15—C16—C17110.3 (2)
N2—C7—C12109.04 (18)C15—C16—H161108.5 (16)
N2—C7—C8113.1 (2)C17—C16—H161110.5 (16)
C12—C7—C8110.0 (2)C15—C16—H162108.7 (19)
N2—C7—H7105.8 (14)C17—C16—H162111.9 (15)
C12—C7—H7110.2 (14)H161—C16—H162107 (2)
C8—C7—H7108.7 (15)C16—C17—C18111.17 (19)
C9—C8—C7111.4 (2)C16—C17—H171112.2 (16)
C9—C8—H81108.3 (14)C18—C17—H171111.4 (16)
C7—C8—H81111.0 (17)C16—C17—H172106.0 (17)
C9—C8—H82111.2 (16)C18—C17—H172108.1 (17)
C7—C8—H82107.7 (17)H171—C17—H172108 (2)
H81—C8—H82107 (2)C13—C18—C17111.3 (2)
C10—C9—C8111.2 (2)C13—C18—H181106.6 (15)
C10—C9—H91109.9 (16)C17—C18—H181110.5 (14)
C8—C9—H91108.8 (15)C13—C18—H182109.4 (16)
C10—C9—H92111.2 (15)C17—C18—H182109.1 (14)
C8—C9—H92110.6 (15)H181—C18—H182110 (2)
O1—N1—C1—C6177.2 (2)C8—C9—C10—C1155.6 (3)
O1—N1—C1—C22.2 (3)C9—C10—C11—C1255.5 (3)
N1—C1—C2—C3129.7 (3)N2—C7—C12—C11179.7 (2)
C6—C1—C2—C350.8 (3)C8—C7—C12—C1155.8 (3)
C1—C2—C3—C452.8 (3)C10—C11—C12—C756.2 (3)
C2—C3—C4—C558.0 (3)C7—N2—C13—C1874.5 (3)
C3—C4—C5—C658.7 (3)C7—N2—C13—C14164.8 (2)
N1—C1—C6—C5129.0 (3)N2—C13—C14—C15177.6 (2)
C2—C1—C6—C551.5 (3)C18—C13—C14—C1556.1 (3)
C4—C5—C6—C154.2 (4)C13—C14—C15—C1656.3 (3)
C13—N2—C7—C12171.5 (2)C14—C15—C16—C1755.6 (3)
C13—N2—C7—C865.8 (3)C15—C16—C17—C1856.4 (3)
N2—C7—C8—C9178.02 (19)N2—C13—C18—C17176.48 (18)
C12—C7—C8—C955.9 (3)C14—C13—C18—C1756.4 (3)
C7—C8—C9—C1056.3 (3)C16—C17—C18—C1357.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.98 (5)1.85 (5)2.818 (3)167 (4)
N2—H2N···O1i0.90 (3)2.62 (3)3.509 (3)167 (2)
N2—H2N···N1i0.90 (3)2.59 (3)3.451 (3)160 (2)
C2—H21···O1ii1.04 (3)2.71 (3)3.686 (3)155 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The manuscript was prepared with the beta test version 1.0.0. of the program publCIF to be released by the IUCr and with the program modiCIFer to be released by the University of Wisconsin–Madison.

References

First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS (Version 2.05), SAINT (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOlivato, P. R., Ribeiro, D. S., Zukerman-Schpector, J. & Bombieri, G. (2001). Acta Cryst. B57, 705–713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds