organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­chloro­thia­zide N,N-di­methyl­formamide solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 23 March 2006; accepted 28 March 2006; online 7 April 2006)

Hydro­chloro­thia­zide forms a 1:1 solvate with N,N-dimethyl­formamide (systematic name: 6-chloro-3,4-dihydro-2H-1,2,4-benzothia­diazine-7-sulfonamide-1,1-dioxide dimethyl­form­amide solvate), C7H8ClN3O4S2·C3H7NO. The compound crystallizes with two mol­ecules of hydro­chloro­thia­zide and two solvent mol­ecules in the asymmetric unit and displays an extensive hydrogen-bonding network.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least two non-solvated forms, form I (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]) and form II (Florence et al., 2005[Florence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798-o2800.]). Form (I)[link] was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated N,N-dimethyl­formamide (DMF):acetone solution by slow evaporation at 278 K yielded samples of the HCT DMF solvate suitable for a synchrotron microcrystal study (Cernik et al., 1997[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279-286.], 2000[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (2000). J. Synchrotron Rad. 7, 40.]).

[Scheme 1]

The compound crystallizes as a 1:1 solvate with Z′ = 2 (Fig. 1[link]). The benzothia­diazine ring of HCT adopts a non-planar conformation in both residues, with the largest deviations from the least-squares plane through atoms C2–C7 observed for atoms S1 and N1 in residue A [0.278 (1) and 0.770 (2) Å respectively] and atom N1A in residue B [0.6802 (2) Å]. In residue A, the sulphonamide side chain adopts a torsion angle N3—S2—C5—C6 of −57.7 (2)° such that the NH2 group is located on the same side of the mol­ecule as the H atom (H1N) bonded to N1, a similar arrangement to that in both of the non-solvated forms of HCT. The corresponding torsion angle in residue B is 60.76 (2)°, such that the NH2 group lies on the opposite side of the mol­ecule to the H atom (H5N) bonded to N1A.

The crystal structure is stabilized by a network of seven N—H⋯O and one N—H⋯N inter­molecular hydrogen bonds (Table 1[link]). These contacts inter­connect (a) HCT mol­ecules (Fig. 2[link], contacts 1, 2, 4 and 6) and (b) HCT and solvent mol­ecules (Fig. 2[link] contacts 3, 4, 5, 7 and 8). Residues A and B form parallel C(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) hydrogen-bonded chains in the direction of the b axis via contacts 2 and 6, respectively (Fig. 3[link]), with the chains inter­connected via C—H⋯O contacts to form layers in the ab plane. The layers stack along the c axis with solvent residue C lying between layers of HCT mol­ecules, inter­connected via contacts 3 and 6 to HCT residues A and B, respectively. The remaining solvent mol­ecule (residue D) lies approximately perpendicular to the ab plane and forms hydrogen bonds with HCT residue B (Fig. 2[link], contacts 5 and 8). The structure is further stabilized by seven C—H⋯O contacts (Table 1[link]).

[Figure 1]
Figure 1
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram illustrating hydrogen bonds in (I)[link]. Unique contacts are labelled as follow: 1 = N1⋯O2Ai; 2 = N2⋯O4i; 3 = N3⋯O5; 4 = N3⋯O2Aii; 5 = N1A⋯O5Aiii; 6 = N2Ai⋯N3A(x, −2 + y, z); 7 = N3A—H7N⋯O5iv; 8 = N3A—H8N⋯O5Aiv (see Table 1[link] for symmetry codes and geometry). Contacts calculated and illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; program version 280604). Contact 6 is shown outwith the asymmetric unit for clarity.
[Figure 3]
Figure 3
The crystal packing in (I)[link], viewed down the a axis, showing the alternating layers of HCT and DMF mol­ecules stacked along c. Hydrogen bonds are shown as dashed lines.

Experimental

The sample of HCT used to prepare the solvate was used as received from Sigma–Aldrich. This was recrystallized from a 50:50 DMF/acetone solution by isothermal solvent evaporation at 278 K.

Crystal data
  • C7H8ClN3O4S2·C3H7NO

  • Mr = 370.83

  • Triclinic, [P \overline 1]

  • a = 7.3028 (2) Å

  • b = 9.1492 (2) Å

  • c = 23.6989 (6) Å

  • α = 86.194 (1)°

  • β = 89.841 (1)°

  • γ = 72.855 (1)°

  • V = 1509.50 (7) Å3

  • Z = 4

  • Dx = 1.632 Mg m−3

  • Synchrotron radiation

  • λ = 0.8466 Å

  • μ = 0.56 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.18 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART APEX2 CCD diffractometer

  • ω scans

  • Absorption correction: none

  • 10824 measured reflections

  • 4574 independent reflections

  • 4311 reflections with I > 2σ(I)

  • Rint = 0.018

  • θmax = 29.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.05

  • 4574 reflections

  • 441 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0721P)2 + 1.2599P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Ai 0.80 (3) 2.60 (3) 3.290 (3) 146 (3)
N2—H2N⋯O4i 0.74 (3) 2.47 (3) 3.023 (3) 134 (3)
N3—H3N⋯O5 0.90 (3) 2.07 (3) 2.954 (3) 165 (3)
N3—H4N⋯O2Aii 0.85 (4) 2.35 (4) 3.092 (3) 146 (3)
N1A—H5N⋯O5Aiii 0.78 (4) 2.12 (4) 2.882 (3) 167 (3)
N2A—H6N⋯N3Ai 0.77 (4) 2.48 (4) 3.177 (3) 150 (3)
N3A—H7N⋯O5iv 0.95 (4) 1.89 (4) 2.820 (3) 164 (3)
N3A—H8N⋯O5Aiv 0.86 (3) 2.12 (3) 2.942 (3) 163 (2)
C1A—H1A1⋯O3Ai 0.99 2.42 3.157 (3) 131
C1—H1A⋯O3i 0.99 2.56 3.235 (3) 125
C1A—H1A2⋯O3 0.99 2.51 3.467 (3) 162
C7—H7⋯O2ii 0.95 2.56 3.466 (3) 159
C7A—H7A⋯O1Aii 0.95 2.45 3.163 (3) 132
C9—H9B⋯O1ii 0.98 2.54 3.442 (3) 152
C10—H10C⋯O1ii 0.98 2.51 3.323 (3) 141
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.

The amine and aldehyde H atoms were located by difference synthesis and refined isotropically. The remaining H atoms were positioned geometrically and a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl) was used during the refinement process (C—H distances 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 groups, respectively).

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide dimethylformamide solvate top
Crystal data top
C7H8ClN3O4S2·C3H7NOZ = 4
Mr = 370.83F(000) = 768
Triclinic, P1Dx = 1.632 Mg m3
a = 7.3028 (2) ÅSynchrotron radiation, λ = 0.8466 Å
b = 9.1492 (2) ÅCell parameters from 7222 reflections
c = 23.6989 (6) Åθ = 4.1–32.9°
α = 86.194 (1)°µ = 0.56 mm1
β = 89.841 (1)°T = 150 K
γ = 72.855 (1)°Plate, colourless
V = 1509.50 (7) Å30.18 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEX2 CCD
diffractometer
4311 reflections with I > 2σ(I)
Radiation source: Station 16.2SMX, Daresbury SRSRint = 0.018
Si111 monochromatorθmax = 29.0°, θmin = 4.0°
fine–slice ω scansh = 88
10824 measured reflectionsk = 1010
4574 independent reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0721P)2 + 1.2599P]
where P = (Fo2 + 2Fc2)/3
4574 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Experimental. Collected at Daresbury SRS Station 16.2SMX, SADABS used to correct for beam decay (entered as _diffrn_standards_decay_% below).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16046 (7)0.23586 (6)0.40126 (3)0.01755 (17)
Cl1A0.30299 (9)0.97445 (7)0.09678 (3)0.02518 (18)
S10.98182 (8)0.22413 (6)0.42499 (2)0.01265 (16)
S1A1.02805 (8)0.55067 (6)0.22707 (2)0.01389 (17)
S20.53889 (7)0.36026 (6)0.38526 (2)0.01035 (16)
S2A0.66913 (8)1.10301 (6)0.11975 (2)0.01556 (17)
O11.0676 (2)0.19429 (19)0.37273 (7)0.0221 (4)
O1A1.1984 (2)0.5695 (2)0.20171 (8)0.0254 (4)
O21.0864 (2)0.22855 (19)0.47642 (7)0.0199 (4)
O2A1.0034 (2)0.5673 (2)0.28664 (7)0.0211 (4)
O30.7321 (2)0.36121 (17)0.37450 (7)0.0142 (3)
O3A0.8435 (2)1.11607 (19)0.14354 (8)0.0223 (4)
O40.4310 (2)0.45978 (17)0.42562 (7)0.0171 (4)
O4A0.6407 (3)1.1259 (2)0.05959 (7)0.0251 (4)
O50.5475 (3)0.1246 (2)0.26342 (7)0.0291 (4)
O5A0.1090 (3)0.3633 (2)0.09657 (7)0.0239 (4)
N10.9323 (3)0.3863 (2)0.42229 (9)0.0156 (4)
N1A1.0131 (3)0.3819 (2)0.21446 (9)0.0176 (4)
N20.6067 (3)0.2923 (2)0.45327 (9)0.0159 (4)
N2A0.6726 (3)0.4691 (2)0.19691 (9)0.0182 (5)
N30.4220 (3)0.4054 (2)0.32568 (9)0.0174 (4)
N3A0.4927 (3)1.2259 (2)0.14799 (10)0.0186 (5)
N40.4364 (3)0.0809 (2)0.28300 (8)0.0204 (5)
N4A0.0586 (3)0.2989 (3)0.00804 (9)0.0258 (5)
C10.7916 (3)0.4047 (3)0.46429 (10)0.0158 (5)
H1A0.77760.50900.46360.019*
H1B0.83840.39370.50250.019*
C1A0.8273 (3)0.3648 (3)0.23111 (10)0.0177 (5)
H1A10.82720.25800.22680.021*
H1A20.80610.38570.27140.021*
C20.5902 (3)0.1436 (2)0.43836 (9)0.0104 (5)
C2A0.6700 (3)0.6140 (2)0.17986 (9)0.0118 (5)
C30.7519 (3)0.0915 (2)0.42761 (9)0.0098 (4)
C3A0.8251 (3)0.6725 (3)0.19079 (9)0.0126 (5)
C40.7321 (3)0.0619 (2)0.41259 (9)0.0101 (4)
H40.84320.09440.40670.012*
C4A0.8206 (3)0.8199 (3)0.17185 (9)0.0128 (5)
H4A0.92780.85520.17900.015*
C50.5525 (3)0.1677 (2)0.40615 (9)0.0100 (4)
C5A0.6629 (3)0.9165 (3)0.14273 (9)0.0130 (5)
C60.3912 (3)0.1149 (2)0.41410 (9)0.0114 (5)
C6A0.5078 (3)0.8593 (3)0.13203 (9)0.0144 (5)
C70.4086 (3)0.0352 (3)0.43099 (9)0.0121 (5)
H70.29670.06600.43780.015*
C7A0.5110 (3)0.7131 (3)0.14953 (10)0.0151 (5)
H7A0.40470.67790.14110.018*
C80.5705 (4)0.0106 (3)0.28142 (10)0.0226 (6)
C8A0.0065 (4)0.3334 (3)0.06038 (11)0.0229 (6)
C90.2396 (4)0.0010 (3)0.26562 (13)0.0324 (7)
H9A0.22160.10970.26210.049*
H9B0.15220.02380.29400.049*
H9C0.21220.03500.22910.049*
C9A0.0677 (5)0.2566 (4)0.03098 (13)0.0444 (8)
H9D0.19180.26670.01330.067*
H9E0.01010.15020.04030.067*
H9F0.08610.32440.06560.067*
C100.4762 (4)0.2415 (3)0.30413 (11)0.0234 (6)
H10A0.61370.28540.31220.035*
H10B0.43680.29920.27550.035*
H10C0.40460.24740.33880.035*
C10A0.2476 (4)0.2942 (4)0.01197 (12)0.0354 (7)
H10D0.30940.34390.01440.053*
H10E0.23630.34830.04950.053*
H10F0.32500.18730.01430.053*
H1N0.905 (4)0.407 (4)0.3917 (14)0.030 (9)*
H2N0.519 (4)0.316 (3)0.4553 (12)0.020 (8)*
H3N0.464 (5)0.331 (4)0.3015 (14)0.037 (9)*
H4N0.301 (5)0.433 (4)0.3292 (13)0.035 (9)*
H5N1.036 (5)0.364 (4)0.1832 (15)0.033 (9)*
H6N0.594 (5)0.438 (4)0.1852 (13)0.030 (9)*
H7N0.486 (5)1.202 (4)0.1875 (16)0.046 (9)*
H80.692 (4)0.071 (3)0.2937 (12)0.023 (7)*
H8A0.126 (5)0.339 (3)0.0660 (13)0.034 (8)*
H8N0.388 (4)1.249 (3)0.1287 (12)0.021 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0063 (3)0.0127 (3)0.0325 (4)0.0006 (2)0.0005 (2)0.0033 (2)
Cl1A0.0177 (3)0.0213 (3)0.0350 (4)0.0046 (3)0.0123 (3)0.0041 (3)
S10.0092 (3)0.0083 (3)0.0189 (3)0.0007 (2)0.0010 (2)0.0013 (2)
S1A0.0098 (3)0.0154 (3)0.0163 (3)0.0040 (2)0.0005 (2)0.0013 (2)
S20.0088 (3)0.0065 (3)0.0156 (3)0.0023 (2)0.0000 (2)0.0002 (2)
S2A0.0169 (3)0.0123 (3)0.0182 (3)0.0059 (2)0.0027 (2)0.0010 (2)
O10.0177 (9)0.0180 (9)0.0269 (10)0.0005 (7)0.0089 (7)0.0022 (7)
O1A0.0110 (9)0.0306 (10)0.0340 (10)0.0071 (7)0.0001 (7)0.0074 (8)
O20.0156 (8)0.0176 (8)0.0261 (9)0.0051 (7)0.0096 (7)0.0023 (7)
O2A0.0218 (9)0.0253 (9)0.0161 (9)0.0063 (7)0.0037 (7)0.0036 (7)
O30.0095 (8)0.0105 (8)0.0225 (9)0.0032 (6)0.0001 (6)0.0021 (6)
O3A0.0165 (9)0.0176 (9)0.0347 (10)0.0087 (7)0.0014 (7)0.0014 (7)
O40.0171 (9)0.0101 (8)0.0256 (9)0.0051 (7)0.0042 (7)0.0070 (7)
O4A0.0329 (10)0.0239 (10)0.0178 (9)0.0088 (8)0.0045 (7)0.0049 (7)
O50.0504 (12)0.0222 (10)0.0186 (9)0.0170 (9)0.0040 (8)0.0018 (8)
O5A0.0266 (10)0.0251 (10)0.0185 (9)0.0051 (8)0.0023 (8)0.0032 (7)
N10.0173 (11)0.0098 (10)0.0191 (11)0.0029 (8)0.0030 (8)0.0021 (8)
N1A0.0201 (11)0.0156 (11)0.0157 (11)0.0025 (8)0.0027 (9)0.0026 (9)
N20.0123 (11)0.0128 (10)0.0247 (11)0.0081 (9)0.0021 (8)0.0028 (8)
N2A0.0175 (11)0.0171 (11)0.0237 (11)0.0111 (9)0.0023 (9)0.0008 (8)
N30.0156 (11)0.0147 (11)0.0196 (11)0.0020 (9)0.0054 (9)0.0035 (9)
N3A0.0181 (12)0.0135 (10)0.0232 (12)0.0031 (9)0.0004 (9)0.0010 (9)
N40.0252 (11)0.0162 (10)0.0175 (11)0.0030 (9)0.0038 (9)0.0007 (8)
N4A0.0355 (13)0.0252 (12)0.0186 (11)0.0121 (10)0.0005 (9)0.0001 (9)
C10.0188 (12)0.0098 (11)0.0194 (12)0.0062 (9)0.0046 (10)0.0036 (9)
C1A0.0222 (13)0.0135 (12)0.0191 (12)0.0083 (10)0.0007 (10)0.0010 (9)
C20.0136 (11)0.0103 (11)0.0089 (10)0.0059 (9)0.0007 (8)0.0000 (8)
C2A0.0137 (11)0.0136 (11)0.0102 (11)0.0067 (9)0.0041 (9)0.0037 (9)
C30.0092 (11)0.0091 (11)0.0099 (10)0.0010 (9)0.0007 (8)0.0006 (8)
C3A0.0108 (11)0.0156 (12)0.0111 (11)0.0036 (9)0.0010 (9)0.0012 (9)
C40.0092 (11)0.0110 (11)0.0111 (10)0.0044 (9)0.0007 (8)0.0010 (8)
C4A0.0111 (11)0.0149 (12)0.0142 (11)0.0064 (9)0.0020 (9)0.0030 (9)
C50.0107 (11)0.0079 (10)0.0119 (11)0.0036 (9)0.0009 (8)0.0006 (8)
C5A0.0159 (12)0.0116 (11)0.0125 (11)0.0054 (9)0.0022 (9)0.0020 (9)
C60.0086 (11)0.0111 (11)0.0135 (11)0.0012 (9)0.0013 (8)0.0035 (9)
C6A0.0111 (11)0.0184 (12)0.0131 (11)0.0036 (9)0.0000 (9)0.0010 (9)
C70.0099 (11)0.0139 (11)0.0148 (11)0.0070 (9)0.0018 (9)0.0013 (9)
C7A0.0130 (11)0.0184 (12)0.0169 (12)0.0089 (10)0.0009 (9)0.0026 (9)
C80.0322 (15)0.0249 (15)0.0110 (12)0.0083 (12)0.0036 (10)0.0046 (10)
C8A0.0290 (15)0.0186 (13)0.0218 (14)0.0094 (11)0.0008 (11)0.0052 (10)
C90.0257 (15)0.0276 (15)0.0387 (17)0.0019 (12)0.0025 (12)0.0070 (12)
C9A0.062 (2)0.061 (2)0.0252 (15)0.0406 (18)0.0013 (14)0.0061 (14)
C100.0296 (14)0.0159 (12)0.0213 (13)0.0022 (11)0.0081 (11)0.0003 (10)
C10A0.0318 (16)0.0441 (18)0.0236 (14)0.0013 (13)0.0058 (12)0.0008 (13)
Geometric parameters (Å, º) top
Cl1—C61.736 (2)N4A—C8A1.327 (3)
Cl1A—C6A1.734 (2)N4A—C10A1.448 (4)
S1—O21.4321 (17)N4A—C9A1.455 (4)
S1—O11.4328 (18)C1—H1A0.9900
S1—N11.633 (2)C1—H1B0.9900
S1—C31.762 (2)C1A—H1A10.9900
S1A—O1A1.4305 (18)C1A—H1A20.9900
S1A—O2A1.4354 (17)C2—C71.406 (3)
S1A—N1A1.626 (2)C2—C31.414 (3)
S1A—C3A1.756 (2)C2A—C7A1.409 (3)
S2—O41.4330 (16)C2A—C3A1.419 (3)
S2—O31.4355 (16)C3—C41.389 (3)
S2—N31.617 (2)C3A—C4A1.384 (3)
S2—C51.772 (2)C4—C51.384 (3)
S2A—O3A1.4337 (18)C4—H40.9500
S2A—O4A1.4339 (18)C4A—C5A1.381 (3)
S2A—N3A1.617 (2)C4A—H4A0.9500
S2A—C5A1.770 (2)C5—C61.407 (3)
O5—C81.244 (3)C5A—C6A1.410 (3)
O5A—C8A1.236 (3)C6—C71.373 (3)
N1—C11.466 (3)C6A—C7A1.368 (3)
N1—H1N0.80 (3)C7—H70.9500
N1A—C1A1.461 (3)C7A—H7A0.9500
N1A—H5N0.78 (3)C8—H80.93 (3)
N2—C21.353 (3)C8A—H8A0.96 (3)
N2—C11.448 (3)C9—H9A0.9800
N2—H2N0.74 (3)C9—H9B0.9800
N2A—C2A1.354 (3)C9—H9C0.9800
N2A—C1A1.453 (3)C9A—H9D0.9800
N2A—H6N0.77 (3)C9A—H9E0.9800
N3—H3N0.90 (3)C9A—H9F0.9800
N3—H4N0.85 (3)C10—H10A0.9800
N3A—H7N0.95 (4)C10—H10B0.9800
N3A—H8N0.85 (3)C10—H10C0.9800
N4—C81.320 (3)C10A—H10D0.9800
N4—C91.454 (3)C10A—H10E0.9800
N4—C101.465 (3)C10A—H10F0.9800
O2—S1—O1118.00 (11)N2A—C2A—C7A120.5 (2)
O2—S1—N1108.58 (10)N2A—C2A—C3A122.4 (2)
O1—S1—N1108.28 (11)C7A—C2A—C3A117.1 (2)
O2—S1—C3110.17 (10)C4—C3—C2121.31 (19)
O1—S1—C3108.51 (10)C4—C3—S1118.17 (16)
N1—S1—C3102.12 (10)C2—C3—S1120.11 (16)
O1A—S1A—O2A118.65 (11)C4A—C3A—C2A121.3 (2)
O1A—S1A—N1A108.46 (11)C4A—C3A—S1A120.39 (17)
O2A—S1A—N1A107.67 (11)C2A—C3A—S1A118.29 (17)
O1A—S1A—C3A109.92 (10)C5—C4—C3120.7 (2)
O2A—S1A—C3A108.80 (10)C5—C4—H4119.6
N1A—S1A—C3A102.04 (11)C3—C4—H4119.6
O4—S2—O3118.49 (9)C5A—C4A—C3A121.1 (2)
O4—S2—N3107.21 (11)C5A—C4A—H4A119.5
O3—S2—N3107.14 (11)C3A—C4A—H4A119.5
O4—S2—C5109.69 (10)C4—C5—C6118.10 (19)
O3—S2—C5106.03 (9)C4—C5—S2118.06 (16)
N3—S2—C5107.87 (10)C6—C5—S2123.78 (16)
O3A—S2A—O4A118.50 (11)C4A—C5A—C6A117.9 (2)
O3A—S2A—N3A107.69 (11)C4A—C5A—S2A118.19 (17)
O4A—S2A—N3A107.36 (12)C6A—C5A—S2A123.85 (17)
O3A—S2A—C5A104.96 (10)C7—C6—C5121.7 (2)
O4A—S2A—C5A109.65 (10)C7—C6—Cl1116.86 (17)
N3A—S2A—C5A108.34 (11)C5—C6—Cl1121.38 (17)
C1—N1—S1112.79 (16)C7A—C6A—C5A121.9 (2)
C1—N1—H1N111 (2)C7A—C6A—Cl1A117.40 (17)
S1—N1—H1N116 (2)C5A—C6A—Cl1A120.73 (18)
C1A—N1A—S1A111.16 (16)C6—C7—C2120.7 (2)
C1A—N1A—H5N112 (2)C6—C7—H7119.7
S1A—N1A—H5N111 (2)C2—C7—H7119.7
C2—N2—C1121.7 (2)C6A—C7A—C2A120.8 (2)
C2—N2—H2N119 (2)C6A—C7A—H7A119.6
C1—N2—H2N120 (2)C2A—C7A—H7A119.6
C2A—N2A—C1A123.0 (2)O5—C8—N4125.3 (3)
C2A—N2A—H6N118 (2)O5—C8—H8119.4 (17)
C1A—N2A—H6N118 (2)N4—C8—H8115.2 (17)
S2—N3—H3N111 (2)O5A—C8A—N4A125.3 (3)
S2—N3—H4N114 (2)O5A—C8A—H8A123.6 (18)
H3N—N3—H4N113 (3)N4A—C8A—H8A111.0 (18)
S2A—N3A—H7N111 (2)N4—C9—H9A109.5
S2A—N3A—H8N113.8 (19)N4—C9—H9B109.5
H7N—N3A—H8N117 (3)H9A—C9—H9B109.5
C8—N4—C9121.6 (2)N4—C9—H9C109.5
C8—N4—C10121.9 (2)H9A—C9—H9C109.5
C9—N4—C10116.5 (2)H9B—C9—H9C109.5
C8A—N4A—C10A121.4 (2)N4A—C9A—H9D109.5
C8A—N4A—C9A121.7 (2)N4A—C9A—H9E109.5
C10A—N4A—C9A116.8 (2)H9D—C9A—H9E109.5
N2—C1—N1111.50 (18)N4A—C9A—H9F109.5
N2—C1—H1A109.3H9D—C9A—H9F109.5
N1—C1—H1A109.3H9E—C9A—H9F109.5
N2—C1—H1B109.3N4—C10—H10A109.5
N1—C1—H1B109.3N4—C10—H10B109.5
H1A—C1—H1B108.0H10A—C10—H10B109.5
N2A—C1A—N1A111.24 (19)N4—C10—H10C109.5
N2A—C1A—H1A1109.4H10A—C10—H10C109.5
N1A—C1A—H1A1109.4H10B—C10—H10C109.5
N2A—C1A—H1A2109.4N4A—C10A—H10D109.5
N1A—C1A—H1A2109.4N4A—C10A—H10E109.5
H1A1—C1A—H1A2108.0H10D—C10A—H10E109.5
N2—C2—C7120.5 (2)N4A—C10A—H10F109.5
N2—C2—C3122.1 (2)H10D—C10A—H10F109.5
C7—C2—C3117.30 (19)H10E—C10A—H10F109.5
O2—S1—N1—C169.22 (18)S1A—C3A—C4A—C5A179.31 (17)
O1—S1—N1—C1161.54 (15)C3—C4—C5—C61.3 (3)
C3—S1—N1—C147.16 (18)C3—C4—C5—S2178.50 (16)
O1A—S1A—N1A—C1A170.70 (16)O4—S2—C5—C4124.24 (17)
O2A—S1A—N1A—C1A59.74 (18)O3—S2—C5—C44.8 (2)
C3A—S1A—N1A—C1A54.69 (18)N3—S2—C5—C4119.31 (19)
C2—N2—C1—N142.9 (3)O4—S2—C5—C658.7 (2)
S1—N1—C1—N265.1 (2)O3—S2—C5—C6172.23 (18)
C2A—N2A—C1A—N1A37.9 (3)N3—S2—C5—C657.7 (2)
S1A—N1A—C1A—N2A65.0 (2)C3A—C4A—C5A—C6A1.1 (3)
C1—N2—C2—C7176.4 (2)C3A—C4A—C5A—S2A179.77 (16)
C1—N2—C2—C35.9 (3)O3A—S2A—C5A—C4A5.9 (2)
C1A—N2A—C2A—C7A176.3 (2)O4A—S2A—C5A—C4A122.37 (18)
C1A—N2A—C2A—C3A4.5 (3)N3A—S2A—C5A—C4A120.75 (19)
N2—C2—C3—C4179.7 (2)O3A—S2A—C5A—C6A175.47 (19)
C7—C2—C3—C42.5 (3)O4A—S2A—C5A—C6A56.2 (2)
N2—C2—C3—S17.7 (3)N3A—S2A—C5A—C6A60.7 (2)
C7—C2—C3—S1170.05 (16)C4—C5—C6—C73.8 (3)
O2—S1—C3—C484.64 (19)S2—C5—C6—C7179.20 (17)
O1—S1—C3—C445.9 (2)C4—C5—C6—Cl1174.61 (16)
N1—S1—C3—C4160.14 (17)S2—C5—C6—Cl12.4 (3)
O2—S1—C3—C2102.56 (18)C4A—C5A—C6A—C7A0.1 (3)
O1—S1—C3—C2126.87 (18)S2A—C5A—C6A—C7A178.50 (18)
N1—S1—C3—C212.7 (2)C4A—C5A—C6A—Cl1A178.92 (17)
N2A—C2A—C3A—C4A178.6 (2)S2A—C5A—C6A—Cl1A2.5 (3)
C7A—C2A—C3A—C4A0.7 (3)C5—C6—C7—C23.1 (3)
N2A—C2A—C3A—S1A0.8 (3)Cl1—C6—C7—C2175.37 (17)
C7A—C2A—C3A—S1A178.55 (16)N2—C2—C7—C6177.9 (2)
O1A—S1A—C3A—C4A39.7 (2)C3—C2—C7—C60.1 (3)
O2A—S1A—C3A—C4A91.75 (19)C5A—C6A—C7A—C2A0.9 (3)
N1A—S1A—C3A—C4A154.64 (18)Cl1A—C6A—C7A—C2A178.17 (17)
O1A—S1A—C3A—C2A138.16 (17)N2A—C2A—C7A—C6A179.8 (2)
O2A—S1A—C3A—C2A90.39 (19)C3A—C2A—C7A—C6A0.5 (3)
N1A—S1A—C3A—C2A23.2 (2)C9—N4—C8—O53.1 (4)
C2—C3—C4—C51.8 (3)C10—N4—C8—O5179.1 (2)
S1—C3—C4—C5170.89 (17)C10A—N4A—C8A—O5A0.4 (4)
C2A—C3A—C4A—C5A1.5 (3)C9A—N4A—C8A—O5A176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Ai0.80 (3)2.60 (3)3.290 (3)146 (3)
N2—H2N···O4i0.74 (3)2.47 (3)3.023 (3)134 (3)
N3—H3N···O50.90 (3)2.07 (3)2.954 (3)165 (3)
N3—H4N···O2Aii0.85 (4)2.35 (4)3.092 (3)146 (3)
N1A—H5N···O5Aiii0.78 (4)2.12 (4)2.882 (3)167 (3)
N2A—H6N···N3Ai0.77 (4)2.48 (4)3.177 (3)150 (3)
N3A—H7N···O5iv0.95 (4)1.89 (4)2.820 (3)164 (3)
N3A—H8N···O5Aiv0.86 (3)2.12 (3)2.942 (3)163 (2)
C1A—H1A1···O3Ai0.992.423.157 (3)131
C1—H1A···O3i0.992.563.235 (3)125
C1A—H1A2···O30.992.513.467 (3)162
C7—H7···O2ii0.952.563.466 (3)159
C7A—H7A···O1Aii0.952.453.163 (3)132
C9—H9B···O1ii0.982.543.442 (3)152
C10—H10C···O1ii0.982.513.323 (3)141
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: https://www.cposs.org.uk). Thanks are also due to the CCLRC for provision of a beamtime grant at Daresbury SRS.

References

First citationBruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (2000). J. Synchrotron Rad. 7, 40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798–o2800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds