organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A hydrogen-bonded C(6) chain in glyoxal 3-nitro­phenyl­hydrazone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and cSchool of Chemistry, University of St Andrews, Fife, KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 31 March 2006; accepted 31 March 2006; online 11 April 2006)

The mol­ecules of the title compound, C8H7N3O3, which are nearly planar, are linked into simple C(6) chains by an N—H⋯O hydrogen bond.

Comment

The title compound, (I)[link], was prepared as part of our contin­uing study of the supra­molecular arrangements of N-(nitro­pheny)imide and hydrazone derivatives. We have recently reported the supra­molecular structure of the isomeric compound glyoxal 4-nitro­phenyl­hydrazone, (II), in which triple helices enclose two types of channel lying respectively along [\overline{4}], and 41 or 43 axes in space group I41/a (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493-o495.]): the supra­molecular structure of (I)[link], by contrast, is very simple.

[Scheme 1]

The mol­ecules of compound (I)[link] (Fig. 1[link]) are almost planar, as shown by the leading torsion angles (Table 1[link]); the side chain between atoms N1 and O1 adopts a planar all-trans conformation, and the nitro group is nearly coplanar with the aryl ring. There is strong bond fixation in the side chain with very short N2—C11 and C12—O1 bonds, with no evidence for bond polarization in this fragment.

A single hydrogen bond (Table 2[link]) links the mol­ecules into chains; atom N1 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom O1 in the mol­ecule at (−[{1\over 2}] + x, [{1\over 2}]y, [{1\over 2}] + z), forming a C(6) chain running parallel to the [10[\overline{1}]] direction and generated by the n-glide plane at y = 0.25 (Fig. 2[link]). Two such chains pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
A mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a C(6) hydrogen-bonded chain along [10[\overline{1}]]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[{1\over 2}] + x, [{1\over 2}]y, [{1\over 2}] + z) and ([{1\over 2}] + x, [{1\over 2}]y, −[{1\over 2}] + z), respectively.

Experimental

Compound (I)[link] was prepared by heating under reflux for 1 h a solution of glyoxal (1 mmol as a 40% aqueous solution) and 3-nitro­phenyl­hydrazine (1 mmol) in methanol (40 ml). The mixture was cooled to ambient temperature and the solvent was removed under reduced pressure. The residue was crystallized from ethanol to yield crystals suitable for single-crystal X-ray diffraction.

Crystal data
  • C8H7N3O3

  • Mr = 193.17

  • Monoclinic, C c

  • a = 7.4737 (4) Å

  • b = 19.7711 (13) Å

  • c = 6.0262 (4) Å

  • β = 107.080 (4)°

  • V = 851.18 (9) Å3

  • Z = 4

  • Dx = 1.507 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.16 × 0.08 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.998

  • 7928 measured reflections

  • 987 independent reflections

  • 871 reflections with I > 2σ(I)

  • Rint = 0.063

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.08

  • 987 reflections

  • 127 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1446P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.395 (3)
N1—N2 1.331 (3)
N2—C11 1.294 (3)
C11—C12 1.445 (4)
C12—O1 1.224 (3)
C2—C1—N1—N2 −3.6 (4)
C1—N1—N2—C11 −175.8 (2)
N1—N2—C11—C12 −179.1 (2)
N2—C11—C12—O1 −177.1 (3)
C2—C3—N3—O31 6.7 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.15 2.940 (3) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). In the absence of significant anomalous dispersion the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter was indeterminate and it was not possible to determine the correct orientation of the structure with respect to the polar axis directions. Accordingly, the Friedel-equivalent reflections were merged prior to the final refinement.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Glyoxal 3-nitrophenylhydrazone top
Crystal data top
C8H7N3O3F(000) = 400
Mr = 193.17Dx = 1.507 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 987 reflections
a = 7.4737 (4) Åθ = 3.0–27.6°
b = 19.7711 (13) ŵ = 0.12 mm1
c = 6.0262 (4) ÅT = 120 K
β = 107.080 (4)°Lath, yellow
V = 851.18 (9) Å30.16 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
987 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2525
Tmin = 0.961, Tmax = 0.998l = 77
7928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1446P]
where P = (Fo2 + 2Fc2)/3
987 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.26 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2050 (3)0.15679 (11)0.1679 (3)0.0221 (5)
N20.3161 (3)0.19066 (11)0.0702 (4)0.0221 (5)
C110.2384 (4)0.22429 (13)0.1177 (5)0.0237 (6)
C120.3675 (4)0.25897 (14)0.2160 (5)0.0249 (6)
O10.3218 (3)0.29536 (11)0.3877 (3)0.0327 (5)
C10.2813 (4)0.12344 (13)0.3786 (4)0.0219 (5)
C20.4747 (4)0.12149 (13)0.4849 (4)0.0228 (6)
C30.5377 (4)0.08816 (14)0.6942 (4)0.0240 (6)
N30.7413 (4)0.08596 (12)0.8066 (4)0.0295 (6)
O310.8425 (3)0.11907 (12)0.7197 (3)0.0346 (5)
O320.8008 (3)0.05119 (12)0.9815 (4)0.0415 (6)
C40.4212 (4)0.05643 (14)0.8030 (5)0.0270 (6)
C50.2295 (4)0.05803 (13)0.6913 (5)0.0276 (6)
C60.1600 (4)0.09135 (13)0.4822 (5)0.0232 (5)
H10.08300.16070.10440.027*
H110.10660.22600.18590.028*
H120.49750.25310.14180.030*
H20.55940.14240.41540.027*
H40.47020.03440.94840.032*
H50.14580.03600.75960.033*
H60.02890.09240.40850.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (10)0.0265 (11)0.0201 (11)0.0011 (9)0.0042 (9)0.0022 (9)
N20.0209 (11)0.0241 (11)0.0216 (11)0.0011 (9)0.0067 (9)0.0015 (8)
C110.0233 (12)0.0261 (13)0.0194 (12)0.0017 (10)0.0029 (10)0.0004 (11)
C120.0193 (12)0.0315 (14)0.0220 (14)0.0021 (11)0.0030 (10)0.0021 (12)
O10.0271 (10)0.0389 (11)0.0288 (11)0.0020 (9)0.0031 (8)0.0096 (9)
C10.0236 (13)0.0211 (13)0.0208 (12)0.0004 (9)0.0064 (11)0.0017 (10)
C20.0236 (14)0.0227 (13)0.0225 (13)0.0007 (10)0.0073 (11)0.0024 (11)
C30.0215 (15)0.0277 (14)0.0203 (13)0.0023 (10)0.0022 (11)0.0019 (10)
N30.0276 (13)0.0323 (13)0.0257 (12)0.0039 (10)0.0035 (10)0.0043 (10)
O310.0230 (10)0.0507 (14)0.0297 (11)0.0021 (9)0.0072 (9)0.0021 (10)
O320.0348 (13)0.0468 (14)0.0330 (11)0.0074 (10)0.0055 (10)0.0090 (10)
C40.0368 (16)0.0230 (14)0.0223 (13)0.0083 (11)0.0103 (12)0.0045 (11)
C50.0339 (16)0.0228 (13)0.0298 (15)0.0014 (11)0.0150 (13)0.0016 (11)
C60.0220 (13)0.0231 (13)0.0249 (13)0.0016 (10)0.0076 (10)0.0021 (11)
Geometric parameters (Å, º) top
C1—N11.395 (3)C2—H20.95
N1—N21.331 (3)C3—C41.384 (4)
N1—H10.88C3—N31.473 (3)
N2—C111.294 (3)N3—O321.227 (3)
C11—C121.445 (4)N3—O311.228 (3)
C11—H110.95C4—C51.393 (4)
C12—O11.224 (3)C4—H40.95
C12—H120.95C5—C61.381 (4)
C1—C61.395 (4)C5—H50.95
C1—C21.399 (4)C6—H60.95
C2—C31.378 (4)
N2—N1—C1119.9 (2)C2—C3—C4123.8 (2)
N2—N1—H1117.6C2—C3—N3117.6 (2)
C1—N1—H1122.0C4—C3—N3118.5 (2)
C11—N2—N1117.9 (2)O32—N3—O31123.5 (3)
N2—C11—C12114.9 (2)O32—N3—C3118.4 (2)
N2—C11—H11122.6O31—N3—C3118.1 (2)
C12—C11—H11122.6C3—C4—C5117.5 (2)
O1—C12—C11124.8 (2)C3—C4—H4121.3
O1—C12—H12117.6C5—C4—H4121.3
C11—C12—H12117.6C6—C5—C4120.7 (3)
C6—C1—N1118.4 (2)C6—C5—H5119.7
C6—C1—C2120.2 (2)C4—C5—H5119.7
N1—C1—C2121.4 (2)C5—C6—C1120.3 (2)
C3—C2—C1117.5 (2)C5—C6—H6119.8
C3—C2—H2121.3C1—C6—H6119.8
C1—C2—H2121.3
C2—C1—N1—N23.6 (4)C4—C3—N3—O326.3 (4)
C1—N1—N2—C11175.8 (2)C2—C3—N3—O316.7 (4)
N1—N2—C11—C12179.1 (2)C4—C3—N3—O31173.8 (2)
N2—C11—C12—O1177.1 (3)C2—C3—C4—C50.7 (4)
N2—N1—C1—C6176.8 (2)N3—C3—C4—C5178.8 (2)
C6—C1—C2—C31.2 (3)C3—C4—C5—C61.3 (4)
N1—C1—C2—C3179.2 (2)C4—C5—C6—C10.6 (4)
C1—C2—C3—C40.5 (4)N1—C1—C6—C5179.7 (2)
C1—C2—C3—N3180.0 (2)C2—C1—C6—C50.7 (4)
C2—C3—N3—O32173.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.152.940 (3)149
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493–o495.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds