organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro­phenyl­acetic acid: hydrogen-bonded sheets of R22(8) and R44(18) rings

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 11 April 2006; accepted 11 April 2006; online 21 April 2006)

Mol­ecules of the title compound, C8H7NO4, are linked into centrosymmetric R22(8) dimers by paired O—H⋯O hydrogen bonds, and these dimers are linked by two C—H⋯O hydrogen bonds into sheets of R22(8) and R44(18) rings.

Comment

As part of our investigations of compounds containing nitro and carboxylic acid groups (Glidewell et al., 2003a[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003a). Acta Cryst. C59, o124-o126.],b[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003b). Acta Cryst. C59, o144-o146.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120-o124.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5-o7.]; Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849-o3851.]), we now report the mol­ecular and supra­molecular structure of 2-nitro­phenyl­acetic acid, (I)[link] (Fig. 1[link]).

[Scheme 1]

The plane of atoms C1/C11/C12 is almost orthogonal to the plane of the aryl ring (Fig. 1[link], Table 1[link]), while the C—NO2 plane makes a dihedral angle of 30.1 (2)° with the ring.

The mol­ecules of (I)[link] are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]). Paired O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers (Fig. 2[link]). Two C—H⋯O hydrogen bonds link the dimers, so forming a (100) sheet built from R22(8) and R44(18) rings. The resulting net is of type (4,4) (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). There are no direction-specific inter­actions between adjacent sheets. In particular, C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are both absent.

The structure of the isomeric 4-nitro­phenyl­acetic acid, (II)[link], was reported some years ago [Cambridge Structural Database (Version of November 2005; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode SEMTAF; Grabowski et al., 1990[Grabowski, S. J., Krygowski, T. M., Häfelinger, G. & Ritter, G. (1990). Acta Cryst. C46, 428-430.]]. The authors reported the formation of a centrosymmetric hydrogen-bonded dimer, but further aggregation of the dimers was not reported. In the event, the dimers are linked into sheets by a single aromatic ππ stacking inter­action (Fig. 4[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I)[link], showing the formation of a (100) sheet of R22(8) and R44(18) rings. For the sake of clarity, H atoms bonded to aromatic C atoms have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (II)[link], showing the formation of a sheet of π-stacked hydrogen-bonded dimers. The original atomic coordinates (Grabowski et al., 1990[Grabowski, S. J., Krygowski, T. M., Häfelinger, G. & Ritter, G. (1990). Acta Cryst. C46, 428-430.]) have been used. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

A commercial sample of (I)[link] (Acros) was crystallized from ethanol (m.p. 412–413 K).

Crystal data
  • C8H7NO4

  • Mr = 181.15

  • Monoclinic, P 21 /c

  • a = 9.3182 (3) Å

  • b = 9.4466 (2) Å

  • c = 9.9733 (3) Å

  • β = 114.7990 (17)°

  • V = 796.95 (4) Å3

  • Z = 4

  • Dx = 1.510 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.52 × 0.26 × 0.10 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.988

  • 8852 measured reflections

  • 1829 independent reflections

  • 1682 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.16

  • 1829 reflections

  • 120 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0444P)2 + 0.341P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.103 (10)

Table 1
Selected torsion angles (°)

C2—C1—C11—C12 83.34 (16)
C1—C11—C12—O12 −159.51 (11)
C1—C2—N2—O21 −29.64 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11i 0.84 1.83 2.6622 (14) 173
C11—H11A⋯O21ii 0.99 2.35 3.1758 (16) 140
C11—H11B⋯O22iii 0.99 2.54 3.4398 (19) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

All H atoms were located in a difference map and then treated as riding, with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

2-Nitrophenylacetic acid top
Crystal data top
C8H7NO4F(000) = 376
Mr = 181.15Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1848 reflections
a = 9.3182 (3) Åθ = 2.9–27.5°
b = 9.4466 (2) ŵ = 0.12 mm1
c = 9.9733 (3) ÅT = 120 K
β = 114.7990 (17)°Lath, colourless
V = 796.95 (4) Å30.52 × 0.26 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1829 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.2°
φ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1112
Tmin = 0.949, Tmax = 0.988l = 1112
8852 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.341P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
1829 reflectionsΔρmax = 0.34 e Å3
120 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.103 (10)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23687 (14)0.30836 (13)0.07521 (14)0.0171 (3)
C110.40523 (15)0.29551 (14)0.18979 (14)0.0196 (3)
C120.44276 (14)0.38895 (14)0.32300 (14)0.0191 (3)
O110.34184 (11)0.43438 (11)0.35993 (11)0.0260 (3)
O120.59458 (11)0.41254 (11)0.39762 (11)0.0254 (3)
C20.18252 (14)0.41302 (13)0.03303 (14)0.0161 (3)
N20.28971 (12)0.52395 (11)0.03878 (12)0.0181 (3)
O210.39974 (11)0.56059 (10)0.07718 (11)0.0238 (3)
O220.26447 (12)0.57548 (11)0.15940 (11)0.0287 (3)
C30.02718 (15)0.42023 (14)0.13979 (14)0.0191 (3)
C40.07970 (15)0.31978 (15)0.13815 (15)0.0233 (3)
C50.03015 (16)0.21349 (15)0.03267 (16)0.0252 (3)
C60.12610 (16)0.20739 (14)0.07154 (15)0.0221 (3)
H11A0.42570.19580.22280.024*
H11B0.47750.31990.14350.024*
H120.61000.45580.47610.038*
H30.00460.49290.21230.023*
H40.18660.32350.20900.028*
H50.10350.14420.03150.030*
H60.15810.13270.14180.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (6)0.0173 (6)0.0159 (6)0.0001 (4)0.0071 (5)0.0028 (5)
C110.0185 (6)0.0190 (6)0.0184 (6)0.0023 (4)0.0048 (5)0.0015 (5)
C120.0175 (6)0.0211 (6)0.0163 (6)0.0006 (5)0.0047 (5)0.0043 (5)
O110.0179 (5)0.0390 (6)0.0195 (5)0.0005 (4)0.0064 (4)0.0050 (4)
O120.0159 (5)0.0363 (6)0.0202 (5)0.0015 (4)0.0038 (4)0.0065 (4)
C20.0156 (6)0.0167 (6)0.0168 (6)0.0007 (4)0.0076 (5)0.0030 (5)
N20.0160 (5)0.0173 (5)0.0202 (5)0.0021 (4)0.0069 (4)0.0010 (4)
O210.0209 (5)0.0234 (5)0.0228 (5)0.0064 (4)0.0049 (4)0.0045 (4)
O220.0255 (5)0.0333 (6)0.0250 (5)0.0000 (4)0.0082 (4)0.0130 (4)
C30.0177 (6)0.0211 (6)0.0166 (6)0.0024 (4)0.0054 (5)0.0031 (5)
C40.0153 (6)0.0282 (7)0.0234 (7)0.0015 (5)0.0052 (5)0.0098 (5)
C50.0225 (7)0.0258 (7)0.0295 (7)0.0083 (5)0.0132 (6)0.0075 (6)
C60.0252 (7)0.0204 (6)0.0219 (7)0.0031 (5)0.0109 (5)0.0002 (5)
Geometric parameters (Å, º) top
C1—C21.3931 (18)C2—N21.4653 (16)
C1—C61.3947 (18)N2—O221.2256 (15)
C1—C111.5092 (17)N2—O211.2303 (14)
C11—C121.5089 (18)C3—C41.3807 (19)
C11—H11A0.99C3—H30.95
C11—H11B0.99C4—C51.386 (2)
C12—O111.2226 (17)C4—H40.95
C12—O121.3121 (15)C5—C61.3907 (19)
O12—H120.84C5—H50.95
C2—C31.3930 (17)C6—H60.95
C2—C1—C6116.14 (11)O22—N2—O21123.51 (11)
C2—C1—C11124.64 (11)O22—N2—C2117.97 (10)
C6—C1—C11119.19 (11)O21—N2—C2118.51 (10)
C12—C11—C1113.77 (10)C4—C3—C2118.74 (12)
C12—C11—H11A108.8C4—C3—H3120.6
C1—C11—H11A108.8C2—C3—H3120.6
C12—C11—H11B108.8C3—C4—C5119.64 (12)
C1—C11—H11B108.8C3—C4—H4120.2
H11A—C11—H11B107.7C5—C4—H4120.2
O11—C12—O12123.51 (12)C4—C5—C6120.56 (12)
O11—C12—C11123.17 (11)C4—C5—H5119.7
O12—C12—C11113.29 (11)C6—C5—H5119.7
C12—O12—H12109.5C5—C6—C1121.51 (13)
C3—C2—C1123.40 (12)C5—C6—H6119.2
C3—C2—N2116.23 (11)C1—C6—H6119.2
C1—C2—N2120.37 (10)
C2—C1—C11—C1283.34 (16)C3—C2—N2—O21150.02 (12)
C6—C1—C11—C1298.81 (14)C1—C2—N2—O2129.64 (17)
C1—C11—C12—O1122.60 (18)C1—C2—C3—C40.71 (19)
C1—C11—C12—O12159.51 (11)N2—C2—C3—C4178.94 (11)
C6—C1—C2—C30.43 (19)C2—C3—C4—C50.97 (19)
C11—C1—C2—C3178.34 (12)C3—C4—C5—C60.1 (2)
C6—C1—C2—N2179.94 (11)C4—C5—C6—C11.1 (2)
C11—C1—C2—N22.03 (19)C2—C1—C6—C51.32 (19)
C3—C2—N2—O2229.86 (16)C11—C1—C6—C5179.35 (12)
C1—C2—N2—O22150.48 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.841.832.6622 (14)173
C11—H11A···O21ii0.992.353.1758 (16)140
C11—H11B···O22iii0.992.543.4398 (19)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003a). Acta Cryst. C59, o124–o126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003b). Acta Cryst. C59, o144–o146.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5–o7.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrabowski, S. J., Krygowski, T. M., Häfelinger, G. & Ritter, G. (1990). Acta Cryst. C46, 428–430.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849–o3851.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds