organic compounds
2-Nitrophenylacetic acid: hydrogen-bonded sheets of R22(8) and R44(18) rings
aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
Molecules of the title compound, C8H7NO4, are linked into centrosymmetric R22(8) dimers by paired O—H⋯O hydrogen bonds, and these dimers are linked by two C—H⋯O hydrogen bonds into sheets of R22(8) and R44(18) rings.
Comment
As part of our investigations of compounds containing nitro and carboxylic acid groups (Glidewell et al., 2003a,b, 2004, 2006; Wardell et al., 2005), we now report the molecular and supramolecular structure of 2-nitrophenylacetic acid, (I) (Fig. 1).
The plane of atoms C1/C11/C12 is almost orthogonal to the plane of the aryl ring (Fig. 1, Table 1), while the C—NO2 plane makes a dihedral angle of 30.1 (2)° with the ring.
The molecules of (I) are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Table 2). Paired O—H⋯O hydrogen bonds link the molecules into centrosymmetric R22(8) (Bernstein et al., 1995) dimers (Fig. 2). Two C—H⋯O hydrogen bonds link the dimers, so forming a (100) sheet built from R22(8) and R44(18) rings. The resulting net is of type (4,4) (Batten & Robson, 1998). There are no direction-specific interactions between adjacent sheets. In particular, C—H⋯π(arene) hydrogen bonds and aromatic π–π stacking interactions are both absent.
The structure of the isomeric 4-nitrophenylacetic acid, (II), was reported some years ago [Cambridge Structural Database (Version of November 2005; Allen, 2002) refcode SEMTAF; Grabowski et al., 1990]. The authors reported the formation of a centrosymmetric hydrogen-bonded dimer, but further aggregation of the dimers was not reported. In the event, the dimers are linked into sheets by a single aromatic π–π stacking interaction (Fig. 4).
Experimental
A commercial sample of (I) (Acros) was crystallized from ethanol (m.p. 412–413 K).
Crystal data
|
Refinement
|
|
All H atoms were located in a difference map and then treated as riding, with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).
Data collection: COLLECT (Nonius, 1999); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
https://doi.org/10.1107/S1600536806013274/lh2048sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806013274/lh2048Isup2.hkl
Data collection: COLLECT (Nonius, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C8H7NO4 | F(000) = 376 |
Mr = 181.15 | Dx = 1.510 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1848 reflections |
a = 9.3182 (3) Å | θ = 2.9–27.5° |
b = 9.4466 (2) Å | µ = 0.12 mm−1 |
c = 9.9733 (3) Å | T = 120 K |
β = 114.7990 (17)° | Lath, colourless |
V = 796.95 (4) Å3 | 0.52 × 0.26 × 0.10 mm |
Z = 4 |
Bruker Nonius KappaCCD area-detector diffractometer | 1829 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1682 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.7°, θmin = 3.2° |
φ and ω scans | h = −12→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→12 |
Tmin = 0.949, Tmax = 0.988 | l = −11→12 |
8852 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.341P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1829 reflections | Δρmax = 0.34 e Å−3 |
120 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.103 (10) |
x | y | z | Uiso*/Ueq | ||
C1 | 0.23687 (14) | 0.30836 (13) | 0.07521 (14) | 0.0171 (3) | |
C11 | 0.40523 (15) | 0.29551 (14) | 0.18979 (14) | 0.0196 (3) | |
C12 | 0.44276 (14) | 0.38895 (14) | 0.32300 (14) | 0.0191 (3) | |
O11 | 0.34184 (11) | 0.43438 (11) | 0.35993 (11) | 0.0260 (3) | |
O12 | 0.59458 (11) | 0.41254 (11) | 0.39762 (11) | 0.0254 (3) | |
C2 | 0.18252 (14) | 0.41302 (13) | −0.03303 (14) | 0.0161 (3) | |
N2 | 0.28971 (12) | 0.52395 (11) | −0.03878 (12) | 0.0181 (3) | |
O21 | 0.39974 (11) | 0.56059 (10) | 0.07718 (11) | 0.0238 (3) | |
O22 | 0.26447 (12) | 0.57548 (11) | −0.15940 (11) | 0.0287 (3) | |
C3 | 0.02718 (15) | 0.42023 (14) | −0.13979 (14) | 0.0191 (3) | |
C4 | −0.07970 (15) | 0.31978 (15) | −0.13815 (15) | 0.0233 (3) | |
C5 | −0.03015 (16) | 0.21349 (15) | −0.03267 (16) | 0.0252 (3) | |
C6 | 0.12610 (16) | 0.20739 (14) | 0.07154 (15) | 0.0221 (3) | |
H11A | 0.4257 | 0.1958 | 0.2228 | 0.024* | |
H11B | 0.4775 | 0.3199 | 0.1435 | 0.024* | |
H12 | 0.6100 | 0.4558 | 0.4761 | 0.038* | |
H3 | −0.0046 | 0.4929 | −0.2123 | 0.023* | |
H4 | −0.1866 | 0.3235 | −0.2090 | 0.028* | |
H5 | −0.1035 | 0.1442 | −0.0315 | 0.030* | |
H6 | 0.1581 | 0.1327 | 0.1418 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0180 (6) | 0.0173 (6) | 0.0159 (6) | 0.0001 (4) | 0.0071 (5) | −0.0028 (5) |
C11 | 0.0185 (6) | 0.0190 (6) | 0.0184 (6) | 0.0023 (4) | 0.0048 (5) | 0.0015 (5) |
C12 | 0.0175 (6) | 0.0211 (6) | 0.0163 (6) | 0.0006 (5) | 0.0047 (5) | 0.0043 (5) |
O11 | 0.0179 (5) | 0.0390 (6) | 0.0195 (5) | −0.0005 (4) | 0.0064 (4) | −0.0050 (4) |
O12 | 0.0159 (5) | 0.0363 (6) | 0.0202 (5) | −0.0015 (4) | 0.0038 (4) | −0.0065 (4) |
C2 | 0.0156 (6) | 0.0167 (6) | 0.0168 (6) | −0.0007 (4) | 0.0076 (5) | −0.0030 (5) |
N2 | 0.0160 (5) | 0.0173 (5) | 0.0202 (5) | 0.0021 (4) | 0.0069 (4) | 0.0010 (4) |
O21 | 0.0209 (5) | 0.0234 (5) | 0.0228 (5) | −0.0064 (4) | 0.0049 (4) | −0.0045 (4) |
O22 | 0.0255 (5) | 0.0333 (6) | 0.0250 (5) | 0.0000 (4) | 0.0082 (4) | 0.0130 (4) |
C3 | 0.0177 (6) | 0.0211 (6) | 0.0166 (6) | 0.0024 (4) | 0.0054 (5) | −0.0031 (5) |
C4 | 0.0153 (6) | 0.0282 (7) | 0.0234 (7) | −0.0015 (5) | 0.0052 (5) | −0.0098 (5) |
C5 | 0.0225 (7) | 0.0258 (7) | 0.0295 (7) | −0.0083 (5) | 0.0132 (6) | −0.0075 (6) |
C6 | 0.0252 (7) | 0.0204 (6) | 0.0219 (7) | −0.0031 (5) | 0.0109 (5) | −0.0002 (5) |
C1—C2 | 1.3931 (18) | C2—N2 | 1.4653 (16) |
C1—C6 | 1.3947 (18) | N2—O22 | 1.2256 (15) |
C1—C11 | 1.5092 (17) | N2—O21 | 1.2303 (14) |
C11—C12 | 1.5089 (18) | C3—C4 | 1.3807 (19) |
C11—H11A | 0.99 | C3—H3 | 0.95 |
C11—H11B | 0.99 | C4—C5 | 1.386 (2) |
C12—O11 | 1.2226 (17) | C4—H4 | 0.95 |
C12—O12 | 1.3121 (15) | C5—C6 | 1.3907 (19) |
O12—H12 | 0.84 | C5—H5 | 0.95 |
C2—C3 | 1.3930 (17) | C6—H6 | 0.95 |
C2—C1—C6 | 116.14 (11) | O22—N2—O21 | 123.51 (11) |
C2—C1—C11 | 124.64 (11) | O22—N2—C2 | 117.97 (10) |
C6—C1—C11 | 119.19 (11) | O21—N2—C2 | 118.51 (10) |
C12—C11—C1 | 113.77 (10) | C4—C3—C2 | 118.74 (12) |
C12—C11—H11A | 108.8 | C4—C3—H3 | 120.6 |
C1—C11—H11A | 108.8 | C2—C3—H3 | 120.6 |
C12—C11—H11B | 108.8 | C3—C4—C5 | 119.64 (12) |
C1—C11—H11B | 108.8 | C3—C4—H4 | 120.2 |
H11A—C11—H11B | 107.7 | C5—C4—H4 | 120.2 |
O11—C12—O12 | 123.51 (12) | C4—C5—C6 | 120.56 (12) |
O11—C12—C11 | 123.17 (11) | C4—C5—H5 | 119.7 |
O12—C12—C11 | 113.29 (11) | C6—C5—H5 | 119.7 |
C12—O12—H12 | 109.5 | C5—C6—C1 | 121.51 (13) |
C3—C2—C1 | 123.40 (12) | C5—C6—H6 | 119.2 |
C3—C2—N2 | 116.23 (11) | C1—C6—H6 | 119.2 |
C1—C2—N2 | 120.37 (10) | ||
C2—C1—C11—C12 | 83.34 (16) | C3—C2—N2—O21 | 150.02 (12) |
C6—C1—C11—C12 | −98.81 (14) | C1—C2—N2—O21 | −29.64 (17) |
C1—C11—C12—O11 | 22.60 (18) | C1—C2—C3—C4 | 0.71 (19) |
C1—C11—C12—O12 | −159.51 (11) | N2—C2—C3—C4 | −178.94 (11) |
C6—C1—C2—C3 | 0.43 (19) | C2—C3—C4—C5 | −0.97 (19) |
C11—C1—C2—C3 | 178.34 (12) | C3—C4—C5—C6 | 0.1 (2) |
C6—C1—C2—N2 | −179.94 (11) | C4—C5—C6—C1 | 1.1 (2) |
C11—C1—C2—N2 | −2.03 (19) | C2—C1—C6—C5 | −1.32 (19) |
C3—C2—N2—O22 | −29.86 (16) | C11—C1—C6—C5 | −179.35 (12) |
C1—C2—N2—O22 | 150.48 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O11i | 0.84 | 1.83 | 2.6622 (14) | 173 |
C11—H11A···O21ii | 0.99 | 2.35 | 3.1758 (16) | 140 |
C11—H11B···O22iii | 0.99 | 2.54 | 3.4398 (19) | 151 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z. |
Acknowledgements
The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003a). Acta Cryst. C59, o124–o126. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003b). Acta Cryst. C59, o144–o146. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5–o7. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Grabowski, S. J., Krygowski, T. M., Häfelinger, G. & Ritter, G. (1990). Acta Cryst. C46, 428–430. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849–o3851. Web of Science CSD CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.