metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Amido­ethyl-κ2C,O)tri­chloro­(3-chloro­propionamide-κO)stannane

aDepartment of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0698, USA, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, cInstituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and dComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá - Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: Edward.Tiekink@utsa.edu, solangewardell@yahoo.co.uk

(Received 21 March 2006; accepted 22 March 2006; online 7 April 2006)

The Sn atom in the title compound, [Sn(C3H6NO)Cl3(C3H6ClNO)], exists within a fac-CCl3O2 donor set that defines an octa­hedral geometry and features a negatively charged chelating 2-amido­ethyl ligand as well as a neutral 3-chloro­propionamide ligand that coordinates exclusively via the carbonyl-O atom. Extensive N—H⋯O and N—H⋯Cl hydrogen bonding leads to a layer structure.

Comment

Functionally substituted organotin compounds, X3SnCR2CH2COY (1) and the less well studied X2Sn(CR2CH2COY)2 (2), for X = halide, R = H or alkyl, and Y = alkyl, aryl, alk­oxy or NH2, are readily available from reactions of R2C=CHCOY, HX and SnX2 (generally for 1) or Sn (generally for 2) (Hutton & Oakes, 1976[Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-136.]; Hutton et al., 1978[Hutton, R. E., Burley, J. W. & Oakes, V. (1978). J. Organomet. Chem. 156, 369-382.]; Burley et al., 1979[Burley, J. W., Hope, O., Hutton, R. E. & Groenenboom, C. J. (1979). J. Organomet. Chem. 170, 21-37.]). Original inter­est in these compounds was primarily involved with their industrial potential as precursors of PVC stabilizers, but much attention was also paid to their coordination chemistry (Milne et al., 2005[Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363-371.], and references therein). The title compound (I)[link] was an unexpected product isolated from the reaction between Sn, H2C=CHCONH2 and HCl in diethyl ether solution.

[Scheme 1]

The structure of (I)[link] (Fig. 1[link] and Table 1[link]) features an Sn atom within a disorted octa­hedral geometry defined by three Cl atoms, arranged facially, C and O of the chelating 2-amido­ethyl ligand and carbonyl-O from 3-chloro­propionamide. The 2-amido­ethyl ligand in (I)[link] coordinates in a similar fashion to that found in the only other structure of an amido­tin compound, viz. Cl2Sn(CH2CH2CONH2)2 (Harrison et al., 1979[Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17-36.]; also see Marsh (1997[Marsh, R. E. (1997). Acta Cryst. B53, 317-322.]) for space-group revision).

The crystal structure is stabilized by hydrogen-bonding inter­actions as summarized in Table 2[link]. Adjacent mol­ecules form inversion-related dimers with an eight-membered {⋯H—N—C=O}2 ring via N1—H1a⋯O1 hydrogen bonds shown as `(a)' in Fig. 2[link]. These pairs associate with adjacent pairs via N—H⋯Cl3ii inter­actions involving the second N1—H amide H atom so as to form a double chain aligned along the a axis, `(b)' in Fig. 2[link]. N2—H1a forms an intra­molecular hydrogen bond to Cl2 and N2—H1b forms an inter­action with Cl3iii so that this Cl atom forms two hydrogen bonds. As these latter inter­actions extend in the b-axis direction, a 2-dimensional supra­molecular array is formed. Connections between layers are made primarily via C4—H4a⋯Cliv inter­actions. It is the nature of the Cl⋯H inter­actions that readily accounts for the disparity in the Sn—Cl distances that span the range 2.3730 (11) to 2.4735 (10) Å. The Sn—Cl bond distances systematically elongate in accord with the number of such inter­actions so that Sn—Cl1, with the Cl1 atom forming only a weak C—H⋯Cl contact, is significantly shorter than the Sn—Cl2 bond, with the Cl2 atom forming a single N—H⋯Cl contact, which in turn is significantly shorter than the Sn—Cl3 bond, with the Cl3 atom involved in two N—H⋯Cl contacts.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2]
Figure 2
Packing diagram for (I)[link], viewed down the b axis. Colour code: Sn (brown), Cl (pink), O (red), N (blue), C (grey) & H (green). Hydrogen bonds are shown as dashed lines.

Experimental

The title compound (I)[link] was isolated from a reaction between Sn, acrylonitrile and HCl in diethyl ether solution following a general procedure (Hutton & Oakes, 1976[Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-136.]). HCl was bubbled through a well stirred suspension of granulated Sn (0.1 mol) and H2C=CHCONH2 (0.22 mol) in Et2O (40 ml), maintained at 273–283 K until all the Sn had reacted. The reaction mixture was stirred for a further 2 h and all volatiles removed under vacuum. The thick oily liquid was extracted into CH2Cl2 and hexane (1:) added. On leaving the mixture at 268 K, a small amount of crystalline (I)[link] was initially deposited, m. p. 524–528 K (decomposition).

Crystal data
  • [Sn(C3H6NO)Cl3(C3H6ClNO)]

  • Mr = 404.67

  • Triclinic, [P \overline 1]

  • a = 7.3582 (3) Å

  • b = 9.0387 (5) Å

  • c = 10.4342 (6) Å

  • α = 92.005 (2)°

  • β = 104.529 (3)°

  • γ = 96.222 (3)°

  • V = 666.42 (6) Å3

  • Z = 2

  • Dx = 2.017 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2904 reflections

  • θ = 2.9–27.5°

  • μ = 2.70 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.14 × 0.04 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.704, Tmax = 0.948

  • 13278 measured reflections

  • 3086 independent reflections

  • 2721 reflections with I > 2σ(I)

  • Rint = 0.068

  • θmax = 27.8°

  • h = −9 → 8

  • k = −11 → 11

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.09

  • 3086 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0474P)2 + 1.4199P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max <0.001

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn—Cl1 2.3730 (11)
Sn—Cl2 2.4038 (11)
Sn—Cl3 2.4735 (10)
Sn—O1 2.239 (3)
Sn—O2 2.240 (3)
Sn—C1 2.138 (4)
Cl4—C4 1.786 (5)
O1—C3 1.263 (5)
O2—C6 1.257 (5)
N1—C3 1.313 (5)
N2—C6 1.307 (6)
Cl1—Sn—Cl2 93.44 (4)
Cl1—Sn—Cl3 90.04 (4)
Cl1—Sn—O1 84.52 (8)
Cl1—Sn—O2 83.93 (9)
Cl1—Sn—C1 162.38 (13)
Cl2—Sn—Cl3 93.97 (4)
Cl2—Sn—O1 177.51 (8)
Cl2—Sn—O2 96.20 (8)
Cl2—Sn—C1 102.37 (12)
Cl3—Sn—O1 87.47 (8)
Cl3—Sn—O2 168.47 (9)
Cl3—Sn—C1 96.48 (13)
O1—Sn—O2 82.18 (11)
O1—Sn—C1 79.47 (14)
O2—Sn—C1 86.66 (16)
Sn—O1—C3 112.5 (3)
Sn—O2—C6 135.8 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1a⋯O1i 0.88 2.06 2.924 (5) 167
N1—H1b⋯Cl3ii 0.88 2.47 3.326 (4) 166
N2—H2a⋯Cl2 0.88 2.40 3.227 (4) 156
N2—H2b⋯Cl3iii 0.88 2.40 3.250 (4) 163
C4—H4a⋯Cl1iv 0.99 2.79 3.742 (5) 163
C4—H4b⋯O2 0.99 2.59 2.923 (6) 100
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.

All H atoms were allowed to ride on their parent atoms in the riding-model approximation at distances of 0.99 (C—H) and 0.88 Å (N—H), and with Uiso(H) values of 1.2Ueq(C,N). The maximum residual electron density peak was located 1.26 Å from the Sn atom and the deepest hole was located 0.77 Å also from the Sn atom.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]).; software used to prepare mat­erial for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT (Otwinowski & Minor, 1997); data reduction: DENZO & COLLECT; program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND(Crystal Impact, 2006).; software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
[Sn(C3H6ClNO)(C3H6NO)Cl3]Z = 2
Mr = 404.67F(000) = 392
Triclinic, P1Dx = 2.017 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3582 (3) ÅCell parameters from 2904 reflections
b = 9.0387 (5) Åθ = 2.9–27.5°
c = 10.4342 (6) ŵ = 2.70 mm1
α = 92.005 (2)°T = 120 K
β = 104.529 (3)°Plate, colourless
γ = 96.222 (3)°0.14 × 0.04 × 0.02 mm
V = 666.42 (6) Å3
Data collection top
Bruker-Nonius 95mm CCD camera on a κ-goniostat
diffractometer
3086 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2721 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.8°, θmin = 2.9°
φ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.704, Tmax = 0.948l = 1313
13278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.4199P]
where P = (Fo2 + 2Fc2)/3
3086 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 1.54 e Å3
Special details top

Experimental. IR (CsI, cm-1): ν 3396, 3254, 1652, 1576, 1409, 1295, 1166, 970. 740, 666, 616, 584, 480, 367, 314.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.10766 (4)0.75079 (3)0.23109 (3)0.01770 (12)
Cl10.00142 (15)0.72255 (13)0.42547 (11)0.0257 (2)
Cl20.16772 (15)0.60455 (12)0.09151 (12)0.0266 (3)
Cl30.02963 (15)0.98881 (11)0.19741 (11)0.0243 (2)
Cl40.5294 (2)0.26714 (17)0.17569 (13)0.0413 (3)
O10.3632 (4)0.8805 (3)0.3682 (3)0.0197 (6)
O20.2650 (4)0.5578 (3)0.3009 (3)0.0251 (7)
N10.6626 (5)0.9740 (4)0.3833 (4)0.0227 (8)
H1A0.67351.01410.46330.027*
H1B0.75900.98520.34740.027*
N20.0551 (6)0.3494 (4)0.2481 (4)0.0297 (9)
H2A0.03560.39900.20560.036*
H2B0.03310.25240.25320.036*
C10.2878 (6)0.7847 (5)0.1001 (4)0.0234 (9)
H1C0.27850.69260.04340.028*
H1D0.24860.86590.04180.028*
C20.4886 (7)0.8253 (6)0.1821 (5)0.0281 (10)
H2C0.55660.89450.13360.034*
H2D0.55250.73390.19310.034*
C30.5025 (6)0.8973 (5)0.3175 (4)0.0173 (8)
C40.5541 (7)0.3544 (6)0.3364 (5)0.0283 (10)
H4A0.65510.31320.40180.034*
H4B0.59180.46280.33530.034*
C50.3718 (7)0.3298 (5)0.3779 (5)0.0265 (10)
H5A0.39780.35660.47410.032*
H5B0.32240.22260.36270.032*
C60.2227 (6)0.4197 (5)0.3038 (4)0.0226 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01735 (18)0.01386 (17)0.02147 (19)0.00121 (11)0.00494 (12)0.00209 (11)
Cl10.0240 (5)0.0293 (6)0.0262 (6)0.0040 (4)0.0102 (4)0.0052 (4)
Cl20.0222 (5)0.0192 (5)0.0339 (6)0.0013 (4)0.0003 (4)0.0066 (4)
Cl30.0262 (5)0.0149 (5)0.0345 (6)0.0035 (4)0.0125 (4)0.0021 (4)
Cl40.0492 (8)0.0498 (8)0.0325 (7)0.0197 (6)0.0182 (6)0.0047 (6)
O10.0161 (14)0.0207 (15)0.0216 (15)0.0011 (11)0.0061 (12)0.0067 (12)
O20.0208 (15)0.0153 (15)0.0381 (19)0.0038 (12)0.0046 (13)0.0029 (13)
N10.0200 (18)0.0232 (19)0.025 (2)0.0005 (14)0.0090 (15)0.0054 (15)
N20.030 (2)0.0147 (18)0.039 (2)0.0007 (15)0.0000 (18)0.0020 (16)
C10.027 (2)0.026 (2)0.020 (2)0.0012 (18)0.0121 (18)0.0029 (17)
C20.028 (2)0.028 (2)0.028 (3)0.0013 (19)0.012 (2)0.009 (2)
C30.0157 (19)0.0165 (19)0.020 (2)0.0027 (15)0.0052 (16)0.0006 (15)
C40.026 (2)0.027 (2)0.031 (3)0.0083 (18)0.004 (2)0.0024 (19)
C50.033 (3)0.021 (2)0.027 (2)0.0085 (19)0.009 (2)0.0050 (18)
C60.029 (2)0.018 (2)0.026 (2)0.0051 (17)0.0173 (19)0.0007 (17)
Geometric parameters (Å, º) top
Sn—Cl12.3730 (11)N2—H2B0.8800
Sn—Cl22.4038 (11)C1—C21.509 (6)
Sn—Cl32.4735 (10)C1—H1C0.9900
Sn—O12.239 (3)C1—H1D0.9900
Sn—O22.240 (3)C2—C31.510 (6)
Sn—C12.138 (4)C2—H2C0.9900
Cl4—C41.786 (5)C2—H2D0.9900
O1—C31.263 (5)C4—C51.506 (7)
O2—C61.257 (5)C4—H4A0.9900
N1—C31.313 (5)C4—H4B0.9900
N1—H1A0.8800C5—C61.508 (6)
N1—H1B0.8800C5—H5A0.9900
N2—C61.307 (6)C5—H5B0.9900
N2—H2A0.8800
Cl1—Sn—Cl293.44 (4)Sn—C1—H1D110.0
Cl1—Sn—Cl390.04 (4)H1C—C1—H1D108.4
Cl1—Sn—O184.52 (8)C1—C2—C3113.5 (4)
Cl1—Sn—O283.93 (9)C1—C2—H2C108.9
Cl1—Sn—C1162.38 (13)C3—C2—H2C108.9
Cl2—Sn—Cl393.97 (4)C1—C2—H2D108.9
Cl2—Sn—O1177.51 (8)C3—C2—H2D108.9
Cl2—Sn—O296.20 (8)H2C—C2—H2D107.7
Cl2—Sn—C1102.37 (12)O1—C3—N1120.5 (4)
Cl3—Sn—O187.47 (8)O1—C3—C2120.3 (4)
Cl3—Sn—O2168.47 (9)N1—C3—C2119.2 (4)
Cl3—Sn—C196.48 (13)C5—C4—Cl4111.2 (3)
O1—Sn—O282.18 (11)C5—C4—H4A109.4
O1—Sn—C179.47 (14)Cl4—C4—H4A109.4
O2—Sn—C186.66 (16)C5—C4—H4B109.4
Sn—O1—C3112.5 (3)Cl4—C4—H4B109.4
Sn—O2—C6135.8 (3)H4A—C4—H4B108.0
C3—N1—H1A120.0C4—C5—C6113.0 (4)
C3—N1—H1B120.0C4—C5—H5A109.0
H1A—N1—H1B120.0C6—C5—H5A109.0
C6—N2—H2A120.0C4—C5—H5B109.0
C6—N2—H2B120.0C6—C5—H5B109.0
H2A—N2—H2B120.0H5A—C5—H5B107.8
C2—C1—Sn108.6 (3)O2—C6—N2123.7 (4)
C2—C1—H1C110.0O2—C6—C5118.5 (4)
Sn—C1—H1C110.0N2—C6—C5117.8 (4)
C2—C1—H1D110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···O1i0.882.062.924 (5)167
N1—H1b···Cl3ii0.882.473.326 (4)166
N2—H2a···Cl20.882.403.227 (4)156
N2—H2b···Cl3iii0.882.403.250 (4)163
C4—H4a···Cl1iv0.992.793.742 (5)163
C4—H4b···O20.992.592.923 (6)100
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton for the data collection.

References

First citationBurley, J. W., Hope, O., Hutton, R. E. & Groenenboom, C. J. (1979). J. Organomet. Chem. 170, 21–37.  CrossRef CAS Web of Science Google Scholar
First citationCrystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationHarrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHutton, R. E., Burley, J. W. & Oakes, V. (1978). J. Organomet. Chem. 156, 369–382.  CrossRef CAS Web of Science Google Scholar
First citationHutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–136.  CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMarsh, R. E. (1997). Acta Cryst. B53, 317–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMilne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds