organic compounds
4-Difluoromethyl-1-(2,5-dimethoxyphenyl)-1H-1,2,3-triazole
aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Baptista, CEP 24020-150 Niterói, RJ, Brazil, and cDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: j.skakle@abdn.ac.uk
In the title compound, C11H11F2N3O2, the aryl and triazole rings are both planar, but at an angle of 45.27 (4)° to each other.
Comment
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a leading cause of mortality worldwide. The World Health Organization estimates that about one-third of the world's population harbours latent infection of TB. Among such infected individuals, approximately eight million develop active TB, and almost two million of these die from this disease each year. 95% of new TB cases occur in developing countries. The current human immunodeficiency virus (AIDS) pandemic and resistance to the currently available drugs are proving major obstacles to the control of tuberculosis (Tewari et al., 2004; World Health Organization, 2005; Tripathi et al., 2005).
Chemotherapy of TB started in the 1940s. Various drugs have been used against TB, including para-aminosalicylic acid, isoniazid, pyrazinamide, cycloserine, ethionamide, rifampicin and ethambutol. However, six decades have passed without any significant development of new chemical treatments of tuberculosis. TB really can be classed as a neglected disease.
In pursuit of new drugs for TB, we have synthesized a new series of 1-aryl-4-difluoromethyl-1,2,3-triazole derivatives and evaluated their inhibitory activities against M. tuberculosis. All derivatives exhibited tuberculosis inhibitory activity at high concentrations (MIC > 6.5 g ml−1); a full description of the biological tests will be reported elsewhere (Costa, Boechat, Rangel et al., 2006). The structure of the title compound, (I), which exhibited 74% of inhibition at a concentration of 80.0 µg ml−1, is reported below.
C11H11F2N3O2 (Fig. 1) crystallizes in the P21/c; the geometry of the structure was analysed with the aid of PLATON (Spek, 2003). Both the triazole and the aryl rings are planar and the methoxy groups are nearly coplanar with the aryl ring, with torsion angles C8—C7—O7—O71 = 4.7 (2)° and C9—C10—O10—C101 = 6.7 (2)°. The angle between the planes defined by the triazole and aryl rings is 45.27 (4)° (Fig. 2). Comparison with 1-(4-methylphenyl)-4-difluoromethyl-1H-1,2,3-triazole (Costa, Boechat, Ferreira et al., 2006) indicates that the presence of the methoxy groups, ortho and meta to the triazole, leads to this deviation from coplanarity.
Experimental
A solution of diazomalonaldehyde (5.0 mmol) in water (30 ml) was added dropwise to a stirred solution of 2,5-dimethoxyaniline hydrochloride (4.5 mmol) in water (5 ml). The reaction mixture was stirred for 24 h at room temperature; the solid was collected, washed with cold water and crystallized from aqueous ethanol. The title compound was obtained in 98% yield as a white solid (m.p. 351–352 K). 1H NMR (500 MHz, CDCl3/Me4Si): δ 3.89 (s, 3H, 2OCH3), 6.95 (t, 1H, CHF2, J = 55.0 Hz), 7.04 (dd, 2H, J = 2.0 e 7.0 Hz, arom.), 7.63 (dd, 2H, J = 2.0 e 7.0 Hz, arom.), 8.14 (sl, 1H, triazole). 19F NMR (376.0 MHz, CDCl3/CFCl3): δ −112.2 (2F, CHF2). Full spectroscopic data are given in the Analysis calculated for C11H11F2N3O2: C 51.77, H 4.34, N 16.46%; found: C 51.78, H 4.36, N 16.49%.
Crystal data
|
Refinement
|
All H atoms were located in difference maps and then treated as riding atoms with C—H distances of 0.95 (aryl), 1.00 (methine), 1.01 (triazole) and 0.98 Å (methyl), and with Uiso(H) values of 1.2Ueq(aryl) or 1.5Ueq(methyl); Uiso values for the triazole and methine H atoms were freely refined.
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).
Supporting information
https://doi.org/10.1107/S1600536806013924/wn2023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806013924/wn2023Isup2.hkl
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).C11H11F2N3O2 | F(000) = 528 |
Mr = 255.23 | Dx = 1.543 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2600 reflections |
a = 13.4574 (6) Å | θ = 2.9–27.5° |
b = 11.4815 (5) Å | µ = 0.13 mm−1 |
c = 7.3719 (2) Å | T = 120 K |
β = 105.247 (3)° | Shard, colourless |
V = 1098.95 (7) Å3 | 0.14 × 0.12 × 0.05 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2510 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 1975 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.053 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
φ and ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −14→14 |
Tmin = 0.822, Tmax = 1.000 | l = −9→9 |
14882 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0488P)2 + 0.501P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2510 reflections | Δρmax = 0.26 e Å−3 |
167 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.021 (3) |
Experimental. IR (KBr) νmax (cm-1) 3169; 1027 13C NMR (125 MHz; CDCl3/Me4Si): δ 55.9 (3H, OCH3); 56.5 (3H, OCH3); 110.3 (t, CF2H, J= 230.0 Hz); 113.6; 116.2; 124.4; 121.1; 127.3; 142.3 (t, J = 29.1 Hz) 144.7; 153.9; EIMS (m/z): 255(M+; 60%); 227(M+-28; 8%); 226(M+-29; 5%); 212 (M+-43; 100%). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.24556 (10) | 0.76731 (11) | 0.21516 (18) | 0.0190 (3) | |
N2 | 0.25076 (10) | 0.87928 (11) | 0.15679 (18) | 0.0218 (3) | |
N3 | 0.15878 (10) | 0.92462 (11) | 0.13265 (19) | 0.0231 (3) | |
C4 | 0.09560 (12) | 0.84281 (14) | 0.1761 (2) | 0.0211 (3) | |
C41 | −0.01440 (13) | 0.86907 (14) | 0.1624 (2) | 0.0258 (4) | |
H41 | −0.0524 | 0.8858 | 0.0291 | 0.035 (5)* | |
F41 | −0.05715 (8) | 0.77552 (9) | 0.22864 (16) | 0.0367 (3) | |
F42 | −0.02215 (8) | 0.96095 (10) | 0.27463 (17) | 0.0414 (3) | |
C5 | 0.14916 (12) | 0.74227 (14) | 0.2272 (2) | 0.0213 (3) | |
H5 | 0.1350 | 0.6622 | 0.2711 | 0.028 (5)* | |
C6 | 0.33404 (12) | 0.69383 (13) | 0.2450 (2) | 0.0193 (3) | |
C7 | 0.32268 (12) | 0.58104 (14) | 0.1701 (2) | 0.0200 (3) | |
O7 | 0.22486 (9) | 0.54727 (9) | 0.08105 (16) | 0.0247 (3) | |
C71 | 0.21121 (14) | 0.42979 (14) | 0.0163 (2) | 0.0260 (4) | |
H71A | 0.2503 | 0.4168 | −0.0769 | 0.039* | |
H71B | 0.1380 | 0.4152 | −0.0415 | 0.039* | |
H71C | 0.2360 | 0.3767 | 0.1227 | 0.039* | |
C8 | 0.41010 (12) | 0.51322 (14) | 0.1909 (2) | 0.0221 (3) | |
H8 | 0.4042 | 0.4368 | 0.1399 | 0.027* | |
C9 | 0.50675 (13) | 0.55602 (14) | 0.2860 (2) | 0.0226 (4) | |
H9 | 0.5663 | 0.5091 | 0.2981 | 0.027* | |
C10 | 0.51596 (12) | 0.66705 (14) | 0.3629 (2) | 0.0206 (3) | |
O10 | 0.60716 (8) | 0.71525 (10) | 0.46465 (16) | 0.0246 (3) | |
C101 | 0.69796 (12) | 0.64907 (15) | 0.4723 (2) | 0.0246 (4) | |
H10A | 0.6929 | 0.5732 | 0.5302 | 0.037* | |
H10B | 0.7582 | 0.6911 | 0.5473 | 0.037* | |
H10C | 0.7051 | 0.6375 | 0.3446 | 0.037* | |
C11 | 0.42913 (12) | 0.73624 (14) | 0.3421 (2) | 0.0197 (3) | |
H11 | 0.4351 | 0.8124 | 0.3944 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0162 (7) | 0.0173 (6) | 0.0240 (7) | 0.0003 (5) | 0.0061 (5) | 0.0001 (5) |
N2 | 0.0218 (7) | 0.0164 (7) | 0.0273 (7) | 0.0013 (5) | 0.0068 (5) | 0.0013 (5) |
N3 | 0.0193 (7) | 0.0210 (7) | 0.0282 (7) | 0.0032 (6) | 0.0050 (5) | −0.0004 (5) |
C4 | 0.0180 (8) | 0.0217 (8) | 0.0231 (8) | −0.0002 (6) | 0.0044 (6) | −0.0023 (6) |
C41 | 0.0208 (8) | 0.0227 (8) | 0.0333 (9) | −0.0003 (7) | 0.0063 (7) | −0.0023 (7) |
F41 | 0.0208 (5) | 0.0346 (6) | 0.0561 (7) | −0.0003 (4) | 0.0124 (5) | 0.0076 (5) |
F42 | 0.0264 (6) | 0.0381 (7) | 0.0607 (8) | 0.0041 (5) | 0.0132 (5) | −0.0195 (5) |
C5 | 0.0176 (8) | 0.0214 (8) | 0.0249 (8) | −0.0017 (6) | 0.0058 (6) | −0.0004 (6) |
C6 | 0.0185 (8) | 0.0185 (8) | 0.0224 (7) | 0.0024 (6) | 0.0080 (6) | 0.0013 (6) |
C7 | 0.0184 (8) | 0.0201 (8) | 0.0218 (7) | −0.0011 (6) | 0.0057 (6) | 0.0004 (6) |
O7 | 0.0193 (6) | 0.0192 (6) | 0.0334 (6) | −0.0002 (5) | 0.0031 (5) | −0.0056 (5) |
C71 | 0.0284 (9) | 0.0190 (8) | 0.0295 (8) | −0.0025 (7) | 0.0059 (7) | −0.0037 (6) |
C8 | 0.0223 (8) | 0.0183 (8) | 0.0265 (8) | −0.0001 (6) | 0.0076 (6) | −0.0013 (6) |
C9 | 0.0208 (8) | 0.0206 (8) | 0.0275 (8) | 0.0028 (6) | 0.0082 (6) | 0.0002 (6) |
C10 | 0.0169 (8) | 0.0210 (8) | 0.0240 (8) | −0.0023 (6) | 0.0054 (6) | 0.0008 (6) |
O10 | 0.0162 (6) | 0.0223 (6) | 0.0340 (6) | 0.0004 (5) | 0.0042 (5) | −0.0040 (5) |
C101 | 0.0171 (8) | 0.0246 (8) | 0.0320 (9) | 0.0028 (6) | 0.0063 (6) | 0.0020 (7) |
C11 | 0.0200 (8) | 0.0176 (8) | 0.0229 (8) | 0.0001 (6) | 0.0080 (6) | −0.0001 (6) |
N1—C5 | 1.354 (2) | O7—C71 | 1.4266 (19) |
N1—N2 | 1.3633 (18) | C71—H71A | 0.9800 |
N1—C6 | 1.4284 (19) | C71—H71B | 0.9800 |
N2—N3 | 1.3111 (19) | C71—H71C | 0.9800 |
N3—C4 | 1.360 (2) | C8—C9 | 1.395 (2) |
C4—C5 | 1.361 (2) | C8—H8 | 0.9500 |
C4—C41 | 1.488 (2) | C9—C10 | 1.387 (2) |
C41—F42 | 1.3614 (19) | C9—H9 | 0.9500 |
C41—F41 | 1.3677 (19) | C10—O10 | 1.3752 (18) |
C41—H41 | 1.0000 | C10—C11 | 1.388 (2) |
C5—H5 | 1.0095 | O10—C101 | 1.4274 (19) |
C6—C11 | 1.380 (2) | C101—H10A | 0.9800 |
C6—C7 | 1.400 (2) | C101—H10B | 0.9800 |
C7—O7 | 1.3637 (19) | C101—H10C | 0.9800 |
C7—C8 | 1.385 (2) | C11—H11 | 0.9500 |
C5—N1—N2 | 110.52 (13) | O7—C71—H71B | 109.5 |
C5—N1—C6 | 129.69 (13) | H71A—C71—H71B | 109.5 |
N2—N1—C6 | 119.71 (12) | O7—C71—H71C | 109.5 |
N3—N2—N1 | 106.99 (12) | H71A—C71—H71C | 109.5 |
N2—N3—C4 | 108.67 (13) | H71B—C71—H71C | 109.5 |
N3—C4—C5 | 109.43 (14) | C7—C8—C9 | 120.67 (15) |
N3—C4—C41 | 121.09 (14) | C7—C8—H8 | 119.7 |
C5—C4—C41 | 129.48 (15) | C9—C8—H8 | 119.7 |
F42—C41—F41 | 106.56 (13) | C10—C9—C8 | 120.03 (15) |
F42—C41—C4 | 110.47 (13) | C10—C9—H9 | 120.0 |
F41—C41—C4 | 108.72 (13) | C8—C9—H9 | 120.0 |
F42—C41—H41 | 110.3 | O10—C10—C9 | 124.31 (14) |
F41—C41—H41 | 110.3 | O10—C10—C11 | 115.76 (14) |
C4—C41—H41 | 110.3 | C9—C10—C11 | 119.92 (15) |
N1—C5—C4 | 104.39 (14) | C10—O10—C101 | 116.05 (12) |
N1—C5—H5 | 118.6 | O10—C101—H10A | 109.5 |
C4—C5—H5 | 137.0 | O10—C101—H10B | 109.5 |
C11—C6—C7 | 121.39 (14) | H10A—C101—H10B | 109.5 |
C11—C6—N1 | 119.55 (14) | O10—C101—H10C | 109.5 |
C7—C6—N1 | 119.03 (14) | H10A—C101—H10C | 109.5 |
O7—C7—C8 | 125.29 (14) | H10B—C101—H10C | 109.5 |
O7—C7—C6 | 116.37 (13) | C6—C11—C10 | 119.61 (14) |
C8—C7—C6 | 118.34 (14) | C6—C11—H11 | 120.2 |
C7—O7—C71 | 116.94 (12) | C10—C11—H11 | 120.2 |
O7—C71—H71A | 109.5 | ||
C5—N1—N2—N3 | 0.16 (16) | C11—C6—C7—O7 | 178.38 (13) |
C6—N1—N2—N3 | 177.20 (12) | N1—C6—C7—O7 | −3.5 (2) |
N1—N2—N3—C4 | 0.33 (16) | C11—C6—C7—C8 | −1.8 (2) |
N2—N3—C4—C5 | −0.70 (18) | N1—C6—C7—C8 | 176.34 (13) |
N2—N3—C4—C41 | 179.89 (13) | C8—C7—O7—C71 | 4.7 (2) |
N3—C4—C41—F42 | −58.4 (2) | C6—C7—O7—C71 | −175.52 (13) |
C5—C4—C41—F42 | 122.30 (18) | O7—C7—C8—C9 | −179.53 (14) |
N3—C4—C41—F41 | −175.02 (13) | C6—C7—C8—C9 | 0.7 (2) |
C5—C4—C41—F41 | 5.7 (2) | C7—C8—C9—C10 | 0.8 (2) |
N2—N1—C5—C4 | −0.56 (17) | C8—C9—C10—O10 | 177.57 (14) |
C6—N1—C5—C4 | −177.23 (14) | C8—C9—C10—C11 | −1.2 (2) |
N3—C4—C5—N1 | 0.76 (17) | C9—C10—O10—C101 | 6.7 (2) |
C41—C4—C5—N1 | −179.90 (15) | C11—C10—O10—C101 | −174.54 (13) |
C5—N1—C6—C11 | −138.24 (17) | C7—C6—C11—C10 | 1.5 (2) |
N2—N1—C6—C11 | 45.36 (19) | N1—C6—C11—C10 | −176.70 (13) |
C5—N1—C6—C7 | 43.6 (2) | O10—C10—C11—C6 | −178.78 (13) |
N2—N1—C6—C7 | −132.84 (15) | C9—C10—C11—C6 | 0.1 (2) |
Acknowledgements
We are indebted to the EPSRC for the use of both the Chemical Database Service at Daresbury, primarily for access to the Cambridge Structural Database (Fletcher et al., 1996), and the X-ray service at the University of Southampton for data collection.
References
Costa, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006). Acta Cryst. E62, o1925–o1927. CSD CrossRef IUCr Journals Google Scholar
Costa, M. S., Boechat, N., Rangel, È. A., Ferreira, V. F., Junior, I. N., Lourenço, M. C. S. & Wardell, S. M. S. V. (2006). Eur. J. Med. Chem. In preparation. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749. CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tewari, N., Tiwari, V. K., Tipathi, R. P., Chaturvedi, V., Srivastava, A., Srivastava, R., Shukla, P. K., Chaturvedi, A. K., Gaikwad, A., Sinha, S. & Srivastava, B. S. (2004). Bioorg. Med. Chem. Lett. 14, 329–332. Web of Science CrossRef PubMed CAS Google Scholar
Tripathi, R. P., Tewari, N., Dwivedi, N. & Tiwari, V. K. (2005). Med. Res. Rev. 25, 93–131. Web of Science CrossRef PubMed CAS Google Scholar
World Health Organization (2005). WHO Report 2005. Global Tuberculosis Control – Surveillance, Planning, Financing. WHO/HTM/TB/2005. https://www.who.int/tb. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.