organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Powder study of chloro­thia­zide N,N-di­methyl­formamide solvate

CROSSMARK_Color_square_no_text.svg

aSolid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 3 April 2006; accepted 28 April 2006; online 10 May 2006)

The crystal structure of the title compound [systematic name: 6-chloro-4H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-di­oxide–N,N-dimethyl­formamide (1/1)], C7H6ClN3O4S2·C3H7NO, was solved by simulated annealing from laboratory X-ray powder diffraction data collected at 100 K. Subsequent Rietveld refinement, using data collected to 1.5 Å resolution, yielded an Rwp of 0.050. Hydrogen bonds to N,N-dimethyl­formamide form the rungs of a ladder motif, which is further stabilized by a π⋯halogen dimer inter­action. The benzene rings in adjacent ladders engage with each other in an offset face-to-face ππ inter­action.

Comment

The diuretic chloro­thia­zide (CT) promotes the excretion of water and electrolytes by the kidneys and was developed for the treatment of conditions such as oedema and congestive heart failure. The title compound, (I)[link], was crystallized from N,N-dimethyl­formamide (DMF) during a preliminary solvent screen in preparation for an automated parallel crystallization study of CT. The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]).

[Scheme 1]

The crystal structure of (I)[link] (Fig. 1[link]) was determined after recollecting powder diffraction data from a sample of (I)[link] in a rotating capillary (Fig. 2[link]). The inter­molecular inter­actions in (I)[link] combine to create the ladder motif shown in Fig. 3[link]. The stiles of the ladder comprise infinite [1[\overline{1}]0] chains of CT mol­ecules linked by N1⋯N3 hydrogen bonds, with rungs formed by hydrogen bonds N1⋯O4A and N2⋯O4A to DMF (Table 1[link]). This motif is further stabilized by a π⋯halogen dimer inter­action (Rahman et al., 2004[Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). Org. Biomol. Chem. 2, 175-182.]), wherein two CT mol­ecules associate by means of one aromatic offset face-face inter­action, supplemented by two aromatic π⋯halogen inter­actions, to create the centrosymmetric building block (Fig. 3[link]), with the following geometric parameters (Cg2 is the centroid of ring R2; atoms C1/C5/C6/C4/C2/C7): Cg2⋯Cg2′ = 4.44 (2) Å, Cl1⋯Cg2′ = 3.84 (1) Å and C6—Cl1⋯Cg2′ = 79 (1)°; primed atoms are generated by the symmetry operation (2 − x, 2 − y, 1 − z). The benzene rings in adjacent ladders engage with each other in an offset face-to-face ππ inter­action, with Cg2⋯Cg2i = 4.26 (2) Å [symmetry code: (i) 1 − x, 2 − y, 1 − z].

[Figure 1]
Figure 1
The molecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
Final observed (points), calculated (line) and difference [(yobs − ycalc)/σ(yobs)] profiles for the Rietveld refinement of (I)[link].
[Figure 3]
Figure 3
The hydro­philic and hydro­phobic inter­actions in (I)[link]. In the π⋯halogen dimer inter­action, two Cl atoms are positioned over the π-systems of the R2 and R2′ rings. Atoms O4A and O4A′ are in the dimethyl­formamide mol­ecules at (1 + x, y, z) and (2 − x, 1 − y, 1 − z), respectively.

Experimental

A polycrystalline sample of (I)[link] was purchased from Sigma–Aldrich (CAS 58–94-6) and recrystallized from a dimethyl­formamide solution by slow evaporation over 48 h at 278 K.

Crystal data
  • C7H6ClN3O4S2·C3H7NO

  • Mr = 368.83

  • Triclinic, [P \overline 1]

  • a = 7.9822 (4) Å

  • b = 8.8830 (5) Å

  • c = 11.1075 (6) Å

  • α = 86.689 (3)°

  • β = 75.078 (3)°

  • γ = 73.196 (3)°

  • V = 728.41 (7) Å3

  • Z = 2

  • Dx = 1.682 Mg m−3

  • Cu Kα1 radiation

  • μ = 5.30 mm−1

  • T = 100 K

  • Specimen shape: cylinder

  • 10 × 0.7 × 0.7 mm

  • Specimen prepared at 0 kPa

  • Specimen prepared at 293 K

  • Particle morphology: needle, colourless

Data collection
  • Bruker D8 Advance diffractometer

  • Specimen mounting: 0.7 mm borosilicate capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Absorption correction: none

  • 2θmin = 6, 2θmax = 64°

  • Increment in 2θ = 0.014°

Refinement
  • Refinement on F2

  • Rp = 0.039

  • Rwp = 0.050

  • Rexp = 0.036

  • RB = 3.2

  • S = 1.41

  • Wavelength of incident radiation: 1.54056 Å

  • Excluded region(s): none

  • Profile function: fundamental parameters with axial divergence correction

  • 108 parameters

  • Only H-atom coordinates refined

  • Weighting scheme based on measured s.u.'s, 1/σ(yo)2

  • (Δ/σ)max = 0.049

  • Preferred orientation correction: none

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H4⋯O4Ai 0.9 (2) 1.8 (2) 2.71 (3) 164
N1—H5⋯O4Aii 0.9 (3) 2.0 (2) 2.78 (3) 140
N1—H6⋯N3iii 0.9 (2) 2.4 (2) 3.05 (3) 129
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) x+1, y-1, z.

The sample was loaded into a 0.7 mm borosilicate glass capillary and rotated throughout the data collection to minimize preferred orientation effects. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland et al., 1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]; Hill & Madsen, 2002[Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114-116. Oxford University Press.]). The diffraction pattern indexed to a triclinic cell [F(22) = 64.2, M(22) = 22.9; DICVOL91 (Boultif & Louer, 1991[Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987-993.])], and space group P[\overline{1}] was assigned from volume considerations and a lack of systematic absences. The data set was background-subtracted and truncated to 51.35° 2θ for Pawley fitting (Pawley, 1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]; χ2Pawley = 1.33) and the structure was solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]), which is now implemented in the DASH computer program (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.]).

The SA structure solution used 273 reflections and involved the optimization of two fragments (including H atoms) totaling 14 degrees of freedom, with the inter­nal degrees of freedom allowing rotations around the S2—C5 and N4A—C6A bonds. The sulfonamide conformation was fixed throughout the optimization, with anti­periplanar torsion angles assigned to H5—N1—S2—O4 and H6—N1—S2—O2, consistent with the conformation observed in the single-crystal structure of non-solvated CT (Johnston et al., 2006[Johnston, A., Kennedy, A. R., Florence, A. J. & Shankland, N. (2006). In preparation.]). The tautomeric H atom was placed on N2 (not N3), consistent with density functional calculations (Latosińska, 2003[Latosińska, J. N. (2003). Int. J. Quantum Chem, 91, 339-349.]) and with the single-crystal structure of CT. The best SA solution had a favourable χ2SA/χ2Pawley ratio of 2.3 and a chemically reasonable lattice packing arrangement, with no significant misfit to the diffraction data. The solved structure was then refined against the full data set (6–64° 2θ) using a restrained Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]), as implemented in TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS, Karlsruhe, Germany.]), with Rwp falling from 0.1369 to 0.0504 during the refinement. All atomic positions (including H atoms) were refined, subject to a series of restraints on bond lengths, bond angles and, where appropriate, planarity. The distance and angle restraints were based on the CT single-crystal structure. As reported elsewhere for famotidine (Shankland et al., 2002[Shankland, K., McBride, L., David, W. I. F., Shankland, N. & Steele, G. (2002). J. Appl. Cryst. 35, 443-454.]), rotating the CT sulfonamide group in increments of 120° about the S2—C5 bond (Fig. 1[link]) results in three orientations that are similar in the sense that the X-ray scattering power of N1(H2) is on a par with that of atoms O2 and O4. In this case, the correctness of the orientation shown in Fig. 1[link] was confirmed by the superior Rwp and inter­molecular hydrogen-bonding pattern, compared with the two alternatives.

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS, Karlsruhe, Germany.]); cell refinement: TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS, Karlsruhe, Germany.]); data reduction: DASH (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Version 011105; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Version 1.1; Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell refinement: TOPAS (Coelho, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: enCIFer (Version 1.1; Allen et al., 2004).

6-Chloro-4H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide–N,N-dimethylformamide (1/1) top
Crystal data top
C7H6ClN3O4S2·C3H7NOZ = 2
Mr = 368.83F(000) = 380
Triclinic, P1Dx = 1.682 Mg m3
Hall symbol: -P 1Cu Kα1 radiation, λ = 1.54056 Å
a = 7.9822 (4) ŵ = 5.30 mm1
b = 8.8830 (5) ÅT = 100 K
c = 11.1075 (6) ÅParticle morphology: needle
α = 86.689 (3)°colourless
β = 75.078 (3)°cylinder, 10 × 0.7 mm
γ = 73.196 (3)°Specimen preparation: Prepared at 293 K
V = 728.41 (7) Å3
Data collection top
Bruker D8 Advance
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tube, Bruker D8Scan method: step
Primary focussing, Ge 111 monochromator2θmin = 6°, 2θmax = 64°, 2θstep = 0.014°
Specimen mounting: 0.7 mm borosilicate capillary
Refinement top
Least-squares matrix: selected elements only108 parameters
Rp = 0.03995 restraints
Rwp = 0.0501 constraint
Rexp = 0.036Only H-atom coordinates refined
RBragg = 3.2Weighting scheme based on measured s.u.'s 1/σ(Yo)2
4001 data points(Δ/σ)max = 0.049
Profile function: Fundamental parameters with axial divergence correctionBackground function: Chebyshev polynomial
Special details top

Geometry. Bond distances, bond angles and H-bond geometries were calculated using PLATON (Spek, 2003)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C4A0.843 (4)0.803 (3)0.098 (3)0.019*
H4A0.96 (3)0.76 (3)0.09 (3)0.038*
H5A0.83 (3)0.77 (3)0.17 (2)0.038*
H6A0.82 (3)0.92 (3)0.10 (2)0.038*
C5A0.713 (4)0.600 (4)0.022 (2)0.019*
H7A0.83 (3)0.53 (3)0.03 (2)0.038*
H8A0.68 (3)0.57 (3)0.05 (2)0.038*
H9A0.62 (3)0.59 (3)0.10 (2)0.038*
C6A0.611 (4)0.870 (3)0.091 (3)0.019*
H10A0.61 (3)0.98 (3)0.08 (2)0.038*
N4A0.719 (3)0.761 (3)0.008 (2)0.019*
O4A0.500 (2)0.8452 (18)0.1848 (17)0.019*
S10.5677 (9)1.2894 (9)0.3026 (7)0.019*
S21.0585 (9)0.7185 (9)0.2401 (8)0.019*
Cl10.9970 (9)0.6972 (8)0.5391 (7)0.019*
C10.806 (4)1.001 (4)0.291 (2)0.019*
N11.254 (3)0.672 (3)0.270 (2)0.019*
C20.646 (3)1.108 (4)0.497 (3)0.019*
C30.403 (4)1.349 (4)0.530 (3)0.019*
N20.514 (3)1.225 (3)0.5732 (19)0.019*
C40.744 (4)0.977 (4)0.549 (3)0.019*
C50.905 (3)0.871 (3)0.343 (3)0.019*
C60.874 (4)0.858 (3)0.472 (3)0.019*
O10.690 (2)1.3805 (17)0.2528 (13)0.019*
O21.0807 (19)0.7839 (16)0.1184 (15)0.019*
C70.680 (4)1.121 (3)0.368 (3)0.019*
O30.483 (2)1.2453 (17)0.2168 (14)0.019*
O40.9905 (18)0.5842 (17)0.2625 (14)0.019*
N30.411 (3)1.389 (2)0.4159 (19)0.019*
H10.83 (3)1.01 (3)0.203 (18)0.038*
H20.72 (3)0.97 (3)0.64 (2)0.038*
H30.31 (3)1.42 (3)0.59 (2)0.038*
H40.50 (3)1.22 (3)0.66 (2)0.038*
H51.29 (3)0.76 (3)0.27 (2)0.038*
H61.24 (3)0.63 (3)0.35 (2)0.038*
Geometric parameters (Å, º) top
Cl1—C61.73 (3)N4A—C4A1.44 (4)
S1—O11.429 (18)C1—C51.39 (4)
S1—O31.431 (18)C1—C71.39 (4)
S1—N31.62 (2)C2—C71.39 (5)
S1—C71.73 (3)C2—C41.39 (5)
S2—O21.429 (18)C4—C61.39 (4)
S2—O41.432 (17)C5—C61.39 (5)
S2—N11.61 (3)C1—H11.0 (2)
S2—C51.77 (3)C3—H31.0 (2)
O4A—C6A1.24 (4)C4—H21.0 (2)
N2—C31.35 (4)C4A—H4A0.9 (3)
N2—C21.38 (4)C4A—H5A0.9 (2)
N3—C31.29 (4)C4A—H6A1.0 (3)
N1—H60.9 (2)C5A—H7A1.0 (3)
N1—H50.9 (3)C5A—H8A1.0 (2)
N2—H40.9 (2)C5A—H9A1.0 (2)
N4A—C6A1.32 (4)C6A—H10A1.0 (3)
N4A—C5A1.44 (4)
O1—S1—O3116 (1)N2—C2—C4120 (3)
O1—S1—N3108 (1)C4—C2—C7120 (3)
O1—S1—C7109 (1)N2—C3—N3128 (3)
O3—S1—N3108 (1)C2—C4—C6120 (3)
O3—S1—C7109 (1)S2—C5—C6122 (2)
N3—S1—C7106 (1)S2—C5—C1118 (2)
O2—S2—O4119 (1)C1—C5—C6120 (3)
O2—S2—N1107 (1)Cl1—C6—C5121 (2)
O2—S2—C5106 (1)C4—C6—C5120 (3)
O4—S2—N1108 (1)Cl1—C6—C4119 (2)
O4—S2—C5107 (1)C1—C7—C2120 (3)
N1—S2—C5110 (1)S1—C7—C2120 (2)
C2—N2—C3124 (2)S1—C7—C1120 (2)
S1—N3—C3121 (2)O4A—C6A—N4A124 (2)
C4A—N4A—C6A120 (2)S2—N1—H5109 (14)
C5A—N4A—C6A121 (2)S2—N1—H6107 (16)
C4A—N4A—C5A120 (2)C2—N2—H4119 (15)
C5—C1—C7120 (2)C3—N2—H4117 (15)
N2—C2—C7120 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O4Ai0.9 (2)1.8 (2)2.71 (3)164
N1—H5···O4Aii0.9 (3)2.0 (2)2.78 (3)140
N1—H6···N3iii0.9 (2)2.4 (2)3.05 (3)129
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors thank the Basic Technology Programme of the UK Research Councils for funding under the project `Control and Prediction of the Organic Solid State' (www.cposs.org.uk), the EPSRC for grants GR/N07462/01 and GR/S10162/01, and the CCLRC Centre for Molecular Structure and Dynamics for studentship funding for PF.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationDavid, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114–116. Oxford University Press.  Google Scholar
First citationJohnston, A., Kennedy, A. R., Florence, A. J. & Shankland, N. (2006). In preparation.  Google Scholar
First citationKienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationLatosińska, J. N. (2003). Int. J. Quantum Chem, 91, 339–349.  Web of Science CrossRef CAS Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). Org. Biomol. Chem. 2, 175–182.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Google Scholar
First citationShankland, K., McBride, L., David, W. I. F., Shankland, N. & Steele, G. (2002). J. Appl. Cryst. 35, 443–454.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds