organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of sulfamerazine

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 12 April 2006; accepted 20 April 2006; online 5 May 2006)

In the title compound, C11H12N4O2S, mol­ecules are linked by inter­molecular N—H⋯N and O—H⋯O hydrogen bonds, forming a hydrogen-bonded network.

Comment

Two polymorphs of sulfamerazine were previously determined in the space groups Pbca (Acharya et al., 1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-76.]) and Pna21 (Caria & Mohamed, 1992[Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.]). We have now obtained a new polymorph of sulfamerazine, (I)[link], which crystallizes in the space group P21/c and its crystal structure is reported here.

[Scheme 1]

In the mol­ecule of compound (I)[link] (Fig. 1[link]), the bond lengths and angles (Table 1[link]) are in normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The shortening of the C18—N14 [1.364 (3) Å], C15—S11 [1.734 (2) Å] and S11—N11 [1.6530 (19) Å] bonds with respect to the expected single-bond distances are attributed to dπ–pπ inter­actions, and are comparable with the corresponding values of 1.363 (12), 1.735 (7) and 1.654 (2) Å obtained by Acharya et al. (1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-76.]), and of 1.357 (7), 1.354 (7), 1.736 (4) and 1.654 (2) Å obtained by Caria & Mohamed (1992[Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.]). The endocyclic N12—C11—N13 angle of 127.5 (2)° is also comparable with the corresponding values in the other two polymorphs of sulfamerazine; these angles are considerably larger than the value usually observed for a pyrimidine ring.

The planes of the benzene and pyrimidine rings are inclined to each other at 64.39 (2)°, which is comparable with the corresponding values of 71 (1)° (Acharya et al., 1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-76.]) and 61.5 (5) and 58.5 (5)° (Caria & Mohamed, 1992[Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.]) in the other sulfamerazine polymorphs. These indicate that the mol­ecules adopt a gauche conformation when viewed along the S—N vector. The tetra­hedral geometry around atom S11 is distorted, as evidenced by the deviations of the bond angles around atom S11 atom from 109°.

The crystal structure of (I)[link] is stabilized by inter­molecular N—H⋯N and O—H⋯O hydrogen bonds (Table 2[link]), which result in the formation of a hydrogen-bonded network (Fig. 2[link]).

[Figure 1]
Figure 1
A drawing of the mol­ecular structure of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of (I)[link]. Hydrogen bonds are shown as dashed lines.

Experimental

Solid sulfamerazine was dissolved in dimethyl­formamide, filtered and left for crystallization by slow evaporation of the solvent at room temperature. Colourless block crystals were obtained after two weeks.

Crystal data
  • C11H12N4O2S

  • Mr = 264.31

  • Monoclinic, P 21 /c

  • a = 11.0966 (5) Å

  • b = 8.3152 (5) Å

  • c = 13.9640 (7) Å

  • β = 99.327 (4)°

  • V = 1271.43 (11) Å3

  • Z = 4

  • Dx = 1.381 Mg m−3

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.951, Tmax = 0.970

  • 11168 measured reflections

  • 2872 independent reflections

  • 2147 reflections with I > 2σ(I)

  • Rint = 0.091

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.133

  • S = 1.05

  • 2872 reflections

  • 164 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.05P)2 + 0.8661P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

S11—O11 1.4398 (16)
S11—O12 1.4293 (17)
S11—N11 1.6530 (19)
S11—C15 1.734 (2)
N11—C11 1.388 (3)
N12—C11 1.327 (3)
N12—C12 1.345 (3)
N13—C11 1.338 (3)
N13—C14 1.336 (3)
N14—C18 1.364 (3)
O11—S11—O12 119.28 (10)
O11—S11—N11 102.31 (9)
O12—S11—N11 109.06 (10)
O11—S11—C15 109.20 (10)
O12—S11—C15 109.54 (10)
N11—S11—C15 106.59 (10)
C11—N11—S11 126.20 (16)
C11—N12—C12 116.2 (2)
C11—N13—C14 114.6 (2)
N11—C11—N12 118.5 (2)
N11—C11—N13 114.0 (2)
N12—C11—N13 127.5 (2)
N12—C12—C13 121.0 (2)
N13—C14—C13 122.9 (3)
C16—C15—S11 119.56 (17)
C20—C15—S11 120.38 (18)
N14—C18—C17 120.8 (2)
N14—C18—C19 120.4 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N13i 0.88 2.08 2.912 (3) 158
N14—H14A⋯O11ii 0.88 2.43 3.089 (3) 132
N14—H14B⋯O12iii 0.88 2.14 2.985 (3) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z.

H atoms were positioned geometrically, with N—H = 0.88 Å (for NH and NH2) and C—H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
C11H12N4O2SF(000) = 552
Mr = 264.31Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2147 reflections
a = 11.0966 (5) Åθ = 2.9–27.5°
b = 8.3152 (5) ŵ = 0.26 mm1
c = 13.9640 (7) ÅT = 150 K
β = 99.327 (4)°Block, colourless
V = 1271.43 (11) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube2147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.951, Tmax = 0.970k = 108
11168 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.05P)2 + 0.8661P]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.19021 (5)0.01361 (7)0.50270 (4)0.02192 (18)
O110.17220 (14)0.0052 (2)0.39886 (11)0.0260 (4)
O120.13096 (15)0.1430 (2)0.54387 (12)0.0280 (4)
N110.33972 (17)0.0379 (2)0.52968 (14)0.0255 (5)
H110.38110.03690.48100.031*
N120.34604 (18)0.0793 (3)0.69574 (14)0.0287 (5)
N130.52733 (19)0.0576 (3)0.62466 (15)0.0413 (6)
N140.0937 (2)0.6007 (3)0.68583 (15)0.0352 (5)
H14A0.07270.60130.74400.042*
H14B0.10190.69200.65570.042*
C110.4063 (2)0.0597 (3)0.62188 (17)0.0265 (5)
C120.4146 (2)0.1024 (3)0.78327 (18)0.0361 (6)
C130.5399 (3)0.1057 (5)0.7940 (2)0.0559 (10)
H130.58850.12360.85560.067*
C140.5925 (3)0.0823 (5)0.7126 (2)0.0608 (11)
H140.67910.08360.71910.073*
C150.15662 (19)0.1663 (3)0.55534 (15)0.0216 (5)
C160.1662 (2)0.3099 (3)0.50627 (16)0.0252 (5)
H160.18770.30830.44320.030*
C170.1446 (2)0.4548 (3)0.54875 (16)0.0274 (5)
H170.15080.55250.51460.033*
C180.1134 (2)0.4583 (3)0.64244 (16)0.0249 (5)
C190.1006 (2)0.3120 (3)0.68991 (16)0.0236 (5)
H190.07670.31260.75220.028*
C200.1221 (2)0.1676 (3)0.64734 (16)0.0224 (5)
H200.11360.06940.68030.027*
C1110.3460 (3)0.1215 (4)0.8667 (2)0.0491 (8)
H11A0.29520.21840.85710.074*
H11B0.40410.13130.92730.074*
H11C0.29390.02730.87030.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0216 (3)0.0251 (3)0.0192 (3)0.0007 (2)0.0036 (2)0.0005 (2)
O110.0286 (9)0.0323 (10)0.0164 (8)0.0008 (7)0.0019 (6)0.0016 (7)
O120.0310 (9)0.0253 (9)0.0280 (9)0.0056 (7)0.0058 (7)0.0007 (7)
N110.0220 (10)0.0365 (12)0.0190 (10)0.0048 (9)0.0066 (8)0.0030 (8)
N120.0285 (11)0.0354 (12)0.0230 (10)0.0037 (9)0.0067 (8)0.0046 (9)
N130.0234 (11)0.0737 (18)0.0272 (11)0.0050 (11)0.0055 (9)0.0150 (11)
N140.0586 (15)0.0254 (12)0.0240 (11)0.0072 (10)0.0140 (10)0.0021 (9)
C110.0256 (12)0.0319 (14)0.0224 (12)0.0041 (10)0.0053 (9)0.0041 (10)
C120.0384 (15)0.0452 (17)0.0249 (13)0.0003 (13)0.0058 (11)0.0085 (11)
C130.0341 (16)0.103 (3)0.0291 (15)0.0014 (17)0.0010 (12)0.0241 (16)
C140.0264 (15)0.122 (3)0.0332 (16)0.0059 (17)0.0021 (12)0.0265 (18)
C150.0187 (11)0.0265 (13)0.0195 (11)0.0000 (9)0.0032 (9)0.0012 (9)
C160.0299 (13)0.0281 (13)0.0186 (11)0.0000 (10)0.0068 (9)0.0008 (9)
C170.0344 (13)0.0272 (13)0.0213 (12)0.0008 (11)0.0063 (10)0.0045 (9)
C180.0254 (12)0.0270 (13)0.0222 (12)0.0041 (10)0.0035 (9)0.0000 (9)
C190.0245 (11)0.0309 (13)0.0159 (11)0.0014 (10)0.0049 (9)0.0009 (9)
C200.0220 (11)0.0276 (13)0.0182 (11)0.0023 (10)0.0049 (9)0.0032 (9)
C1110.0490 (18)0.073 (2)0.0278 (15)0.0030 (16)0.0130 (13)0.0129 (14)
Geometric parameters (Å, º) top
S11—O111.4398 (16)C13—H130.9500
S11—O121.4293 (17)C14—H140.9500
S11—N111.6530 (19)C15—C161.389 (3)
S11—C151.734 (2)C15—C201.399 (3)
N11—C111.388 (3)C16—C171.381 (3)
N11—H110.8800C16—H160.9500
N12—C111.327 (3)C17—C181.407 (3)
N12—C121.345 (3)C17—H170.9500
N13—C111.338 (3)C18—C191.403 (3)
N13—C141.336 (3)C19—C201.378 (3)
N14—C181.364 (3)C19—H190.9500
N14—H14A0.8800C20—H200.9500
N14—H14B0.8800C111—H11A0.9800
C12—C131.374 (4)C111—H11B0.9800
C12—C1111.500 (4)C111—H11C0.9800
C13—C141.373 (4)
O11—S11—O12119.28 (10)C13—C14—H14118.5
O11—S11—N11102.31 (9)C16—C15—C20120.0 (2)
O12—S11—N11109.06 (10)C16—C15—S11119.56 (17)
O11—S11—C15109.20 (10)C20—C15—S11120.38 (18)
O12—S11—C15109.54 (10)C15—C16—C17120.4 (2)
N11—S11—C15106.59 (10)C17—C16—H16119.8
C11—N11—S11126.20 (16)C15—C16—H16119.8
C11—N11—H11116.9C16—C17—C18120.2 (2)
S11—N11—H11116.9C16—C17—H17119.9
C11—N12—C12116.2 (2)C18—C17—H17119.9
C11—N13—C14114.6 (2)N14—C18—C17120.8 (2)
C18—N14—H14A120.0N14—C18—C19120.4 (2)
C18—N14—H14B120.0C17—C18—C19118.7 (2)
H14A—N14—H14B120.0C18—C19—C20120.9 (2)
N11—C11—N12118.5 (2)C20—C19—H19119.6
N11—C11—N13114.0 (2)C18—C19—H19119.6
N12—C11—N13127.5 (2)C15—C20—C19119.7 (2)
N12—C12—C13121.0 (2)C19—C20—H20120.1
N12—C12—C111115.9 (2)C15—C20—H20120.1
C13—C12—C111123.0 (2)C12—C111—H11A109.5
C12—C13—C14117.7 (3)C12—C111—H11B109.5
C12—C13—H13121.1H11A—C111—H11B109.5
C14—C13—H13121.1C12—C111—H11C109.5
N13—C14—C13122.9 (3)H11A—C111—H11C109.5
N13—C14—H14118.5H11B—C111—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N13i0.882.082.912 (3)158
N14—H14A···O11ii0.882.433.089 (3)132
N14—H14B···O12iii0.882.142.985 (3)160
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The author acknowledges the Ministry of Science and Technology, Bangladesh Secretariat, Dhaka, Bangladesh, for awarding a Bangabandhu Fellowship.

References

First citationAcharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369–76.  CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCaria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492–498.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds