metal-organic compounds
Poly[methylamine-μ-oxalato-copper(II)]
aWestCHEM, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: danielp@chem.gla.ac.uk
The six-coordinate copper(II) ions in the title compound, [Cu(C2O4)(CH5N)], experience a Jahn–Teller distortion. The structure is a two-dimensional coordination network, with three crystallographically independent oxalate ions, two of them centrosymmetric, bridging CuII ions in three different coordination modes. Each Cu ion is also coordinated by methylamine which is involved in both intra- and interlayer hydrogen bonding.
Comment
The oxalate ligand is known for its chelating and bridging coordination modes. It is used by magnetochemists to mediate significant exchange interactions and can result in magnetically ordered materials (Coronado et al., 2000; Decurtins et al., 1993; Demunno et al., 1995; Hursthouse et al., 2004; Julve et al., 1984; Keene et al., 2004; Mathoniere et al., 1996; Price et al., 2001). We present here the structure of [Cu(ox)(CH3NH2)] (ox = oxalate), (I).
The contains two Cu atoms, two methylamine molecules, and one complete and two halves of oxalate anions (Fig. 1). The CuII cations each have a CuNO5 coordination and show a large Jahn–Teller-induced tetragonal elongation. While the coordination environment of each CuII ion is very similar (Table 1), the coordination of the three oxalate ions differs significantly (Fig. 2). The structure of (I) is a complex two-dimensional coordination network that can best be viewed by initially considering only the short Cu—O/N contacts (<2.05 Å). The structure is built from two distinct copper oxalate chains. Chain A (Fig. 3) is formed from Cu1 and the oxalate containing C1 and C2; it consists of a simple alternation of these components, with a |–Cu1–oxB|n repeat unit and a Cu⋯Cu separation of 5.530 (3) Å. Chain B (Fig. 3) is built from Cu2 and the crystallographically centrosymmetric oxalate anions containing C3 and C4. It has a more complex topology with a |–Cu2–oxA–Cu2–oxC–|n repeat unit and alternating Cu⋯Cu separations of 5.537 (9) and 5.192 (9) Å. The longer Cu—O interactions link neighbouring chains into a corrugated two-dimensional structure in the bc plane (Fig. 4). The coordinated methylamine displays both intra- and interlayer hydrogen bonding (Table 2).
of (I)Surprisingly, there are very few structures that contain copper and either methyl- or ethylamine. Chemically, the most similar compound with a known structure is [Cu(NH3)(ox)] (Cavalca et al., 1972). Indeed, the structure of this compound shows remarkable similarity to that of (I). [Cu(NH3)(ox)] also has a two-dimensional character, being built from Cu(ox) chains with the type B structure described above. Here, neighbouring chains are linked through the long Cu—O interactions into a two-dimensional sheet structure, with a topology that is different from that seen in (I).
Experimental
Single crystals of (I) were synthesized by dissolving synthetic mooloolite, viz. [Cu(ox)]·0.33H2O (1.000 g, 6.35 mmol), in an aqueous methylamine solution (20 ml, 40% w/w). The resultant dark-blue solution was further diluted with distilled water to a volume of 100 ml and left to evaporate. Blue crystals of (I) formed as a minor product amongst a large proportion of finely divided [Cu(ox)]·0.33H2O.
Crystal data
|
Refinement
|
H atoms were positioned geometrically, with N—H = 0.90 Å for amine H and C—H = 0.96 Å for methyl H atoms, and were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.2 for amine H and x = 1.5 for methyl H atoms.
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997) in WinGX; molecular graphics: DIAMOND (Brandenburg, 1999).
Supporting information
https://doi.org/10.1107/S1600536806016679/hk2039sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806016679/hk2039Isup2.hkl
Data collection: DENZO (Otwinowski & Minor, 1997); cell
DENZO and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993) in WinGX (Farrugia, 1999)'; program(s) used to refine structure: SHELXS97 (Sheldrick, 1997) in WinGX'; molecular graphics: DIAMOND (Brandenburg, 1999).[Cu(C2O4)(CH5N)] | F(000) = 728 |
Mr = 365.24 | Dx = 2.217 Mg m−3 |
Monoclinic, P21/c | Melting point: N/A K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.421 (8) Å | Cell parameters from 3698 reflections |
b = 12.668 (12) Å | θ = 2.9–27.5° |
c = 9.392 (7) Å | µ = 3.92 mm−1 |
β = 102.53 (7)° | T = 566 K |
V = 1094.1 (16) Å3 | Block, blue |
Z = 4 | 0.04 × 0.03 × 0.03 mm |
Nonius KappaCCD diffractometer | 1816 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.076 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | θmax = 27.7°, θmin = 3.2° |
Tmin = 0.859, Tmax = 0.891 | h = −10→12 |
11196 measured reflections | k = −16→14 |
2525 independent reflections | l = −10→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0482P)2 + 2.4064P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.130 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.53 e Å−3 |
2525 reflections | Δρmin = −0.79 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.19173 (7) | 0.14720 (5) | 0.67560 (7) | 0.0302 (2) | |
Cu2 | 0.49291 (8) | 0.10215 (6) | 0.23795 (7) | 0.0328 (2) | |
O1 | 0.0744 (4) | 0.1432 (3) | 0.4765 (4) | 0.0332 (9) | |
O2 | 0.0588 (4) | 0.2250 (3) | 0.2635 (4) | 0.0368 (9) | |
O3 | 0.3028 (4) | 0.2615 (3) | 0.5955 (4) | 0.0318 (9) | |
O4 | 0.3051 (4) | 0.3347 (3) | 0.3809 (4) | 0.0308 (9) | |
O5 | 0.3811 (4) | −0.0131 (3) | 0.1192 (4) | 0.0347 (9) | |
O6 | 0.3845 (4) | −0.0980 (3) | −0.0886 (4) | 0.0347 (9) | |
O7 | 0.3817 (4) | 0.0902 (3) | 0.3919 (4) | 0.0346 (9) | |
O8 | 0.3739 (4) | 0.0225 (3) | 0.6094 (4) | 0.0414 (10) | |
N1 | 0.0929 (5) | 0.0199 (4) | 0.7323 (5) | 0.0349 (11) | |
H1A | 0.0647 | −0.0205 | 0.6523 | 0.042* | |
H1B | 0.159 | −0.0174 | 0.7963 | 0.042* | |
N2 | 0.5906 (5) | 0.2327 (4) | 0.3227 (5) | 0.0410 (12) | |
H2A | 0.5823 | 0.2806 | 0.2506 | 0.049* | |
H2B | 0.5412 | 0.2579 | 0.3873 | 0.049* | |
C1 | 0.1168 (6) | 0.2084 (4) | 0.3928 (6) | 0.0278 (11) | |
C2 | 0.2527 (6) | 0.2730 (4) | 0.4620 (6) | 0.0289 (12) | |
C3 | 0.4327 (6) | −0.0315 (4) | 0.0094 (6) | 0.0288 (12) | |
C4 | 0.4293 (6) | 0.0320 (4) | 0.5010 (6) | 0.0312 (12) | |
C5 | −0.0350 (9) | 0.0366 (7) | 0.7974 (10) | 0.082 (3) | |
H5A | −0.0722 | −0.0305 | 0.8199 | 0.123* | |
H5B | −0.109 | 0.0737 | 0.7293 | 0.123* | |
H5C | −0.0069 | 0.0774 | 0.8851 | 0.123* | |
C6 | 0.7426 (9) | 0.2267 (7) | 0.3953 (11) | 0.091 (3) | |
H6A | 0.7761 | 0.2954 | 0.4308 | 0.137* | |
H6B | 0.7985 | 0.2025 | 0.3275 | 0.137* | |
H6C | 0.754 | 0.1783 | 0.4756 | 0.137* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0351 (4) | 0.0295 (4) | 0.0264 (4) | −0.0041 (3) | 0.0077 (3) | 0.0003 (3) |
Cu2 | 0.0383 (4) | 0.0320 (4) | 0.0306 (4) | −0.0011 (3) | 0.0132 (3) | −0.0022 (3) |
O1 | 0.032 (2) | 0.033 (2) | 0.033 (2) | −0.0071 (18) | 0.0063 (16) | 0.0037 (16) |
O2 | 0.042 (2) | 0.039 (2) | 0.028 (2) | −0.0024 (19) | 0.0053 (17) | 0.0027 (17) |
O3 | 0.037 (2) | 0.033 (2) | 0.025 (2) | −0.0045 (17) | 0.0043 (16) | 0.0024 (16) |
O4 | 0.034 (2) | 0.030 (2) | 0.027 (2) | −0.0002 (16) | 0.0045 (16) | 0.0014 (15) |
O5 | 0.041 (2) | 0.037 (2) | 0.030 (2) | −0.0049 (19) | 0.0163 (17) | −0.0047 (17) |
O6 | 0.042 (2) | 0.036 (2) | 0.028 (2) | −0.0060 (18) | 0.0129 (17) | −0.0022 (17) |
O7 | 0.041 (2) | 0.035 (2) | 0.030 (2) | 0.0112 (18) | 0.0115 (17) | 0.0070 (16) |
O8 | 0.046 (3) | 0.046 (2) | 0.037 (2) | 0.013 (2) | 0.0203 (19) | 0.0100 (19) |
N1 | 0.040 (3) | 0.033 (3) | 0.032 (2) | −0.005 (2) | 0.009 (2) | 0.000 (2) |
N2 | 0.045 (3) | 0.033 (3) | 0.047 (3) | −0.002 (2) | 0.015 (2) | −0.007 (2) |
C1 | 0.029 (3) | 0.027 (3) | 0.029 (3) | 0.001 (2) | 0.010 (2) | 0.001 (2) |
C2 | 0.031 (3) | 0.029 (3) | 0.029 (3) | 0.003 (2) | 0.011 (2) | 0.000 (2) |
C3 | 0.034 (3) | 0.027 (3) | 0.025 (3) | 0.003 (2) | 0.007 (2) | 0.005 (2) |
C4 | 0.033 (3) | 0.029 (3) | 0.032 (3) | 0.001 (2) | 0.007 (2) | 0.000 (2) |
C5 | 0.091 (6) | 0.059 (5) | 0.119 (7) | −0.023 (5) | 0.071 (6) | −0.024 (5) |
C6 | 0.041 (5) | 0.076 (6) | 0.150 (9) | −0.003 (4) | 0.004 (5) | −0.044 (6) |
Cu1—O1 | 1.955 (4) | C1—O1 | 1.264 (6) |
Cu1—N1 | 1.992 (5) | C2—O3 | 1.249 (6) |
Cu1—O4i | 2.004 (4) | C2—O4 | 1.265 (6) |
Cu1—O3 | 2.025 (4) | C2—C1 | 1.539 (8) |
Cu1—O2i | 2.307 (4) | C3—O5 | 1.254 (6) |
Cu2—O7 | 1.967 (4) | C3—O6 | 1.258 (6) |
Cu2—N2 | 1.974 (5) | C3—C3ii | 1.541 (11) |
Cu2—O5 | 1.994 (4) | C4—O8 | 1.247 (6) |
Cu2—O6ii | 2.002 (4) | C4—O7 | 1.262 (6) |
Cu2—O8iii | 2.311 (4) | C4—C4iii | 1.564 (11) |
O2—Cu1iv | 2.307 (4) | C5—N1 | 1.480 (9) |
O4—Cu1iv | 2.004 (4) | C5—H5A | 0.96 |
O6—Cu2ii | 2.002 (4) | C5—H5B | 0.96 |
O8—Cu2iii | 2.311 (4) | C5—H5C | 0.96 |
N1—H1A | 0.9 | C6—N2 | 1.448 (9) |
N1—H1B | 0.9 | C6—H6A | 0.96 |
N2—H2A | 0.9 | C6—H6B | 0.96 |
N2—H2B | 0.9 | C6—H6C | 0.96 |
C1—O2 | 1.237 (6) | ||
O1—Cu1—N1 | 91.98 (18) | Cu1—N1—H1B | 107.9 |
O1—Cu1—O4i | 174.59 (16) | H1A—N1—H1B | 107.2 |
N1—Cu1—O4i | 91.02 (17) | C6—N2—Cu2 | 118.2 (5) |
O1—Cu1—O3 | 83.91 (15) | C6—N2—H2A | 107.8 |
N1—Cu1—O3 | 171.04 (17) | Cu2—N2—H2A | 107.8 |
O4i—Cu1—O3 | 93.74 (15) | C6—N2—H2B | 107.8 |
O1—Cu1—O2i | 97.03 (15) | Cu2—N2—H2B | 107.8 |
N1—Cu1—O2i | 98.67 (18) | H2A—N2—H2B | 107.1 |
O4i—Cu1—O2i | 78.06 (15) | O2—C1—O1 | 126.1 (5) |
O3—Cu1—O2i | 89.74 (16) | O2—C1—C2 | 118.3 (5) |
O7—Cu2—N2 | 92.53 (19) | O1—C1—C2 | 115.5 (5) |
O7—Cu2—O5 | 93.08 (16) | O3—C2—O4 | 124.4 (5) |
N2—Cu2—O5 | 169.25 (19) | O3—C2—C1 | 117.5 (5) |
O7—Cu2—O6ii | 173.43 (16) | O4—C2—C1 | 118.2 (5) |
N2—Cu2—O6ii | 90.85 (18) | O5—C3—O6 | 125.7 (5) |
O5—Cu2—O6ii | 84.50 (16) | O5—C3—C3ii | 118.3 (6) |
O7—Cu2—O8iii | 78.20 (15) | O6—C3—C3ii | 116.0 (6) |
N2—Cu2—O8iii | 100.3 (2) | O8—C4—O7 | 125.5 (5) |
O5—Cu2—O8iii | 89.80 (18) | O8—C4—C4iii | 117.9 (6) |
O6ii—Cu2—O8iii | 95.65 (16) | O7—C4—C4iii | 116.5 (6) |
C1—O1—Cu1 | 112.9 (3) | N1—C5—H5A | 109.5 |
C1—O2—Cu1iv | 108.2 (3) | N1—C5—H5B | 109.5 |
C2—O3—Cu1 | 110.0 (3) | H5A—C5—H5B | 109.5 |
C2—O4—Cu1iv | 117.0 (3) | N1—C5—H5C | 109.5 |
C3—O5—Cu2 | 110.1 (3) | H5A—C5—H5C | 109.5 |
C3—O6—Cu2ii | 111.0 (3) | H5B—C5—H5C | 109.5 |
C4—O7—Cu2 | 119.3 (4) | N2—C6—H6A | 109.5 |
C4—O8—Cu2iii | 107.8 (3) | N2—C6—H6B | 109.5 |
C5—N1—Cu1 | 117.7 (4) | H6A—C6—H6B | 109.5 |
C5—N1—H1A | 107.9 | N2—C6—H6C | 109.5 |
Cu1—N1—H1A | 107.9 | H6A—C6—H6C | 109.5 |
C5—N1—H1B | 107.9 | H6B—C6—H6C | 109.5 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1v | 0.9 | 2.22 | 3.042 (7) | 153 |
N1—H1B···O6vi | 0.9 | 2.39 | 3.256 (7) | 161 |
N2—H2B···O4 | 0.9 | 2.42 | 3.137 (7) | 137 |
Symmetry codes: (v) −x, −y, −z+1; (vi) x, y, z+1. |
Acknowledgements
The authors are grateful to the EPSRC, the University of Glasgow and the University of Southampton for financial support.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cavalca, L., Tomlinso, A. A., Villa, A. C., Manfredo, A. G. & Mangia, A. (1972). J. Chem. Soc. Dalton Trans. pp. 391–398. CSD CrossRef Web of Science Google Scholar
Coronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J. & Laukhin, V. (2000). Nature (London), 408, 447–449. Web of Science CSD CrossRef PubMed CAS Google Scholar
Decurtins, S., Schmalle, H. W., Schneuwly, P. & Oswald, H. R. (1993). Inorg. Chem. 32, 1888–1892. CSD CrossRef CAS Web of Science Google Scholar
Demunno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408–411. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hursthouse, M. B., Light, M. E. & Price, D. J. (2004). Angew. Chem. Int. Ed. 43, 472–475. Web of Science CSD CrossRef CAS Google Scholar
Julve, M., Verdaguer, M., Gleizes, A., Philochelevisalles, M. & Kahn, O. (1984). Inorg. Chem. 23, 3808–3818. CSD CrossRef CAS Web of Science Google Scholar
Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007–1013. Web of Science CSD CrossRef Google Scholar
Mathoniere, C., Nuttall, C. J., Carling, S. G. & Day, P. (1996). Inorg. Chem. 35, 1201–1206. CrossRef PubMed CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Price, D. J., Tripp, S., Powell, A. K. & Wood, P. T. (2001). Chem. Eur. J. 7, 200–208. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 1.10. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.