metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[methyl­amine-μ-oxalato-copper(II)]

CROSSMARK_Color_square_no_text.svg

aWestCHEM, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: danielp@chem.gla.ac.uk

(Received 2 May 2006; accepted 5 May 2006; online 24 May 2006)

The six-coordinate copper(II) ions in the title compound, [Cu(C2O4)(CH5N)], experience a Jahn–Teller distortion. The structure is a two-dimensional coordination network, with three crystallographically independent oxalate ions, two of them centrosymmetric, bridging CuII ions in three different coordination modes. Each Cu ion is also coordinated by methyl­amine which is involved in both intra- and inter­layer hydrogen bonding.

Comment

The oxalate ligand is known for its chelating and bridging coordination modes. It is used by magnetochemists to mediate significant exchange inter­actions and can result in magnetically ordered materials (Coronado et al., 2000[Coronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J. & Laukhin, V. (2000). Nature (London), 408, 447-449.]; Decurtins et al., 1993[Decurtins, S., Schmalle, H. W., Schneuwly, P. & Oswald, H. R. (1993). Inorg. Chem. 32, 1888-1892.]; Demunno et al., 1995[Demunno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408-411.]; Hursthouse et al., 2004[Hursthouse, M. B., Light, M. E. & Price, D. J. (2004). Angew. Chem. Int. Ed. 43, 472-475.]; Julve et al., 1984[Julve, M., Verdaguer, M., Gleizes, A., Philochelevisalles, M. & Kahn, O. (1984). Inorg. Chem. 23, 3808-3818.]; Keene et al., 2004[Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007-1013.]; Mathoniere et al., 1996[Mathoniere, C., Nuttall, C. J., Carling, S. G. & Day, P. (1996). Inorg. Chem. 35, 1201-1206.]; Price et al., 2001[Price, D. J., Tripp, S., Powell, A. K. & Wood, P. T. (2001). Chem. Eur. J. 7, 200-208.]). We present here the structure of [Cu(ox)(CH3NH2)] (ox = oxalate), (I)[link].

[Scheme 1]

The asymmetric unit of (I)[link] contains two Cu atoms, two methyl­amine mol­ecules, and one complete and two halves of oxalate anions (Fig. 1[link]). The CuII cations each have a CuNO5 coordination and show a large Jahn–Teller-induced tetra­gonal elongation. While the coordination environment of each CuII ion is very similar (Table 1[link]), the coordination of the three oxalate ions differs signif­icantly (Fig. 2[link]). The structure of (I)[link] is a complex two-dimen­sional coordination network that can best be viewed by initially considering only the short Cu—O/N contacts (<2.05 Å). The structure is built from two distinct copper oxalate chains. Chain A (Fig. 3[link]) is formed from Cu1 and the oxalate containing C1 and C2; it consists of a simple alternation of these components, with a |–Cu1–oxB|n repeat unit and a Cu⋯Cu separation of 5.530 (3) Å. Chain B (Fig. 3[link]) is built from Cu2 and the crystallographically centrosymmetric oxalate anions containing C3 and C4. It has a more complex topology with a |–Cu2–oxA–Cu2–oxC–|n repeat unit and alternating Cu⋯Cu separations of 5.537 (9) and 5.192 (9) Å. The longer Cu—O inter­actions link neighbouring chains into a corrugated two-dimensional structure in the bc plane (Fig. 4[link]). The coordinated methyl­amine displays both intra- and inter­layer hydrogen bonding (Table 2[link]).

Surprisingly, there are very few structures that contain copper and either methyl- or ethyl­amine. Chemically, the most similar compound with a known structure is [Cu(NH3)(ox)] (Cavalca et al., 1972[Cavalca, L., Tomlinso, A. A., Villa, A. C., Manfredo, A. G. & Mangia, A. (1972). J. Chem. Soc. Dalton Trans. pp. 391-398.]). Indeed, the structure of this compound shows remarkable similarity to that of (I)[link]. [Cu(NH3)(ox)] also has a two-dimensional character, being built from Cu(ox) chains with the type B structure described above. Here, neighbouring chains are linked through the long Cu—O inter­actions into a two-dimensional sheet structure, with a topology that is different from that seen in (I)[link].

[Figure 1]
Figure 1
Fig. 1[link]. The asymmetric unit of (I)[link] and selected symmetry-equivalent atoms, showing the coordination of both metal ions and ligands. Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) 1 − x, −y, −z; (ii) 1 − x, −y, 1 − z; (iii) x, [{1\over 2}]y, [{1\over 2}] + z; (iv) x, [{1\over 2}]y, −[{1\over 2}] + z].
[Figure 2]
Figure 2
Schematic illustration of the three oxalate coordination modes seen in (I)[link].
[Figure 3]
Figure 3
Two types of copper oxalate chain (A top and B bottom) from which the extended structure is built.
[Figure 4]
Figure 4
The complex two-dimensional Cu(ox) network, viewed along the a axis.

Experimental

Single crystals of (I)[link] were synthesized by dissolving synthetic mooloolite, viz. [Cu(ox)]·0.33H2O (1.000 g, 6.35 mmol), in an aqueous methyl­amine solution (20 ml, 40% w/w). The resultant dark-blue solution was further diluted with distilled water to a volume of 100 ml and left to evaporate. Blue crystals of (I)[link] formed as a minor product amongst a large proportion of finely divided [Cu(ox)]·0.33H2O.

Crystal data
  • [Cu(C2O4)(CH5N)]

  • Mr = 365.24

  • Monoclinic, P 21 /c

  • a = 9.421 (8) Å

  • b = 12.668 (12) Å

  • c = 9.392 (7) Å

  • β = 102.53 (7)°

  • V = 1094.1 (16) Å3

  • Z = 4

  • Dx = 2.217 Mg m−3

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 293 (2) K

  • Block, blue

  • 0.04 × 0.03 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 1.10. University of Göttingen, Germany.]) Tmin = 0.859, Tmax = 0.891

  • 11196 measured reflections

  • 2525 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.076

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.130

  • S = 1.08

  • 2525 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0482P)2 + 2.4064P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.955 (4)
Cu1—N1 1.992 (5)
Cu1—O4i 2.004 (4)
Cu1—O3 2.025 (4)
Cu1—O2i 2.307 (4)
Cu2—O7 1.967 (4)
Cu2—N2 1.974 (5)
Cu2—O5 1.994 (4)
Cu2—O6ii 2.002 (4)
Cu2—O8iii 2.311 (4)
O1—Cu1—N1 91.98 (18)
N1—Cu1—O4i 91.02 (17)
O1—Cu1—O3 83.91 (15)
O4i—Cu1—O3 93.74 (15)
O1—Cu1—O2i 97.03 (15)
N1—Cu1—O2i 98.67 (18)
O4i—Cu1—O2i 78.06 (15)
O3—Cu1—O2i 89.74 (16)
O7—Cu2—N2 92.53 (19)
O7—Cu2—O5 93.08 (16)
N2—Cu2—O6ii 90.85 (18)
O5—Cu2—O6ii 84.50 (16)
O7—Cu2—O8iii 78.20 (15)
N2—Cu2—O8iii 100.3 (2)
O5—Cu2—O8iii 89.80 (18)
O6ii—Cu2—O8iii 95.65 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1v 0.9 2.22 3.042 (7) 153
N1—H1B⋯O6vi 0.9 2.39 3.256 (7) 161
N2—H2B⋯O4 0.9 2.42 3.137 (7) 137
Symmetry codes: (v) -x, -y, -z+1; (vi) x, y, z+1.

H atoms were positioned geometrically, with N—H = 0.90 Å for amine H and C—H = 0.96 Å for methyl H atoms, and were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.2 for amine H and x = 1.5 for methyl H atoms.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]) in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]) in WinGX; molec­ular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1993) in WinGX (Farrugia, 1999)'; program(s) used to refine structure: SHELXS97 (Sheldrick, 1997) in WinGX'; molecular graphics: DIAMOND (Brandenburg, 1999).

Poly[methylamine-µ3-oxalato-copper(II)] top
Crystal data top
[Cu(C2O4)(CH5N)]F(000) = 728
Mr = 365.24Dx = 2.217 Mg m3
Monoclinic, P21/cMelting point: N/A K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.421 (8) ÅCell parameters from 3698 reflections
b = 12.668 (12) Åθ = 2.9–27.5°
c = 9.392 (7) ŵ = 3.92 mm1
β = 102.53 (7)°T = 566 K
V = 1094.1 (16) Å3Block, blue
Z = 40.04 × 0.03 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1816 reflections with I > 2σ(I)
φ and ω scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 27.7°, θmin = 3.2°
Tmin = 0.859, Tmax = 0.891h = 1012
11196 measured reflectionsk = 1614
2525 independent reflectionsl = 1012
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0482P)2 + 2.4064P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.53 e Å3
2525 reflectionsΔρmin = 0.79 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19173 (7)0.14720 (5)0.67560 (7)0.0302 (2)
Cu20.49291 (8)0.10215 (6)0.23795 (7)0.0328 (2)
O10.0744 (4)0.1432 (3)0.4765 (4)0.0332 (9)
O20.0588 (4)0.2250 (3)0.2635 (4)0.0368 (9)
O30.3028 (4)0.2615 (3)0.5955 (4)0.0318 (9)
O40.3051 (4)0.3347 (3)0.3809 (4)0.0308 (9)
O50.3811 (4)0.0131 (3)0.1192 (4)0.0347 (9)
O60.3845 (4)0.0980 (3)0.0886 (4)0.0347 (9)
O70.3817 (4)0.0902 (3)0.3919 (4)0.0346 (9)
O80.3739 (4)0.0225 (3)0.6094 (4)0.0414 (10)
N10.0929 (5)0.0199 (4)0.7323 (5)0.0349 (11)
H1A0.06470.02050.65230.042*
H1B0.1590.01740.79630.042*
N20.5906 (5)0.2327 (4)0.3227 (5)0.0410 (12)
H2A0.58230.28060.25060.049*
H2B0.54120.25790.38730.049*
C10.1168 (6)0.2084 (4)0.3928 (6)0.0278 (11)
C20.2527 (6)0.2730 (4)0.4620 (6)0.0289 (12)
C30.4327 (6)0.0315 (4)0.0094 (6)0.0288 (12)
C40.4293 (6)0.0320 (4)0.5010 (6)0.0312 (12)
C50.0350 (9)0.0366 (7)0.7974 (10)0.082 (3)
H5A0.07220.03050.81990.123*
H5B0.1090.07370.72930.123*
H5C0.00690.07740.88510.123*
C60.7426 (9)0.2267 (7)0.3953 (11)0.091 (3)
H6A0.77610.29540.43080.137*
H6B0.79850.20250.32750.137*
H6C0.7540.17830.47560.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0351 (4)0.0295 (4)0.0264 (4)0.0041 (3)0.0077 (3)0.0003 (3)
Cu20.0383 (4)0.0320 (4)0.0306 (4)0.0011 (3)0.0132 (3)0.0022 (3)
O10.032 (2)0.033 (2)0.033 (2)0.0071 (18)0.0063 (16)0.0037 (16)
O20.042 (2)0.039 (2)0.028 (2)0.0024 (19)0.0053 (17)0.0027 (17)
O30.037 (2)0.033 (2)0.025 (2)0.0045 (17)0.0043 (16)0.0024 (16)
O40.034 (2)0.030 (2)0.027 (2)0.0002 (16)0.0045 (16)0.0014 (15)
O50.041 (2)0.037 (2)0.030 (2)0.0049 (19)0.0163 (17)0.0047 (17)
O60.042 (2)0.036 (2)0.028 (2)0.0060 (18)0.0129 (17)0.0022 (17)
O70.041 (2)0.035 (2)0.030 (2)0.0112 (18)0.0115 (17)0.0070 (16)
O80.046 (3)0.046 (2)0.037 (2)0.013 (2)0.0203 (19)0.0100 (19)
N10.040 (3)0.033 (3)0.032 (2)0.005 (2)0.009 (2)0.000 (2)
N20.045 (3)0.033 (3)0.047 (3)0.002 (2)0.015 (2)0.007 (2)
C10.029 (3)0.027 (3)0.029 (3)0.001 (2)0.010 (2)0.001 (2)
C20.031 (3)0.029 (3)0.029 (3)0.003 (2)0.011 (2)0.000 (2)
C30.034 (3)0.027 (3)0.025 (3)0.003 (2)0.007 (2)0.005 (2)
C40.033 (3)0.029 (3)0.032 (3)0.001 (2)0.007 (2)0.000 (2)
C50.091 (6)0.059 (5)0.119 (7)0.023 (5)0.071 (6)0.024 (5)
C60.041 (5)0.076 (6)0.150 (9)0.003 (4)0.004 (5)0.044 (6)
Geometric parameters (Å, º) top
Cu1—O11.955 (4)C1—O11.264 (6)
Cu1—N11.992 (5)C2—O31.249 (6)
Cu1—O4i2.004 (4)C2—O41.265 (6)
Cu1—O32.025 (4)C2—C11.539 (8)
Cu1—O2i2.307 (4)C3—O51.254 (6)
Cu2—O71.967 (4)C3—O61.258 (6)
Cu2—N21.974 (5)C3—C3ii1.541 (11)
Cu2—O51.994 (4)C4—O81.247 (6)
Cu2—O6ii2.002 (4)C4—O71.262 (6)
Cu2—O8iii2.311 (4)C4—C4iii1.564 (11)
O2—Cu1iv2.307 (4)C5—N11.480 (9)
O4—Cu1iv2.004 (4)C5—H5A0.96
O6—Cu2ii2.002 (4)C5—H5B0.96
O8—Cu2iii2.311 (4)C5—H5C0.96
N1—H1A0.9C6—N21.448 (9)
N1—H1B0.9C6—H6A0.96
N2—H2A0.9C6—H6B0.96
N2—H2B0.9C6—H6C0.96
C1—O21.237 (6)
O1—Cu1—N191.98 (18)Cu1—N1—H1B107.9
O1—Cu1—O4i174.59 (16)H1A—N1—H1B107.2
N1—Cu1—O4i91.02 (17)C6—N2—Cu2118.2 (5)
O1—Cu1—O383.91 (15)C6—N2—H2A107.8
N1—Cu1—O3171.04 (17)Cu2—N2—H2A107.8
O4i—Cu1—O393.74 (15)C6—N2—H2B107.8
O1—Cu1—O2i97.03 (15)Cu2—N2—H2B107.8
N1—Cu1—O2i98.67 (18)H2A—N2—H2B107.1
O4i—Cu1—O2i78.06 (15)O2—C1—O1126.1 (5)
O3—Cu1—O2i89.74 (16)O2—C1—C2118.3 (5)
O7—Cu2—N292.53 (19)O1—C1—C2115.5 (5)
O7—Cu2—O593.08 (16)O3—C2—O4124.4 (5)
N2—Cu2—O5169.25 (19)O3—C2—C1117.5 (5)
O7—Cu2—O6ii173.43 (16)O4—C2—C1118.2 (5)
N2—Cu2—O6ii90.85 (18)O5—C3—O6125.7 (5)
O5—Cu2—O6ii84.50 (16)O5—C3—C3ii118.3 (6)
O7—Cu2—O8iii78.20 (15)O6—C3—C3ii116.0 (6)
N2—Cu2—O8iii100.3 (2)O8—C4—O7125.5 (5)
O5—Cu2—O8iii89.80 (18)O8—C4—C4iii117.9 (6)
O6ii—Cu2—O8iii95.65 (16)O7—C4—C4iii116.5 (6)
C1—O1—Cu1112.9 (3)N1—C5—H5A109.5
C1—O2—Cu1iv108.2 (3)N1—C5—H5B109.5
C2—O3—Cu1110.0 (3)H5A—C5—H5B109.5
C2—O4—Cu1iv117.0 (3)N1—C5—H5C109.5
C3—O5—Cu2110.1 (3)H5A—C5—H5C109.5
C3—O6—Cu2ii111.0 (3)H5B—C5—H5C109.5
C4—O7—Cu2119.3 (4)N2—C6—H6A109.5
C4—O8—Cu2iii107.8 (3)N2—C6—H6B109.5
C5—N1—Cu1117.7 (4)H6A—C6—H6B109.5
C5—N1—H1A107.9N2—C6—H6C109.5
Cu1—N1—H1A107.9H6A—C6—H6C109.5
C5—N1—H1B107.9H6B—C6—H6C109.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1v0.92.223.042 (7)153
N1—H1B···O6vi0.92.393.256 (7)161
N2—H2B···O40.92.423.137 (7)137
Symmetry codes: (v) x, y, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors are grateful to the EPSRC, the University of Glasgow and the University of Southampton for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCavalca, L., Tomlinso, A. A., Villa, A. C., Manfredo, A. G. & Mangia, A. (1972). J. Chem. Soc. Dalton Trans. pp. 391–398.  CSD CrossRef Web of Science Google Scholar
First citationCoronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J. & Laukhin, V. (2000). Nature (London), 408, 447–449.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDecurtins, S., Schmalle, H. W., Schneuwly, P. & Oswald, H. R. (1993). Inorg. Chem. 32, 1888–1892.  CSD CrossRef CAS Web of Science Google Scholar
First citationDemunno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408–411.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHursthouse, M. B., Light, M. E. & Price, D. J. (2004). Angew. Chem. Int. Ed. 43, 472–475.  Web of Science CSD CrossRef CAS Google Scholar
First citationJulve, M., Verdaguer, M., Gleizes, A., Philochelevisalles, M. & Kahn, O. (1984). Inorg. Chem. 23, 3808–3818.  CSD CrossRef CAS Web of Science Google Scholar
First citationKeene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007–1013.  Web of Science CSD CrossRef Google Scholar
First citationMathoniere, C., Nuttall, C. J., Carling, S. G. & Day, P. (1996). Inorg. Chem. 35, 1201–1206.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrice, D. J., Tripp, S., Powell, A. K. & Wood, P. T. (2001). Chem. Eur. J. 7, 200–208.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 1.10. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds