organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glyoxal 2-nitro­phenyl­hydrazone: a hydrogen-bonded chain of R22(12) and R44(24) rings

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 28 April 2006; accepted 1 May 2006; online 10 May 2006)

Mol­ecules of the title compound, C8H7N3O3, are effectively planar and are linked into chains of edge-fused R22(12) and R44(24) rings by a combination of N—H⋯O and C—H⋯O hydrogen bonds.

Comment

We report here the mol­ecular and supra­molecular structure of the title compound, (I)[link], which completes the series of isomeric glyoxal nitro­phenyl­hydrazones (I)[link]–(III)[link]. These three isomers prove to adopt wholly different supra­molecular structures. In isomer (II)[link], the mol­ecules are linked into simple C(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains by a single N—H⋯O hydrogen bond (Low et al., 2006[Low, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816-o1818.]), while in isomer (III)[link], the mol­ecules are linked by N—H⋯O hydrogen bonds to form triply inter­twined helices, which are themselves linked by C—H⋯O hydrogen bonds into a three-dimensional channel structure enclosing two types of channel (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493-o495.]).

[Scheme 1]

We have now taken the opportunity to determine the supra­molecular structure of compound (I)[link]. This isomer forms crystals of rather poor quality, which are subject to non-merohedral twinning. Accordingly, the quality of the structure determination is not high, but the essential features of the supra­molecular aggregation are beyond doubt.

The mol­ecules of isomer (I)[link] (Fig. 1[link]) are almost planar, as shown by the key torsion angles (Table 1[link]). There is clear bond fixation in the exocyclic portion of the mol­ecule, and the exocyclic bond angles at C1 and C2 indicate that the short intra­molecular H11⋯O21 contact (Table 2[link]) is repulsive in nature.

Two hydrogen bonds (Table 2[link]) link the mol­ecules into a chain of edge-fused centrosymmetric rings running parallel to the [130] direction and generated by inversion. There are R22(12) rings centred at ([{1\over 2}]n, −1 + [{3\over 2}]n, [{1\over 2}]) (n = zero or integer) and R44(24) rings centred at ([{1\over 4}] + [{1\over 2}]n, −[{1\over 4}] + [{3\over 2}]n, [{1\over 2}]) (n = zero or integer) (Fig. 2[link]). Two chains of this type, related to one another by the action of the twofold rotation axes, pass through each unit cell, but there are no direction-specific inter­actions between the chains.

We also note here that not only are the supra­molecular structures of the isomers (I)[link]–(III)[link] wholly distinct, but they also crystallize in three different space groups (C2/c, Cc and I41/a, respectively), with markedly different unit-cell dimensions, having Z = 8, 4, and 16, respectively.

[Figure 1]
Figure 1
The molecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a chain of edge-fused R22(12) and R44(24) rings along [130]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or an `at' sign (@) are at the symmetry positions (1 − x, 1 − y, 1 − z), ([{1\over 2}] + x, [{3\over 2}] + y, z), (−[{1\over 2}] + x, −[{3\over 2}] + y, z), ([{3\over 2}] − x, [{5\over 2}] − y, 1 − z) and ([{1\over 2}] − x, −[{1\over 2}] − y, 1 − z), respectively.

Experimental

Compound (I)[link] was prepared by heating under reflux for 1 h a solution of glyoxal (1 mmol as a 40% aqueous solution) and 2-nitro­phenyl­hydrazine (1 mmol) in methanol (40 ml). The mixture was then cooled to ambient temperature and the solvent was removed under reduced pressure. The residue was recrystallized from ethanol to yield crystals of (I)[link] suitable for single-crystal X-ray diffraction (m.p. 442–444 K).

Crystal data
  • C8H7N3O3

  • Mr = 193.17

  • Monoclinic, C 2/c

  • a = 18.670 (4) Å

  • b = 3.7723 (4) Å

  • c = 23.896 (5) Å

  • β = 96.429 (6)°

  • V = 1672.4 (5) Å3

  • Z = 8

  • Dx = 1.534 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Needle, orange

  • 0.34 × 0.05 × 0.02 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.998

  • 6609 measured reflections

  • 1903 independent reflections

  • 975 reflections with I > 2σ(I)

  • Rint = 0.101

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.268

  • S = 1.09

  • 1903 reflections

  • 128 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1249P)2 + 0.4829P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N11 1.382 (5)
N11—N12 1.347 (5)
N12—C11 1.285 (5)
C11—C12 1.447 (6)
C12—O11 1.215 (5)
C2—C1—N11 123.3 (4)
C6—C1—N11 119.9 (4)
C1—C2—N2 122.5 (4)
C3—C2—N2 116.7 (4)
C2—C1—N11—N12 177.4 (4)
C1—N11—N12—C11 −174.3 (4)
N11—N12—C11—C12 177.7 (3)
N12—C11—C12—O11 −172.8 (4)
C1—C2—N2—O21 −7.7 (6)

Table 2
Parameters (Å, °) for hydrogen bonds and short intramolecular contacts

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O21 0.88 2.01 2.629 (5) 126
N11—H11⋯O21i 0.88 2.50 3.327 (5) 157
C4—H4⋯O11ii 0.95 2.50 3.298 (5) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z].

All H atoms were located in a difference map and then treated as riding atoms, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). The TwinRotMat option in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) indicated non-merohedral twinning, and the twin refinement gave twin fractions of 0.302 (5) and 0.698 (5).

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Glyoxal 2-nitrophenylhydrazone top
Crystal data top
C8H7N3O3F(000) = 800
Mr = 193.17Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1760 reflections
a = 18.670 (4) Åθ = 2.9–27.5°
b = 3.7723 (4) ŵ = 0.12 mm1
c = 23.896 (5) ÅT = 120 K
β = 96.429 (6)°Needle, orange
V = 1672.4 (5) Å30.34 × 0.05 × 0.02 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1903 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.4°
φ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 44
Tmin = 0.971, Tmax = 0.998l = 2430
6609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1249P)2 + 0.4829P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. IR (KBr disk, ν, cm-1): 3294, 2832, 1687, 1611, 1584, 1558, 1493, 1426, 1370, 1341, 1302, 1271, 1223, 1156, 1119, 1075,1037, 997, 898, 860, 785, 744, 690, 651, 614, 491.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5988 (2)0.9186 (11)0.61085 (19)0.0248 (10)
N110.53270 (19)0.7496 (9)0.60542 (16)0.0305 (9)
N120.49995 (19)0.6830 (9)0.65175 (15)0.0266 (9)
C110.4415 (2)0.5000 (11)0.6465 (2)0.0301 (11)
C120.4100 (2)0.4244 (11)0.6978 (2)0.0278 (11)
O110.35891 (17)0.2276 (8)0.70018 (14)0.0366 (9)
C20.6383 (2)0.9861 (11)0.56497 (19)0.0275 (11)
N20.6123 (2)0.8881 (10)0.50804 (17)0.0343 (10)
O210.55688 (17)0.7048 (9)0.49938 (14)0.0388 (9)
O220.6451 (2)0.9858 (10)0.46949 (16)0.0572 (12)
C30.7059 (2)1.1489 (12)0.5732 (2)0.0326 (12)
C40.7350 (2)1.2471 (12)0.6258 (2)0.0322 (12)
C50.6964 (2)1.1903 (11)0.6707 (2)0.0315 (11)
C60.6299 (2)1.0281 (11)0.6637 (2)0.0289 (11)
H110.51220.68610.57200.037*
H11A0.42020.41880.61090.036*
H120.43040.53500.73160.033*
H30.73181.19150.54190.039*
H40.78141.35340.63140.039*
H50.71591.26420.70730.038*
H60.60470.99020.69550.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.022 (2)0.024 (3)0.0001 (18)0.001 (2)0.003 (2)
N110.032 (2)0.041 (2)0.019 (2)0.0040 (18)0.0035 (16)0.0004 (18)
N120.031 (2)0.033 (2)0.016 (2)0.0025 (17)0.0025 (16)0.0015 (17)
C110.032 (2)0.031 (2)0.028 (3)0.003 (2)0.004 (2)0.001 (2)
C120.029 (2)0.033 (3)0.022 (3)0.001 (2)0.004 (2)0.002 (2)
O110.0372 (19)0.047 (2)0.026 (2)0.0079 (17)0.0051 (15)0.0017 (15)
C20.036 (2)0.031 (2)0.015 (3)0.004 (2)0.002 (2)0.0004 (19)
N20.038 (2)0.047 (2)0.018 (2)0.007 (2)0.0057 (18)0.0010 (19)
O210.0367 (18)0.059 (2)0.0205 (19)0.0192 (17)0.0019 (14)0.0055 (16)
O220.059 (2)0.089 (3)0.026 (2)0.035 (2)0.0144 (19)0.004 (2)
C30.037 (3)0.039 (2)0.022 (3)0.010 (2)0.004 (2)0.001 (2)
C40.031 (2)0.036 (3)0.029 (3)0.009 (2)0.001 (2)0.000 (2)
C50.036 (3)0.029 (2)0.027 (3)0.002 (2)0.003 (2)0.003 (2)
C60.038 (3)0.031 (2)0.018 (3)0.003 (2)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
C1—N111.382 (5)C2—N21.440 (6)
C1—C61.391 (6)N2—O221.219 (5)
C1—C21.411 (6)N2—O211.242 (5)
N11—N121.347 (5)C3—C41.364 (7)
N11—H110.88C3—H30.95
N12—C111.285 (5)C4—C51.375 (6)
C11—C121.447 (6)C4—H40.95
C11—H11A0.95C5—C61.378 (6)
C12—O111.215 (5)C5—H50.95
C12—H120.95C6—H60.95
C2—C31.398 (6)
C2—C1—N11123.3 (4)O22—N2—O21121.5 (4)
C6—C1—N11119.9 (4)O22—N2—C2119.4 (4)
C6—C1—C2116.8 (4)O21—N2—C2119.1 (4)
N12—N11—C1119.4 (4)C4—C3—C2120.6 (4)
N12—N11—H11120.3C4—C3—H3119.7
C1—N11—H11120.3C2—C3—H3119.7
C11—N12—N11118.6 (4)C3—C4—C5119.2 (4)
N12—C11—C12116.4 (4)C3—C4—H4120.4
N12—C11—H11A121.8C5—C4—H4120.4
C12—C11—H11A121.8C4—C5—C6121.2 (5)
O11—C12—C11123.7 (4)C4—C5—H5119.4
O11—C12—H12118.1C6—C5—H5119.4
C11—C12—H12118.1C5—C6—C1121.4 (4)
C3—C2—C1120.8 (4)C5—C6—H6119.3
C1—C2—N2122.5 (4)C1—C6—H6119.3
C3—C2—N2116.7 (4)
C6—C1—N11—N122.0 (6)C1—C2—N2—O22172.4 (4)
C2—C1—N11—N12177.4 (4)C3—C2—N2—O21171.3 (4)
C1—N11—N12—C11174.3 (4)C1—C2—N2—O217.7 (6)
N11—N12—C11—C12177.7 (3)C1—C2—C3—C40.3 (7)
N12—C11—C12—O11172.8 (4)N2—C2—C3—C4179.3 (4)
N11—C1—C2—C3178.1 (4)C2—C3—C4—C51.2 (7)
C6—C1—C2—C31.3 (6)C3—C4—C5—C61.7 (7)
N11—C1—C2—N20.9 (7)C4—C5—C6—C10.7 (7)
C6—C1—C2—N2179.8 (4)N11—C1—C6—C5178.6 (4)
C3—C2—N2—O228.6 (6)C2—C1—C6—C50.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O210.882.012.629 (5)126
N11—H11···O21i0.882.503.327 (5)157
C4—H4···O11ii0.952.503.298 (5)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK; the authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493–o495.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816–o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds