organic compounds
1-(4-Nitrobenzoyl)thiosemicarbazide monohydrate: a three-dimensional hydrogen-bonded framework structure
aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250 Rio de Janeiro, RJ, Brazil, bDepartamento de Química Oorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and cDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: j.skakle@abdn.ac.uk
In the title compound, C8H8N4O3S·H2O, strong hydrogen bonding results in the formation of a number of chains and dimers, which combine to give a three-dimensional hydrogen-bonded framework.
Comment
Acylthiosemicarbazides are versatile compounds, having a large spectrum of biological properties (Bhat et al., 1967; Guersoy & Karali, 1995; Plumitallo et al., 2004). They are, in addition, useful precursors of various biologically active including triazoles (Kane et al., 1994; Palaska et al., 2002), thiadiazoles (Oruc et al., 2004; Palaska et al., 2002) and oxadiazoles (Palaska et al., 2002; Yale & Losee, 1966). Certain acylthiosemicarbazide–transition metal complexes have also been shown to possess useful biological activities (Shen et al., 1997; Singh & Singh, 2001). As part of our interest in acylthiosemicarbazide compounds, we now report the of 1-(4-nitrobenzoyl)thiosemicarbazide monohydrate, (I).
Within the , the O atom of the solvent water molecule acts as an H-atom acceptor for the amide group of the organic molecule (Fig. 1). The p-nitro group is rotated from the essentially planar aryl group by an angle of 13.07 (12)°, whereas the CN(O) group is twisted by 10.77 (12)°.
of (I)The hydrogen bonding (Table 2) at the basic level produces a mixture of chains and dimers. The combination of the hydrogen bond described above, together with O1W—H1WA⋯O7ii [symmetry code: (ii) x + 1, y, z] leads to a C22(9) chain (Bernstein et al., 1995) along [010]. Another chain, C(12), forms along [100] via the N9—H9A⋯O42v hydrogen bond [symmetry code: (v) x, y, z − 1]. These combine to form an R56(34) ring (Fig. 2); the disparity between the number of donors and acceptors results from the amide acting as a double donor. The rings link to create a sheet normal to [010] (Fig. 2).
All other hydrogen bonds involve S as an acceptor and result in dimers. In the first, the hydrogen bond within the W—H1WA⋯S11 [symmetry code: (i) 1 − x, 1 − y, −z] to form an R44(12) ring. The other two are simpler motifs; N7—H7⋯S1iii [symmetry code: (iii) 1 − x, 2 − y, −z] giving an R22(10) ring and N8—H8⋯S1iv [symmetry code: (iv) −x, 2 − y, −z] forming an R22(8) motif. The former two dimers combine with the above-described hydrogen bond to give a chain along [010] (Fig. 3). The sheet shown in Fig. 2 and the chain shown in Fig. 3 thus combine to give a three-dimensional hydrogen-bonded framework.
combines with O1Experimental
A solution of potassium thiocyanate (0.73 g, 12.5 mmol) and concentrated HCl (1.25 ml) was added to a stirred solution of 4-nitrobenzoylhydrazide (1.5 g, 8.3 mmol) (Hosamani & Pattanashettar, 2004) in methanol (21 ml). The mixture was evaporated to dryness on a steam bath, further methanol (21 ml) was added and the mixture heated for 1 h on a steam bath. The resulting solid was successively washed with water and a small volume of ethanol, and recrystallized from acetone, yielding 2.1 g (70%) of yellow 1-(4-nitrobenzoyl)thiosemicarbazide (m.p. 489 K). 1H NMR (500 MHz, DMSO-d6): δ 10.71 (s, 1H, CONHNH), 9.44 (s, 1H, CONH), 8.33 (d, 2H, J = 8.5 Hz, Ar—H), 8.13 (d, 2H, J = 8.5 Hz, Ar—H), 7.95 (s, 1H, CSNH2), 7.79 (s, 1H, CSNH2).
Crystal data
|
Refinement
|
All H atoms were located in difference maps; those in the aryl ring were then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). All other H atoms were refined freely.
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997) and PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S1600536806019301/lh2086sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806019301/lh2086Isup2.hkl
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).C8H8N4O3S·H2O | Z = 2 |
Mr = 258.26 | F(000) = 268 |
Triclinic, P1 | Dx = 1.613 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0621 (2) Å | Cell parameters from 2242 reflections |
b = 7.3991 (3) Å | θ = 2.9–27.5° |
c = 12.2661 (5) Å | µ = 0.32 mm−1 |
α = 75.9684 (16)° | T = 120 K |
β = 85.112 (2)° | Slab, pale yellow |
γ = 88.903 (2)° | 0.45 × 0.45 × 0.10 mm |
V = 531.83 (4) Å3 |
Bruker–Nonius KappaCCD diffractometer | 2425 independent reflections |
Radiation source: Bruker–Nonius KappaCCD | 2178 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.028 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −9→9 |
Tmin = 0.688, Tmax = 0.928 | l = −15→15 |
8670 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2095P] where P = (Fo2 + 2Fc2)/3 |
2425 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Experimental. IR νmax (KBr, cm-1): 3515, 3429, 3157, 1683, 1630, 1605, 1522, 1348, 1264, 714. 13C NMR (125 MHz, DMSO-d6): δ 181.92, 164.30, 149.20, 138.24, 129.30, 123.22. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4146 (2) | 0.75286 (19) | 0.39533 (11) | 0.0124 (3) | |
C2 | 0.6269 (2) | 0.82803 (19) | 0.38368 (11) | 0.0145 (3) | |
H2 | 0.6979 | 0.8770 | 0.3106 | 0.019* | |
C3 | 0.7348 (2) | 0.83152 (19) | 0.47840 (12) | 0.0141 (3) | |
H3 | 0.8784 | 0.8843 | 0.4714 | 0.018* | |
C4 | 0.6275 (2) | 0.75598 (19) | 0.58338 (11) | 0.0129 (3) | |
C5 | 0.4188 (2) | 0.67728 (19) | 0.59826 (12) | 0.0143 (3) | |
H5 | 0.3507 | 0.6251 | 0.6716 | 0.019* | |
C6 | 0.3118 (2) | 0.67690 (19) | 0.50267 (12) | 0.0134 (3) | |
H6 | 0.1677 | 0.6247 | 0.5103 | 0.017* | |
N4 | 0.74170 (19) | 0.75903 (17) | 0.68434 (10) | 0.0156 (3) | |
O41 | 0.90680 (19) | 0.85720 (17) | 0.67255 (9) | 0.0266 (3) | |
O42 | 0.66489 (18) | 0.66376 (17) | 0.77561 (9) | 0.0242 (3) | |
C7 | 0.2872 (2) | 0.74619 (19) | 0.29655 (11) | 0.0128 (3) | |
O7 | 0.11625 (16) | 0.65565 (15) | 0.30868 (9) | 0.0186 (2) | |
N7 | 0.3713 (2) | 0.84764 (17) | 0.19467 (10) | 0.0142 (3) | |
H7 | 0.476 (3) | 0.921 (3) | 0.1890 (15) | 0.018* | |
N8 | 0.2502 (2) | 0.86376 (18) | 0.10162 (10) | 0.0156 (3) | |
H8 | 0.133 (3) | 0.930 (3) | 0.0979 (15) | 0.020* | |
C8 | 0.3325 (2) | 0.80758 (19) | 0.01032 (11) | 0.0131 (3) | |
N9 | 0.5224 (2) | 0.71739 (18) | 0.01309 (11) | 0.0177 (3) | |
H9A | 0.574 (3) | 0.684 (3) | −0.0449 (17) | 0.023* | |
H9B | 0.598 (3) | 0.689 (3) | 0.0745 (17) | 0.023* | |
S1 | 0.18825 (6) | 0.85785 (5) | −0.10755 (3) | 0.01538 (12) | |
O1W | 0.83048 (19) | 0.56199 (16) | 0.16378 (10) | 0.0208 (2) | |
H1WA | 0.932 (3) | 0.595 (3) | 0.1938 (17) | 0.027* | |
H1WA | 0.867 (3) | 0.468 (3) | 0.1476 (17) | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0146 (6) | 0.0122 (6) | 0.0116 (6) | 0.0024 (5) | −0.0043 (5) | −0.0042 (5) |
C2 | 0.0157 (7) | 0.0159 (7) | 0.0109 (6) | −0.0004 (5) | −0.0020 (5) | −0.0008 (5) |
C3 | 0.0125 (6) | 0.0145 (7) | 0.0157 (7) | −0.0013 (5) | −0.0033 (5) | −0.0032 (5) |
C4 | 0.0162 (7) | 0.0135 (6) | 0.0107 (6) | 0.0035 (5) | −0.0054 (5) | −0.0053 (5) |
C5 | 0.0160 (7) | 0.0153 (7) | 0.0115 (6) | 0.0015 (5) | −0.0006 (5) | −0.0033 (5) |
C6 | 0.0120 (6) | 0.0137 (6) | 0.0146 (7) | 0.0004 (5) | −0.0014 (5) | −0.0035 (5) |
N4 | 0.0160 (6) | 0.0195 (6) | 0.0134 (6) | 0.0036 (5) | −0.0042 (4) | −0.0071 (5) |
O41 | 0.0258 (6) | 0.0332 (7) | 0.0223 (6) | −0.0090 (5) | −0.0111 (4) | −0.0060 (5) |
O42 | 0.0260 (6) | 0.0371 (7) | 0.0093 (5) | −0.0008 (5) | −0.0023 (4) | −0.0049 (5) |
C7 | 0.0137 (6) | 0.0138 (6) | 0.0119 (6) | 0.0029 (5) | −0.0029 (5) | −0.0049 (5) |
O7 | 0.0153 (5) | 0.0252 (6) | 0.0158 (5) | −0.0047 (4) | −0.0040 (4) | −0.0046 (4) |
N7 | 0.0136 (6) | 0.0192 (6) | 0.0107 (6) | −0.0024 (5) | −0.0044 (4) | −0.0040 (5) |
N8 | 0.0151 (6) | 0.0218 (6) | 0.0111 (6) | 0.0038 (5) | −0.0067 (4) | −0.0050 (5) |
C8 | 0.0157 (7) | 0.0116 (6) | 0.0112 (6) | −0.0032 (5) | −0.0021 (5) | −0.0009 (5) |
N9 | 0.0192 (6) | 0.0238 (7) | 0.0121 (6) | 0.0066 (5) | −0.0059 (5) | −0.0071 (5) |
S1 | 0.0180 (2) | 0.0187 (2) | 0.01036 (19) | 0.00160 (13) | −0.00624 (13) | −0.00371 (13) |
O1W | 0.0208 (6) | 0.0193 (6) | 0.0236 (6) | −0.0006 (4) | −0.0108 (4) | −0.0047 (5) |
C1—C2 | 1.3943 (19) | N4—O42 | 1.2281 (16) |
C1—C6 | 1.3973 (19) | C7—O7 | 1.2234 (17) |
C1—C7 | 1.5022 (18) | C7—N7 | 1.3551 (18) |
C2—C3 | 1.3867 (19) | N7—N8 | 1.3890 (16) |
C2—H2 | 0.9500 | N7—H7 | 0.831 (19) |
C3—C4 | 1.3840 (19) | N8—C8 | 1.3411 (18) |
C3—H3 | 0.9500 | N8—H8 | 0.854 (19) |
C4—C5 | 1.382 (2) | C8—N9 | 1.3180 (18) |
C4—N4 | 1.4742 (17) | C8—S1 | 1.7135 (14) |
C5—C6 | 1.3882 (19) | N9—H9A | 0.84 (2) |
C5—H5 | 0.9500 | N9—H9B | 0.89 (2) |
C6—H6 | 0.9500 | O1W—H1WA | 0.81 (2) |
N4—O41 | 1.2257 (16) | O1W—H1WA | 0.79 (2) |
C2—C1—C6 | 120.01 (12) | O41—N4—C4 | 118.21 (11) |
C2—C1—C7 | 123.07 (12) | O42—N4—C4 | 118.00 (12) |
C6—C1—C7 | 116.92 (12) | O7—C7—N7 | 122.55 (12) |
C3—C2—C1 | 120.21 (12) | O7—C7—C1 | 121.35 (12) |
C3—C2—H2 | 119.9 | N7—C7—C1 | 116.10 (12) |
C1—C2—H2 | 119.9 | C7—N7—N8 | 119.14 (12) |
C4—C3—C2 | 118.22 (12) | C7—N7—H7 | 121.3 (12) |
C4—C3—H3 | 120.9 | N8—N7—H7 | 117.8 (13) |
C2—C3—H3 | 120.9 | C8—N8—N7 | 121.51 (12) |
C5—C4—C3 | 123.23 (13) | C8—N8—H8 | 119.3 (12) |
C5—C4—N4 | 118.35 (12) | N7—N8—H8 | 118.1 (12) |
C3—C4—N4 | 118.42 (12) | N9—C8—N8 | 119.39 (13) |
C4—C5—C6 | 117.89 (13) | N9—C8—S1 | 121.85 (11) |
C4—C5—H5 | 121.1 | N8—C8—S1 | 118.75 (10) |
C6—C5—H5 | 121.1 | C8—N9—H9A | 118.7 (13) |
C5—C6—C1 | 120.44 (13) | C8—N9—H9B | 122.6 (12) |
C5—C6—H6 | 119.8 | H9A—N9—H9B | 118.7 (17) |
C1—C6—H6 | 119.8 | H1WA—O1W—H1WA | 107 (2) |
O41—N4—O42 | 123.78 (12) | ||
C6—C1—C2—C3 | −1.5 (2) | C5—C4—N4—O42 | 12.54 (18) |
C7—C1—C2—C3 | 179.39 (12) | C3—C4—N4—O42 | −167.28 (13) |
C1—C2—C3—C4 | 1.1 (2) | C2—C1—C7—O7 | 169.10 (13) |
C2—C3—C4—C5 | 0.1 (2) | C6—C1—C7—O7 | −10.07 (19) |
C2—C3—C4—N4 | 179.88 (12) | C2—C1—C7—N7 | −11.73 (19) |
C3—C4—C5—C6 | −0.9 (2) | C6—C1—C7—N7 | 169.10 (12) |
N4—C4—C5—C6 | 179.33 (11) | O7—C7—N7—N8 | 5.9 (2) |
C4—C5—C6—C1 | 0.5 (2) | C1—C7—N7—N8 | −173.27 (11) |
C2—C1—C6—C5 | 0.6 (2) | C7—N7—N8—C8 | −121.29 (15) |
C7—C1—C6—C5 | 179.85 (12) | N7—N8—C8—N9 | 7.2 (2) |
C5—C4—N4—O41 | −167.02 (13) | N7—N8—C8—S1 | −172.06 (10) |
C3—C4—N4—O41 | 13.16 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···S1i | 0.79 (2) | 2.61 (2) | 3.3472 (13) | 156.5 (18) |
O1W—H1WA···O7ii | 0.81 (2) | 2.01 (2) | 2.7944 (15) | 162.7 (19) |
N7—H7···S1iii | 0.831 (19) | 2.608 (19) | 3.4096 (13) | 162.4 (16) |
N8—H8···S1iv | 0.854 (19) | 2.49 (2) | 3.3382 (13) | 172.0 (16) |
N9—H9A···O42v | 0.84 (2) | 2.26 (2) | 3.0834 (17) | 164.8 (18) |
N9—H9B···O1W | 0.89 (2) | 1.94 (2) | 2.7754 (16) | 153.8 (17) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y+2, −z; (iv) −x, −y+2, −z; (v) x, y, z−1. |
Acknowledgements
We are indebted to the EPSRC for the use of both the Chemical Database Service at Daresbury, England, primarily for access to the Cambridge Structural Database (Fletcher et al., 1996), and the X-ray service at the University of Southampton, England, for data collection.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhat, A. K., Bhamaria, R. P., Bellare, R. A. & Deliwala, C. V. (1967). Indian J. Chem. 5, 397–401. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749. CrossRef CAS Web of Science Google Scholar
Guersoy, A. & Karali, N. (1995). Farmaco, 50, 857–866. CAS PubMed Web of Science Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hosamani, K. M. & Pattanashettar, R. S. (2004). Ind. Eng. Chem. Res. 43, 4979–4999. Web of Science CrossRef CAS Google Scholar
Kane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M., Kehne, J. H., Ketteler, H. J., Mccloskey, T. C., Senyah, Y., Chmielewski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125–132. CrossRef CAS PubMed Web of Science Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland. Google Scholar
Oruc, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107. Web of Science CrossRef PubMed CAS Google Scholar
Plumitallo, A., Cardia, M. C., Distinto, S., DeLogu, A. & Maccioni, E. (2004). Farmaco, 59, 945–952. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482. CSD CrossRef CAS Web of Science Google Scholar
Singh, N. K. & Singh, S. B. (2001). Indian J. Chem. Sect A, 40, 1070–1075. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yale, H. L. & Losee, K. (1966). J. Med. Chem. 9, 478–483. CrossRef CAS PubMed Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.