organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Nitro­benzo­yl)thio­semicarbazide monohydrate: a three-dimensional hydrogen-bonded framework structure

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250 Rio de Janeiro, RJ, Brazil, bDepartamento de Química Oorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and cDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: j.skakle@abdn.ac.uk

(Received 23 May 2006; accepted 23 May 2006; online 31 May 2006)

In the title compound, C8H8N4O3S·H2O, strong hydrogen bonding results in the formation of a number of chains and dimers, which combine to give a three-dimensional hydrogen-bonded framework.

Comment

Acyl­thio­semicarbazides are versatile compounds, having a large spectrum of biological properties (Bhat et al., 1967[Bhat, A. K., Bhamaria, R. P., Bellare, R. A. & Deliwala, C. V. (1967). Indian J. Chem. 5, 397-401.]; Guersoy & Karali, 1995[Guersoy, A. & Karali, N. (1995). Farmaco, 50, 857-866.]; Plumitallo et al., 2004[Plumitallo, A., Cardia, M. C., Distinto, S., DeLogu, A. & Maccioni, E. (2004). Farmaco, 59, 945-952.]). They are, in addition, useful precursors of various biologically active heterocyclic compounds, including triazoles (Kane et al., 1994[Kane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M., Kehne, J. H., Ketteler, H. J., Mccloskey, T. C., Senyah, Y., Chmielewski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125-132.]; Palaska et al., 2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]), thia­diazo­les (Oruc et al., 2004[Oruc, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]; Palaska et al., 2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]) and oxadiazo­les (Palaska et al., 2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]; Yale & Losee, 1966[Yale, H. L. & Losee, K. (1966). J. Med. Chem. 9, 478-483.]). Certain acyl­thio­semicarbazide–transition metal complexes have also been shown to possess useful biological activities (Shen et al., 1997[Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477-1482.]; Singh & Singh, 2001[Singh, N. K. & Singh, S. B. (2001). Indian J. Chem. Sect A, 40, 1070-1075.]). As part of our inter­est in acyl­thio­semicarbazide compounds, we now report the crystal structure of 1-(4-nitro­benzo­yl)thio­semicarbazide monohydrate, (I)[link].

[Scheme 1]

Within the asymmetric unit of (I)[link], the O atom of the solvent water mol­ecule acts as an H-atom acceptor for the amide group of the organic mol­ecule (Fig. 1[link]). The p-nitro group is rotated from the essentially planar aryl group by an angle of 13.07 (12)°, whereas the CN(O) group is twisted by 10.77 (12)°.

The hydrogen bonding (Table 2) at the basic level produces a mixture of chains and dimers. The combination of the hydrogen bond described above, together with O1W—H1WA⋯O7ii [symmetry code: (ii) x + 1, y, z] leads to a C22(9) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along [010]. Another chain, C(12), forms along [100] via the N9—H9A⋯O42v hydrogen bond [symmetry code: (v) x, y, z − 1]. These combine to form an R56(34) ring (Fig. 2[link]); the disparity between the number of donors and acceptors results from the amide acting as a double donor. The rings link to create a sheet normal to [010] (Fig. 2[link]).

All other hydrogen bonds involve S as an acceptor and result in dimers. In the first, the hydrogen bond within the asymmetric unit combines with O1W—H1WA⋯S11 [symmetry code: (i) 1 − x, 1 − y, −z] to form an R44(12) ring. The other two are simpler motifs; N7—H7⋯S1iii [symmetry code: (iii) 1 − x, 2 − y, −z] giving an R22(10) ring and N8—H8⋯S1iv [symmetry code: (iv) −x, 2 − y, −z] forming an R22(8) motif. The former two dimers combine with the above-described hydrogen bond to give a chain along [010] (Fig. 3[link]). The sheet shown in Fig. 2[link] and the chain shown in Fig. 3[link] thus combine to give a three-dimensional hydrogen-bonded framework.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as circles of arbitrary radius. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded R56(34) ring which links with others to give sheets. Atoms marked with (ii), (v) or a hash (#) are at the symmetry positions (1 + x, y, z), (x, y, −1 + z) and (1 + x, y, −1 + z), respectively. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the formation of hydrogen-bonded dimers linked to form a chain. Atoms marked with (i), (iii) or an asterisk (*) are at the symmetry positions (1 − x, 1 − y, −z), (1 − x, 2 − y, −z) and (x, 1 + y, z) respectively. Dashed lines indicate hydrogen bonds.

Experimental

A solution of potassium thiocyanate (0.73 g, 12.5 mmol) and concentrated HCl (1.25 ml) was added to a stirred solution of 4-nitro­benzoyl­hydrazide (1.5 g, 8.3 mmol) (Hosamani & Pattanashettar, 2004[Hosamani, K. M. & Pattanashettar, R. S. (2004). Ind. Eng. Chem. Res. 43, 4979-4999.]) in methanol (21 ml). The mixture was evaporated to dryness on a steam bath, further methanol (21 ml) was added and the mixture heated for 1 h on a steam bath. The resulting solid was successively washed with water and a small volume of ethanol, and recrystallized from acetone, yielding 2.1 g (70%) of yellow 1-(4-nitro­benzo­yl)thio­semicarbazide (m.p. 489 K). 1H NMR (500 MHz, DMSO-d6): δ 10.71 (s, 1H, CONHNH), 9.44 (s, 1H, CONH), 8.33 (d, 2H, J = 8.5 Hz, Ar—H), 8.13 (d, 2H, J = 8.5 Hz, Ar—H), 7.95 (s, 1H, CSNH2), 7.79 (s, 1H, CSNH2).

Crystal data
  • C8H8N4O3S·H2O

  • Mr = 258.26

  • Triclinic, [P \overline 1]

  • a = 6.0621 (2) Å

  • b = 7.3991 (3) Å

  • c = 12.2661 (5) Å

  • α = 75.9684 (16)°

  • β = 85.112 (2)°

  • γ = 88.903 (2)°

  • V = 531.83 (4) Å3

  • Z = 2

  • Dx = 1.613 Mg m−3

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 (2) K

  • Slab, pale yellow

  • 0.45 × 0.45 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.928

  • 8670 measured reflections

  • 2425 independent reflections

  • 2178 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.12

  • 2425 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2095P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯S1i 0.79 (2) 2.61 (2) 3.3472 (13) 156.5 (18)
O1W—H1WA⋯O7ii 0.81 (2) 2.01 (2) 2.7944 (15) 162.7 (19)
N7—H7⋯S1iii 0.831 (19) 2.608 (19) 3.4096 (13) 162.4 (16)
N8—H8⋯S1iv 0.854 (19) 2.49 (2) 3.3382 (13) 172.0 (16)
N9—H9A⋯O42v 0.84 (2) 2.26 (2) 3.0834 (17) 164.8 (18)
N9—H9B⋯O1W 0.89 (2) 1.94 (2) 2.7754 (16) 153.8 (17)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+2, -z; (iv) -x, -y+2, -z; (v) x, y, z-1.

All H atoms were located in difference maps; those in the aryl ring were then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). All other H atoms were refined freely.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

1-(4-Nitrobenzoyl)thiosemicarbazide monohydrate top
Crystal data top
C8H8N4O3S·H2OZ = 2
Mr = 258.26F(000) = 268
Triclinic, P1Dx = 1.613 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0621 (2) ÅCell parameters from 2242 reflections
b = 7.3991 (3) Åθ = 2.9–27.5°
c = 12.2661 (5) ŵ = 0.32 mm1
α = 75.9684 (16)°T = 120 K
β = 85.112 (2)°Slab, pale yellow
γ = 88.903 (2)°0.45 × 0.45 × 0.10 mm
V = 531.83 (4) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2425 independent reflections
Radiation source: Bruker–Nonius KappaCCD2178 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.028
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.4°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.688, Tmax = 0.928l = 1515
8670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2095P]
where P = (Fo2 + 2Fc2)/3
2425 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Experimental. IR νmax (KBr, cm-1): 3515, 3429, 3157, 1683, 1630, 1605, 1522, 1348, 1264, 714. 13C NMR (125 MHz, DMSO-d6): δ 181.92, 164.30, 149.20, 138.24, 129.30, 123.22.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4146 (2)0.75286 (19)0.39533 (11)0.0124 (3)
C20.6269 (2)0.82803 (19)0.38368 (11)0.0145 (3)
H20.69790.87700.31060.019*
C30.7348 (2)0.83152 (19)0.47840 (12)0.0141 (3)
H30.87840.88430.47140.018*
C40.6275 (2)0.75598 (19)0.58338 (11)0.0129 (3)
C50.4188 (2)0.67728 (19)0.59826 (12)0.0143 (3)
H50.35070.62510.67160.019*
C60.3118 (2)0.67690 (19)0.50267 (12)0.0134 (3)
H60.16770.62470.51030.017*
N40.74170 (19)0.75903 (17)0.68434 (10)0.0156 (3)
O410.90680 (19)0.85720 (17)0.67255 (9)0.0266 (3)
O420.66489 (18)0.66376 (17)0.77561 (9)0.0242 (3)
C70.2872 (2)0.74619 (19)0.29655 (11)0.0128 (3)
O70.11625 (16)0.65565 (15)0.30868 (9)0.0186 (2)
N70.3713 (2)0.84764 (17)0.19467 (10)0.0142 (3)
H70.476 (3)0.921 (3)0.1890 (15)0.018*
N80.2502 (2)0.86376 (18)0.10162 (10)0.0156 (3)
H80.133 (3)0.930 (3)0.0979 (15)0.020*
C80.3325 (2)0.80758 (19)0.01032 (11)0.0131 (3)
N90.5224 (2)0.71739 (18)0.01309 (11)0.0177 (3)
H9A0.574 (3)0.684 (3)0.0449 (17)0.023*
H9B0.598 (3)0.689 (3)0.0745 (17)0.023*
S10.18825 (6)0.85785 (5)0.10755 (3)0.01538 (12)
O1W0.83048 (19)0.56199 (16)0.16378 (10)0.0208 (2)
H1WA0.932 (3)0.595 (3)0.1938 (17)0.027*
H1WA0.867 (3)0.468 (3)0.1476 (17)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (6)0.0122 (6)0.0116 (6)0.0024 (5)0.0043 (5)0.0042 (5)
C20.0157 (7)0.0159 (7)0.0109 (6)0.0004 (5)0.0020 (5)0.0008 (5)
C30.0125 (6)0.0145 (7)0.0157 (7)0.0013 (5)0.0033 (5)0.0032 (5)
C40.0162 (7)0.0135 (6)0.0107 (6)0.0035 (5)0.0054 (5)0.0053 (5)
C50.0160 (7)0.0153 (7)0.0115 (6)0.0015 (5)0.0006 (5)0.0033 (5)
C60.0120 (6)0.0137 (6)0.0146 (7)0.0004 (5)0.0014 (5)0.0035 (5)
N40.0160 (6)0.0195 (6)0.0134 (6)0.0036 (5)0.0042 (4)0.0071 (5)
O410.0258 (6)0.0332 (7)0.0223 (6)0.0090 (5)0.0111 (4)0.0060 (5)
O420.0260 (6)0.0371 (7)0.0093 (5)0.0008 (5)0.0023 (4)0.0049 (5)
C70.0137 (6)0.0138 (6)0.0119 (6)0.0029 (5)0.0029 (5)0.0049 (5)
O70.0153 (5)0.0252 (6)0.0158 (5)0.0047 (4)0.0040 (4)0.0046 (4)
N70.0136 (6)0.0192 (6)0.0107 (6)0.0024 (5)0.0044 (4)0.0040 (5)
N80.0151 (6)0.0218 (6)0.0111 (6)0.0038 (5)0.0067 (4)0.0050 (5)
C80.0157 (7)0.0116 (6)0.0112 (6)0.0032 (5)0.0021 (5)0.0009 (5)
N90.0192 (6)0.0238 (7)0.0121 (6)0.0066 (5)0.0059 (5)0.0071 (5)
S10.0180 (2)0.0187 (2)0.01036 (19)0.00160 (13)0.00624 (13)0.00371 (13)
O1W0.0208 (6)0.0193 (6)0.0236 (6)0.0006 (4)0.0108 (4)0.0047 (5)
Geometric parameters (Å, º) top
C1—C21.3943 (19)N4—O421.2281 (16)
C1—C61.3973 (19)C7—O71.2234 (17)
C1—C71.5022 (18)C7—N71.3551 (18)
C2—C31.3867 (19)N7—N81.3890 (16)
C2—H20.9500N7—H70.831 (19)
C3—C41.3840 (19)N8—C81.3411 (18)
C3—H30.9500N8—H80.854 (19)
C4—C51.382 (2)C8—N91.3180 (18)
C4—N41.4742 (17)C8—S11.7135 (14)
C5—C61.3882 (19)N9—H9A0.84 (2)
C5—H50.9500N9—H9B0.89 (2)
C6—H60.9500O1W—H1WA0.81 (2)
N4—O411.2257 (16)O1W—H1WA0.79 (2)
C2—C1—C6120.01 (12)O41—N4—C4118.21 (11)
C2—C1—C7123.07 (12)O42—N4—C4118.00 (12)
C6—C1—C7116.92 (12)O7—C7—N7122.55 (12)
C3—C2—C1120.21 (12)O7—C7—C1121.35 (12)
C3—C2—H2119.9N7—C7—C1116.10 (12)
C1—C2—H2119.9C7—N7—N8119.14 (12)
C4—C3—C2118.22 (12)C7—N7—H7121.3 (12)
C4—C3—H3120.9N8—N7—H7117.8 (13)
C2—C3—H3120.9C8—N8—N7121.51 (12)
C5—C4—C3123.23 (13)C8—N8—H8119.3 (12)
C5—C4—N4118.35 (12)N7—N8—H8118.1 (12)
C3—C4—N4118.42 (12)N9—C8—N8119.39 (13)
C4—C5—C6117.89 (13)N9—C8—S1121.85 (11)
C4—C5—H5121.1N8—C8—S1118.75 (10)
C6—C5—H5121.1C8—N9—H9A118.7 (13)
C5—C6—C1120.44 (13)C8—N9—H9B122.6 (12)
C5—C6—H6119.8H9A—N9—H9B118.7 (17)
C1—C6—H6119.8H1WA—O1W—H1WA107 (2)
O41—N4—O42123.78 (12)
C6—C1—C2—C31.5 (2)C5—C4—N4—O4212.54 (18)
C7—C1—C2—C3179.39 (12)C3—C4—N4—O42167.28 (13)
C1—C2—C3—C41.1 (2)C2—C1—C7—O7169.10 (13)
C2—C3—C4—C50.1 (2)C6—C1—C7—O710.07 (19)
C2—C3—C4—N4179.88 (12)C2—C1—C7—N711.73 (19)
C3—C4—C5—C60.9 (2)C6—C1—C7—N7169.10 (12)
N4—C4—C5—C6179.33 (11)O7—C7—N7—N85.9 (2)
C4—C5—C6—C10.5 (2)C1—C7—N7—N8173.27 (11)
C2—C1—C6—C50.6 (2)C7—N7—N8—C8121.29 (15)
C7—C1—C6—C5179.85 (12)N7—N8—C8—N97.2 (2)
C5—C4—N4—O41167.02 (13)N7—N8—C8—S1172.06 (10)
C3—C4—N4—O4113.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···S1i0.79 (2)2.61 (2)3.3472 (13)156.5 (18)
O1W—H1WA···O7ii0.81 (2)2.01 (2)2.7944 (15)162.7 (19)
N7—H7···S1iii0.831 (19)2.608 (19)3.4096 (13)162.4 (16)
N8—H8···S1iv0.854 (19)2.49 (2)3.3382 (13)172.0 (16)
N9—H9A···O42v0.84 (2)2.26 (2)3.0834 (17)164.8 (18)
N9—H9B···O1W0.89 (2)1.94 (2)2.7754 (16)153.8 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z; (iv) x, y+2, z; (v) x, y, z1.
 

Acknowledgements

We are indebted to the EPSRC for the use of both the Chemical Database Service at Daresbury, England, primarily for access to the Cambridge Structural Database (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]), and the X-ray service at the University of Southampton, England, for data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, A. K., Bhamaria, R. P., Bellare, R. A. & Deliwala, C. V. (1967). Indian J. Chem. 5, 397–401.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationGuersoy, A. & Karali, N. (1995). Farmaco, 50, 857–866.  CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHosamani, K. M. & Pattanashettar, R. S. (2004). Ind. Eng. Chem. Res. 43, 4979–4999.  Web of Science CrossRef CAS Google Scholar
First citationKane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M., Kehne, J. H., Ketteler, H. J., Mccloskey, T. C., Senyah, Y., Chmielewski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125–132.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.  Google Scholar
First citationOruc, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlumitallo, A., Cardia, M. C., Distinto, S., DeLogu, A. & Maccioni, E. (2004). Farmaco, 59, 945–952.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationShen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482.  CSD CrossRef CAS Web of Science Google Scholar
First citationSingh, N. K. & Singh, S. B. (2001). Indian J. Chem. Sect A, 40, 1070–1075.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYale, H. L. & Losee, K. (1966). J. Med. Chem. 9, 478–483.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds