organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]silane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: k.b.dillon@durham.ac.uk

(Received 3 February 2006; accepted 11 May 2006; online 17 May 2006)

The title compound, tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane (SiAr′′′4, C32H12F24Si), is a minor product from the reaction of silicon(IV) bromide with lithia­ted 1,3-bis­(trifluoro­meth­yl)benzene (Ar′H). The structure crystallizes with two half-mol­ecules in the asymmetric unit, with each central Si atom positioned on a twofold axis in a pseudo-tetra­hedral environment, with Si—C bond lengths in the range 1.873 (3)–1.879 (3) Å.

Comment

The reactions of silicon(IV) chloride in a 1:2 ratio with lithia­ted trifluoro­methyl-substituted aromatic hydro­carbons are complex and inter­esting (Buijink et al., 1993[Buijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51-56.]; Braddock-Wilking et al., 1995[Braddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89-98.]; Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). With lithia­ted 1,3,5-tris­(trifluoro­meth­yl)benzene (ArH), the only product identified was Ar2SiF2, which was fully characterized crystallographically (Buijink et al., 1993[Buijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51-56.]). This result was subsequently confirmed by Batsanov et al. (2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). Similarly, HSiCl3 reacts with ArLi to form Ar2SiHF, again involving chlorine–fluorine exchange; this has also been characterized by single-crystal X-ray diffraction (Braddock-Wilking et al., 1995[Braddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89-98.]). With 1,3-bis­(trifluoro­meth­yl)benzene, Ar′H, the system is more complicated because there are various lithia­tion positions (Bartle et al., 1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]; Batsanov et al., 2002[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622-4628.], 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]; Cornet et al., 2003[Cornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395-4405.]). These are ortho to both CF3 groups, giving 2,6-bis­(trifluoro­meth­yl)phenyl (Ar′) derivatives, ortho to one CF3 group and para to the other, yielding 2,4-bis­(trifluoro­meth­yl)phenyl (Ar′′) species, and, much less likely, meta to both CF3 groups, giving 3,5-bis­(trifluoro­meth­yl)phenyl (Ar′′′) derivatives. An analytical gas–liquid chromatography study, following carboxyl­ation of the organolithium compounds and subsequent esterification with diazo­methane, showed ca 60% of the 2,4-isomer, 40% of the 2,6-isomer and less than 1% of a third component, presumed to be the 3,5-isomer (Bartle et al., 1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]). With SiCl4, four of the possible disubstituted products, once F/Cl exchange is taken into account, have been observed spectroscopically, viz. Ar′2SiCl2, Ar′2SiF2, Ar′′2SiCl2 and Ar′′2SiF2; two of these, Ar′2SiF2 and Ar′′2SiCl2, have been characterized by single-crystal X-ray diffraction at 120 K (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). The results suggested that the F/Cl exchange rate decreased in the order Ar > Ar′ > Ar′′ (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). It was therefore of considerable inter­est to extend this work to reactions of silicon(IV) bromide in a 1:2 molar ratio with the lithium derivatives of ArH and Ar′H.

Not surprisingly, the only product observed from SiBr4 and ArLi was Ar2SiF2; Si—Br bonds are weaker than Si—Cl bonds, so facile exchange could reasonably be expected. The 19F NMR data are given in Table 2[link], with literature data for comparison (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). With lithia­ted Ar′H and SiBr4, the products Ar′2SiF2 (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]), Ar′′2SiBr2 and Ar′′2SiBrF were identified by 19F NMR solution state spectroscopy (Table 2[link]). The results thus lend support to the idea that halogen exchange is slowest in the Ar′′ species. After the mixture had been left to stand for some time, a few crystals were isolated, and proved to be of the fully substituted silane with no ortho CF3 groups, i.e. tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane. Since there is little or no steric hindrance around silicon, further substitution beyond the disubstituted product is clearly more favourable for 3,5-derivatives than for 2,4- or 2,6-compounds. Nevertheless this product is a surprising one, in view of the work of Bartle et al. (1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]).

[Scheme 1]

The compound tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane, (I)[link], crystallizes in the monoclinic space group P2/c, with two half mol­ecules in the asymmetric unit and the mol­ecular structure is shown in Fig. 1[link]. Selected bond distances and angles are listed in Table 1[link]. The central Si atom is in a tetra­hedral environment, with bond angles around Si between 106.27 (16) and 110.97 (11)°. The Si—C bond lengths are all very similar, between 1.873 (3) and 1.877 (3) Å. The CF3 groups are all ordered, presumably due to the weak F⋯F inter­actions (Fig. 2[link] and Table 1). While this species has not been reported previously, the structurally similar tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]borate ion has been widely used in recent years, since the first report by Nishida et al. (1984[Nishida, H., Takada, N., Yoshimura, M., Sonoda, T. & Kobayashi, H. (1984). Bull. Chem. Soc. Jpn, 57, 2600-2604.]), as a large lipophilic stable counter-ion for a variety of cationic complexes; it features in 291 structures in the Cambridge Structural Database (November 2004 edition; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The structures of neutral tris­[3,5-bis­(trifluoro­meth­yl)phen­yl]phosphane (Jessop et al., 2002[Jessop, P. G., Olmstead, M. M., Ablan, C. D., Grabenauer, M., Sheppard, D., Eckert, C. A. & Liotta, C. L. (2002). Inorg. Chem. 41, 3463-3468.]) and -arsane (Dietzel & Jansen, 2004[Dietzel, P. D. C. & Jansen, M. (2004). Z. Naturforsch. Teil B, 59, 345-347.]) have also been described. However, these species were all made directly from 3,5-bis­(trifluoro­meth­yl)phenyl-substituted aromatic starting mat­erials.

[Figure 1]
Figure 1
View of one of the independent molecules of (I)[link] with selected atoms labelled. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code for primed and unlabelled atoms: 1 − x, y, ½ − z.] The other molecule is very similar.
[Figure 2]
Figure 2
Crystal packing in the title compound, viewed down the b axis, showing short inter­molecular F⋯F contacts as dashed lines. H atoms have been omitted for clarity.

Experimental

All manipulations of air- and/or moisture-sensitive compounds were performed either under an inert atmosphere of dry nitro­gen or in vacuo, using standard Schlenk and cannula techniques, or in a nitro­gen-filled glovebox. 19F NMR spectra were recorded on a Varian Unity 300 Fourier transform spectrometer at 282.2 MHz; chemical shifts were measured relative to external CFCl3. A solution of SiBr4 (1.7 ml, 13.5 mmol) in diethyl ether was added dropwise, via a cannula, to a solution of ArLi (8 ml, 27 mmol) in diethyl ether at 195 K [the lithia­ted solutions of both ArH and Ar'H were prepared as described previously by Batsanov et al. (2002[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622-4628.])]. White fumes were evolved. The mixture was allowed to warm to room temperature and stirred for 5 h, giving a pale-yellow oil. The presence of Ar2SiF2 as the only major silicon-containing component was confirmed by 19F NMR solution state spectroscopy (Table 2[link]). Similarly, a solution of SiBr4 (0.7 ml, 5.6 mmol) in diethyl ether was added slowly, via a cannula, to a solution of lithia­ted Ar′H (4 ml, 11.3 mmol) in diethyl ether at 195 K. The mixture was allowed to reach room temperature and stirred overnight, giving a pale-brown solution. Analysis by 19F NMR spectroscopy indicated three main components (Table 2[link]). When the mixture was allowed to stand for some weeks, a few crystals appeared; these were isolated, and analysed by single-crystal X-ray diffraction. As indicated above, they proved to be of tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane.

Crystal data
  • C32H12F24Si

  • Mr = 880.51

  • Monoclinic, P 2/c

  • a = 18.3760 (4) Å

  • b = 9.5325 (2) Å

  • c = 18.7776 (4) Å

  • β = 100.388 (1)°

  • V = 3235.34 (12) Å3

  • Z = 4

  • Dx = 1.808 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART-6000 CCD diffractometer

  • ω scans

  • Absorption correction: integration (XPREP in SHELXTL; Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.977

  • 28959 measured reflections

  • 7404 independent reflections

  • 5078 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.02

  • 7404 reflections

  • 515 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0779P)2 + 2.8011P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Si1—C11 1.873 (3)
Si1—C31 1.877 (3)
Si2—C41 1.876 (3)
Si2—C21 1.879 (3)
F12⋯F14i 2.847 (3)
F13⋯F31ii 2.919 (3)
F16⋯F42 2.997 (3)
F16⋯F43 2.848 (3)
F21⋯F44iii 2.861 (3)
F31⋯F41 2.901 (3)
F33⋯F26 2.969 (3)
F33⋯F41 2.852 (3)
C11iv—Si1—C11 106.27 (16)
C11iv—Si1—C31iv 110.63 (11)
C11—Si1—C31iv 110.97 (11)
C11iv—Si1—C31 110.97 (11)
C11—Si1—C31 110.63 (11)
C31iv—Si1—C31 107.40 (16)
C41v—Si2—C41 105.22 (16)
C41v—Si2—C21 111.80 (11)
C41—Si2—C21 110.87 (11)
C41v—Si2—C21v 110.87 (11)
C41—Si2—C21v 111.80 (11)
C21—Si2—C21v 106.39 (16)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}];. (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) [x, -y+1, z-{\script{1\over 2}}].

Table 2
19F NMR (p.p.m., Hz) data for reaction products

Group No. of Fs δ 19F 5JFF δ 19Fa 5JFFa
Ar2SiF2          
o-CF3 12 −57.7 t, 12.4 −57.3 t, 12.8
p-CF3 6 −63.8 s −64.2 s
Si—F 2 −125.7 m, NRb −124.5 m, 12.8
Ar′2SiF2          
o-CF3 12 −57.5 t, 12.8 −57.5 t, 12.3
Si—F 2 −125.4 m, 12.8 −125.5 m, 12.5
Ar′′2SiBr2          
o-CF3 6 −57.6 s    
p-CF3 6 −64.5 s    
Ar′′2SiBrF          
o-CF3 6 −59.6 d, 12.8    
p-CF3 6 −64.6 s    
Si—F 1 −158.4 m, 12.8    
Notes: (a) literature data from Batsanov et al. (2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]); (b) not resolved.

All H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Data collection: SMART-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART-NT (Bruker, 2000); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Tetrakis[3,5-bis(trifluoromethyl)phenyl]silane top
Crystal data top
C32H12F24SiF(000) = 1736
Mr = 880.51Dx = 1.808 Mg m3
Monoclinic, P2/cMelting point: not measured K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.3760 (4) ÅCell parameters from 5856 reflections
b = 9.5325 (2) Åθ = 2.4–26.8°
c = 18.7776 (4) ŵ = 0.24 mm1
β = 100.388 (1)°T = 120 K
V = 3235.34 (12) Å3Block, colourless
Z = 40.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART-6000 CCD
diffractometer
7404 independent reflections
Radiation source: fine-focus sealed tube5078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.1°
ω scansh = 2323
Absorption correction: integration
(XPREP in SHELXTL; Sheldrick, 1997b)
k = 1212
Tmin = 0.957, Tmax = 0.977l = 2424
28959 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0779P)2 + 2.8011P]
where P = (Fo2 + 2Fc2)/3
7404 reflections(Δ/σ)max < 0.001
515 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (15 s exposure) covering 0.3° in ω. Crystal to detector distance 5.81 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.50000.51518 (10)0.25000.0226 (2)
C110.50382 (15)0.3973 (3)0.33037 (14)0.0265 (5)
C120.55556 (16)0.2873 (3)0.33934 (15)0.0306 (6)
H120.58730.27480.30510.037*
C130.56073 (16)0.1963 (3)0.39802 (15)0.0324 (6)
C140.51587 (17)0.2136 (3)0.44805 (15)0.0328 (6)
H140.52020.15190.48830.039*
C150.46426 (17)0.3205 (3)0.44026 (15)0.0332 (6)
C160.45809 (16)0.4127 (3)0.38142 (15)0.0307 (6)
H160.42250.48600.37630.037*
C170.61350 (19)0.0747 (3)0.40342 (16)0.0399 (7)
F110.67404 (11)0.1038 (2)0.37646 (12)0.0562 (5)
F120.58198 (12)0.03549 (18)0.36466 (11)0.0524 (5)
F130.63480 (14)0.0299 (2)0.47074 (11)0.0641 (6)
C180.4136 (2)0.3379 (3)0.49352 (18)0.0446 (7)
F140.44268 (14)0.2839 (2)0.55899 (11)0.0691 (7)
F150.34864 (13)0.2778 (3)0.47187 (14)0.0729 (7)
F160.40028 (11)0.4729 (2)0.50652 (10)0.0485 (5)
C310.41640 (14)0.6318 (3)0.23931 (13)0.0242 (5)
C320.41887 (14)0.7540 (3)0.28073 (14)0.0269 (5)
H320.46250.77630.31430.032*
C330.35807 (15)0.8435 (3)0.27335 (14)0.0281 (5)
C340.29410 (15)0.8129 (3)0.22503 (15)0.0295 (6)
H340.25280.87430.22000.035*
C350.29090 (14)0.6912 (3)0.18393 (14)0.0289 (6)
C360.35160 (14)0.6021 (3)0.19073 (14)0.0267 (5)
H360.34880.51980.16180.032*
C370.36451 (17)0.9769 (3)0.31688 (16)0.0369 (6)
F310.40129 (10)0.95860 (18)0.38421 (9)0.0418 (4)
F320.40239 (13)1.07538 (18)0.28782 (11)0.0561 (6)
F330.29914 (11)1.0315 (2)0.32191 (12)0.0571 (5)
C380.22219 (17)0.6590 (3)0.13071 (18)0.0421 (7)
F340.21457 (13)0.7411 (3)0.07311 (13)0.0871 (9)
F350.16130 (10)0.6791 (2)0.15935 (13)0.0622 (6)
F360.21858 (11)0.5268 (2)0.10818 (13)0.0665 (7)
Si20.00000.85198 (10)0.25000.0226 (2)
C210.06268 (14)0.9701 (3)0.20832 (14)0.0263 (5)
C220.06995 (15)0.9610 (3)0.13596 (14)0.0274 (5)
H220.04410.88990.10620.033*
C230.11462 (15)1.0547 (3)0.10653 (14)0.0292 (6)
C240.15327 (15)1.1580 (3)0.14924 (15)0.0314 (6)
H240.18421.22090.12910.038*
C250.14687 (15)1.1696 (3)0.22082 (15)0.0306 (6)
C260.10142 (15)1.0782 (3)0.25045 (15)0.0294 (6)
H260.09641.08870.29960.035*
C270.11787 (18)1.0511 (3)0.02752 (16)0.0382 (7)
F210.08780 (13)0.9363 (2)0.00568 (10)0.0557 (5)
F220.07939 (13)1.1592 (2)0.00753 (10)0.0579 (5)
F230.18555 (11)1.0634 (3)0.01409 (11)0.0633 (6)
C280.18495 (18)1.2886 (3)0.26534 (17)0.0392 (7)
F240.14555 (13)1.40746 (18)0.25369 (11)0.0576 (6)
F250.25153 (11)1.3164 (2)0.24927 (12)0.0593 (6)
F260.19520 (11)1.26399 (19)0.33628 (9)0.0465 (4)
C410.05500 (15)0.7325 (3)0.31883 (13)0.0257 (5)
C420.13058 (14)0.7488 (3)0.34453 (13)0.0281 (5)
H420.15610.82580.32840.034*
C430.16907 (15)0.6534 (3)0.39354 (14)0.0305 (6)
C440.13299 (16)0.5395 (3)0.41750 (14)0.0312 (6)
H440.15940.47480.45110.037*
C450.05818 (15)0.5215 (3)0.39184 (14)0.0284 (5)
C460.01943 (15)0.6164 (3)0.34351 (14)0.0273 (5)
H460.03200.60290.32680.033*
C470.25038 (17)0.6700 (4)0.41920 (16)0.0394 (7)
F410.27414 (10)0.7993 (2)0.41015 (11)0.0542 (5)
F420.28932 (11)0.5855 (2)0.38304 (12)0.0609 (6)
F430.27010 (10)0.6407 (2)0.49010 (10)0.0556 (5)
C480.01947 (17)0.3948 (3)0.41478 (16)0.0373 (7)
F440.04750 (12)0.3538 (2)0.48211 (11)0.0567 (6)
F450.05241 (11)0.41571 (19)0.41221 (11)0.0502 (5)
F460.02479 (12)0.28522 (19)0.37153 (12)0.0571 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0238 (5)0.0191 (4)0.0240 (5)0.0000.0023 (4)0.000
C110.0300 (13)0.0216 (12)0.0261 (12)0.0028 (10)0.0002 (10)0.0013 (10)
C120.0342 (14)0.0259 (13)0.0300 (13)0.0013 (11)0.0012 (11)0.0003 (10)
C130.0395 (16)0.0231 (12)0.0316 (14)0.0008 (11)0.0016 (12)0.0017 (10)
C140.0438 (16)0.0243 (13)0.0288 (13)0.0022 (12)0.0025 (12)0.0009 (10)
C150.0393 (16)0.0307 (14)0.0294 (13)0.0026 (12)0.0055 (12)0.0002 (11)
C160.0343 (15)0.0251 (13)0.0324 (14)0.0010 (11)0.0054 (12)0.0007 (11)
C170.0497 (19)0.0342 (15)0.0338 (15)0.0078 (13)0.0023 (13)0.0045 (12)
F110.0446 (11)0.0508 (12)0.0728 (14)0.0135 (9)0.0097 (10)0.0108 (10)
F120.0702 (14)0.0297 (9)0.0570 (12)0.0055 (9)0.0110 (10)0.0044 (8)
F130.0912 (17)0.0581 (13)0.0391 (10)0.0369 (12)0.0015 (10)0.0116 (9)
C180.054 (2)0.0382 (16)0.0433 (17)0.0010 (15)0.0127 (15)0.0105 (14)
F140.0957 (18)0.0727 (15)0.0466 (11)0.0325 (13)0.0336 (12)0.0274 (11)
F150.0619 (14)0.0767 (16)0.0898 (17)0.0275 (12)0.0391 (13)0.0178 (13)
F160.0595 (12)0.0453 (10)0.0436 (10)0.0083 (9)0.0168 (9)0.0003 (8)
C310.0252 (13)0.0226 (12)0.0253 (12)0.0013 (10)0.0061 (10)0.0036 (9)
C320.0273 (13)0.0240 (12)0.0286 (12)0.0010 (10)0.0029 (10)0.0010 (10)
C330.0325 (14)0.0245 (12)0.0286 (13)0.0011 (11)0.0088 (11)0.0015 (10)
C340.0284 (13)0.0261 (12)0.0347 (14)0.0045 (11)0.0077 (11)0.0031 (11)
C350.0239 (13)0.0306 (13)0.0318 (13)0.0025 (10)0.0043 (11)0.0002 (11)
C360.0270 (13)0.0238 (12)0.0291 (13)0.0005 (10)0.0046 (10)0.0012 (10)
C370.0422 (17)0.0294 (14)0.0390 (16)0.0031 (12)0.0065 (13)0.0023 (12)
F310.0523 (11)0.0376 (9)0.0345 (9)0.0000 (8)0.0052 (8)0.0085 (7)
F320.0899 (16)0.0301 (9)0.0505 (11)0.0173 (10)0.0182 (11)0.0029 (8)
F330.0523 (12)0.0458 (11)0.0707 (14)0.0176 (9)0.0041 (10)0.0218 (10)
C380.0303 (15)0.0437 (17)0.0491 (18)0.0064 (13)0.0014 (13)0.0071 (14)
F340.0638 (15)0.124 (2)0.0598 (14)0.0178 (15)0.0259 (12)0.0330 (15)
F350.0242 (9)0.0650 (13)0.0958 (17)0.0018 (9)0.0061 (10)0.0259 (12)
F360.0408 (11)0.0643 (13)0.0837 (15)0.0096 (10)0.0173 (10)0.0399 (12)
Si20.0253 (5)0.0212 (4)0.0210 (4)0.0000.0033 (4)0.000
C210.0250 (13)0.0247 (12)0.0290 (13)0.0038 (10)0.0046 (10)0.0030 (10)
C220.0278 (13)0.0264 (12)0.0274 (12)0.0003 (10)0.0034 (10)0.0001 (10)
C230.0297 (14)0.0271 (13)0.0303 (13)0.0012 (11)0.0044 (11)0.0009 (10)
C240.0285 (14)0.0273 (13)0.0388 (15)0.0006 (11)0.0070 (12)0.0033 (11)
C250.0314 (14)0.0243 (13)0.0348 (14)0.0017 (11)0.0023 (11)0.0014 (11)
C260.0309 (14)0.0259 (13)0.0317 (14)0.0009 (11)0.0059 (11)0.0003 (10)
C270.0433 (17)0.0391 (16)0.0336 (15)0.0081 (13)0.0103 (13)0.0016 (12)
F210.0835 (15)0.0508 (11)0.0351 (10)0.0203 (11)0.0170 (10)0.0103 (8)
F220.0821 (15)0.0550 (12)0.0359 (10)0.0079 (11)0.0083 (10)0.0104 (9)
F230.0449 (12)0.1063 (18)0.0417 (11)0.0164 (12)0.0161 (9)0.0057 (11)
C280.0448 (17)0.0297 (14)0.0427 (17)0.0048 (13)0.0066 (14)0.0036 (12)
F240.0805 (15)0.0269 (9)0.0592 (12)0.0046 (9)0.0041 (11)0.0078 (8)
F250.0559 (13)0.0569 (12)0.0673 (13)0.0292 (10)0.0169 (10)0.0174 (10)
F260.0570 (11)0.0397 (10)0.0393 (10)0.0081 (9)0.0009 (8)0.0093 (8)
C410.0301 (13)0.0250 (12)0.0221 (11)0.0009 (10)0.0048 (10)0.0009 (9)
C420.0279 (13)0.0311 (13)0.0247 (12)0.0008 (11)0.0035 (10)0.0012 (10)
C430.0291 (14)0.0348 (14)0.0268 (13)0.0007 (11)0.0028 (11)0.0015 (11)
C440.0348 (15)0.0293 (13)0.0282 (13)0.0053 (11)0.0022 (11)0.0026 (11)
C450.0321 (14)0.0250 (12)0.0272 (13)0.0004 (11)0.0031 (11)0.0005 (10)
C460.0265 (13)0.0266 (12)0.0277 (12)0.0003 (10)0.0022 (10)0.0001 (10)
C470.0313 (15)0.0528 (18)0.0327 (15)0.0047 (14)0.0024 (12)0.0040 (13)
F410.0339 (10)0.0646 (13)0.0612 (12)0.0148 (9)0.0006 (9)0.0076 (10)
F420.0369 (11)0.0805 (15)0.0651 (13)0.0157 (10)0.0088 (10)0.0065 (11)
F430.0354 (10)0.0860 (15)0.0400 (10)0.0051 (10)0.0078 (8)0.0137 (10)
C480.0412 (17)0.0293 (14)0.0391 (16)0.0026 (12)0.0009 (13)0.0060 (12)
F440.0675 (13)0.0451 (11)0.0503 (11)0.0140 (10)0.0087 (10)0.0236 (9)
F450.0430 (11)0.0400 (10)0.0689 (13)0.0049 (8)0.0138 (9)0.0151 (9)
F460.0692 (14)0.0311 (9)0.0734 (14)0.0123 (9)0.0190 (11)0.0125 (9)
Geometric parameters (Å, º) top
Si1—C11i1.873 (3)Si2—C41ii1.876 (3)
Si1—C111.873 (3)Si2—C411.876 (3)
Si1—C31i1.877 (3)Si2—C211.879 (3)
Si1—C311.877 (3)Si2—C21ii1.879 (3)
C11—C161.392 (4)C21—C221.392 (4)
C11—C121.406 (4)C21—C261.411 (4)
C12—C131.392 (4)C22—C231.393 (4)
C12—H120.9500C22—H220.9500
C13—C141.367 (4)C23—C241.383 (4)
C13—C171.503 (4)C23—C271.496 (4)
C14—C151.382 (4)C24—C251.375 (4)
C14—H140.9500C24—H240.9500
C15—C161.400 (4)C25—C261.391 (4)
C15—C181.493 (4)C25—C281.505 (4)
C16—H160.9500C26—H260.9500
C17—F131.325 (3)C27—F231.318 (4)
C17—F111.332 (4)C27—F211.330 (3)
C17—F121.348 (4)C27—F221.351 (4)
C18—F151.321 (4)C28—F261.332 (4)
C18—F161.340 (4)C28—F251.338 (4)
C18—F141.351 (4)C28—F241.341 (4)
C31—C361.392 (4)C41—C421.394 (4)
C31—C321.397 (4)C41—C461.405 (4)
C32—C331.393 (4)C42—C431.393 (4)
C32—H320.9500C42—H420.9500
C33—C341.381 (4)C43—C441.388 (4)
C33—C371.505 (4)C43—C471.493 (4)
C34—C351.388 (4)C44—C451.383 (4)
C34—H340.9500C44—H440.9500
C35—C361.390 (4)C45—C461.385 (4)
C35—C381.494 (4)C45—C481.503 (4)
C36—H360.9500C46—H460.9500
C37—F331.328 (4)C47—F411.329 (4)
C37—F311.333 (3)C47—F421.340 (4)
C37—F321.342 (4)C47—F431.344 (3)
C38—F341.322 (4)C48—F451.328 (4)
C38—F361.327 (4)C48—F441.335 (3)
C38—F351.340 (4)C48—F461.338 (4)
F12···F14iii2.847 (3)F21···F44v2.861 (3)
F13···F31iv2.919 (3)F31···F412.901 (3)
F16···F422.997 (3)F33···F262.969 (3)
F16···F432.848 (3)F33···F412.852 (3)
C11i—Si1—C11106.27 (16)C41ii—Si2—C41105.22 (16)
C11i—Si1—C31i110.63 (11)C41ii—Si2—C21111.80 (11)
C11—Si1—C31i110.97 (11)C41—Si2—C21110.87 (11)
C11i—Si1—C31110.97 (11)C41ii—Si2—C21ii110.87 (11)
C11—Si1—C31110.63 (11)C41—Si2—C21ii111.80 (11)
C31i—Si1—C31107.40 (16)C21—Si2—C21ii106.39 (16)
C16—C11—C12118.4 (2)C22—C21—C26117.7 (2)
C16—C11—Si1123.5 (2)C22—C21—Si2122.9 (2)
C12—C11—Si1118.1 (2)C26—C21—Si2119.28 (19)
C13—C12—C11120.5 (3)C21—C22—C23121.0 (2)
C13—C12—H12119.7C21—C22—H22119.5
C11—C12—H12119.7C23—C22—H22119.5
C14—C13—C12120.4 (3)C24—C23—C22120.3 (2)
C14—C13—C17120.6 (3)C24—C23—C27118.9 (2)
C12—C13—C17119.0 (3)C22—C23—C27120.7 (2)
C13—C14—C15120.2 (3)C25—C24—C23119.9 (3)
C13—C14—H14119.9C25—C24—H24120.0
C15—C14—H14119.9C23—C24—H24120.0
C14—C15—C16120.2 (3)C24—C25—C26120.3 (3)
C14—C15—C18120.6 (3)C24—C25—C28119.4 (3)
C16—C15—C18119.2 (3)C26—C25—C28120.2 (3)
C11—C16—C15120.3 (3)C25—C26—C21120.8 (2)
C11—C16—H16119.8C25—C26—H26119.6
C15—C16—H16119.8C21—C26—H26119.6
F13—C17—F11107.8 (3)F23—C27—F21108.1 (3)
F13—C17—F12106.7 (3)F23—C27—F22105.5 (2)
F11—C17—F12105.3 (3)F21—C27—F22105.2 (3)
F13—C17—C13112.9 (3)F23—C27—C23113.3 (3)
F11—C17—C13112.8 (2)F21—C27—C23113.3 (2)
F12—C17—C13110.8 (3)F22—C27—C23110.8 (2)
F15—C18—F16106.7 (3)F26—C28—F25106.9 (3)
F15—C18—F14107.6 (3)F26—C28—F24106.7 (2)
F16—C18—F14104.8 (3)F25—C28—F24106.5 (3)
F15—C18—C15112.6 (3)F26—C28—C25113.0 (2)
F16—C18—C15112.7 (3)F25—C28—C25112.1 (2)
F14—C18—C15112.1 (3)F24—C28—C25111.3 (3)
C36—C31—C32118.2 (2)C42—C41—C46117.8 (2)
C36—C31—Si1122.45 (19)C42—C41—Si2123.4 (2)
C32—C31—Si1119.36 (19)C46—C41—Si2118.7 (2)
C33—C32—C31120.7 (2)C43—C42—C41120.8 (2)
C33—C32—H32119.6C43—C42—H42119.6
C31—C32—H32119.6C41—C42—H42119.6
C34—C33—C32120.6 (2)C44—C43—C42120.6 (3)
C34—C33—C37120.7 (2)C44—C43—C47119.1 (3)
C32—C33—C37118.7 (2)C42—C43—C47120.2 (3)
C33—C34—C35119.2 (2)C45—C44—C43119.2 (2)
C33—C34—H34120.4C45—C44—H44120.4
C35—C34—H34120.4C43—C44—H44120.4
C34—C35—C36120.5 (2)C44—C45—C46120.6 (2)
C34—C35—C38119.3 (2)C44—C45—C48119.5 (2)
C36—C35—C38120.2 (2)C46—C45—C48119.9 (2)
C35—C36—C31120.9 (2)C45—C46—C41121.1 (2)
C35—C36—H36119.6C45—C46—H46119.5
C31—C36—H36119.6C41—C46—H46119.5
F33—C37—F31107.1 (2)F41—C47—F42106.0 (3)
F33—C37—F32107.3 (2)F41—C47—F43106.4 (3)
F31—C37—F32105.4 (2)F42—C47—F43107.7 (2)
F33—C37—C33112.7 (3)F41—C47—C43112.9 (3)
F31—C37—C33112.4 (2)F42—C47—C43111.6 (3)
F32—C37—C33111.5 (2)F43—C47—C43111.9 (2)
F34—C38—F36108.0 (3)F45—C48—F44106.8 (3)
F34—C38—F35105.7 (3)F45—C48—F46106.0 (2)
F36—C38—F35105.4 (3)F44—C48—F46106.8 (2)
F34—C38—C35112.2 (3)F45—C48—C45112.8 (2)
F36—C38—C35113.3 (2)F44—C48—C45112.6 (2)
F35—C38—C35111.6 (3)F46—C48—C45111.3 (2)
C11i—Si1—C11—C16130.9 (3)C41ii—Si2—C21—C224.0 (3)
C31i—Si1—C11—C16108.8 (2)C41—Si2—C21—C22113.0 (2)
C31—Si1—C11—C1610.4 (3)C21ii—Si2—C21—C22125.2 (2)
C11i—Si1—C11—C1248.89 (18)C41ii—Si2—C21—C26172.4 (2)
C31i—Si1—C11—C1271.4 (2)C41—Si2—C21—C2670.5 (2)
C31—Si1—C11—C12169.4 (2)C21ii—Si2—C21—C2651.23 (18)
C16—C11—C12—C130.1 (4)C26—C21—C22—C230.7 (4)
Si1—C11—C12—C13179.9 (2)Si2—C21—C22—C23177.2 (2)
C11—C12—C13—C140.5 (4)C21—C22—C23—C240.6 (4)
C11—C12—C13—C17176.4 (3)C21—C22—C23—C27175.5 (3)
C12—C13—C14—C150.9 (4)C22—C23—C24—C250.8 (4)
C17—C13—C14—C15176.0 (3)C27—C23—C24—C25175.3 (3)
C13—C14—C15—C160.6 (4)C23—C24—C25—C260.3 (4)
C13—C14—C15—C18178.3 (3)C23—C24—C25—C28175.8 (3)
C12—C11—C16—C150.3 (4)C24—C25—C26—C211.6 (4)
Si1—C11—C16—C15179.9 (2)C28—C25—C26—C21177.1 (3)
C14—C15—C16—C110.0 (4)C22—C21—C26—C251.8 (4)
C18—C15—C16—C11179.0 (3)Si2—C21—C26—C25178.4 (2)
C14—C13—C17—F1327.5 (4)C24—C23—C27—F2347.1 (4)
C12—C13—C17—F13155.6 (3)C22—C23—C27—F23136.7 (3)
C14—C13—C17—F11150.0 (3)C24—C23—C27—F21170.7 (3)
C12—C13—C17—F1133.1 (4)C22—C23—C27—F2113.1 (4)
C14—C13—C17—F1292.2 (3)C24—C23—C27—F2271.3 (3)
C12—C13—C17—F1284.7 (3)C22—C23—C27—F22104.9 (3)
C14—C15—C18—F1595.9 (4)C24—C25—C28—F26159.3 (3)
C16—C15—C18—F1583.0 (3)C26—C25—C28—F2625.2 (4)
C14—C15—C18—F16143.4 (3)C24—C25—C28—F2538.4 (4)
C16—C15—C18—F1637.7 (4)C26—C25—C28—F25146.1 (3)
C14—C15—C18—F1425.5 (4)C24—C25—C28—F2480.7 (3)
C16—C15—C18—F14155.6 (3)C26—C25—C28—F2494.7 (3)
C11i—Si1—C31—C3618.9 (2)C41ii—Si2—C41—C42132.2 (2)
C11—Si1—C31—C3698.8 (2)C21—Si2—C41—C4211.1 (3)
C31i—Si1—C31—C36140.0 (2)C21ii—Si2—C41—C42107.4 (2)
C11i—Si1—C31—C32160.32 (19)C41ii—Si2—C41—C4644.69 (17)
C11—Si1—C31—C3282.0 (2)C21—Si2—C41—C46165.72 (19)
C31i—Si1—C31—C3239.28 (17)C21ii—Si2—C41—C4675.7 (2)
C36—C31—C32—C330.1 (4)C46—C41—C42—C430.5 (4)
Si1—C31—C32—C33179.19 (19)Si2—C41—C42—C43177.4 (2)
C31—C32—C33—C340.1 (4)C41—C42—C43—C440.4 (4)
C31—C32—C33—C37177.5 (2)C41—C42—C43—C47178.4 (2)
C32—C33—C34—C350.3 (4)C42—C43—C44—C450.3 (4)
C37—C33—C34—C35177.8 (2)C47—C43—C44—C45177.8 (3)
C33—C34—C35—C360.7 (4)C43—C44—C45—C460.7 (4)
C33—C34—C35—C38179.0 (3)C43—C44—C45—C48177.1 (3)
C34—C35—C36—C310.8 (4)C44—C45—C46—C410.6 (4)
C38—C35—C36—C31179.0 (3)C48—C45—C46—C41177.3 (2)
C32—C31—C36—C350.3 (4)C42—C41—C46—C450.1 (4)
Si1—C31—C36—C35179.6 (2)Si2—C41—C46—C45177.1 (2)
C34—C33—C37—F3320.9 (4)C44—C43—C47—F41161.8 (3)
C32—C33—C37—F33161.5 (2)C42—C43—C47—F4120.1 (4)
C34—C33—C37—F31142.1 (3)C44—C43—C47—F4279.0 (3)
C32—C33—C37—F3140.3 (4)C42—C43—C47—F4299.1 (3)
C34—C33—C37—F3299.8 (3)C44—C43—C47—F4341.7 (4)
C32—C33—C37—F3277.8 (3)C42—C43—C47—F43140.2 (3)
C34—C35—C38—F3472.9 (4)C44—C45—C48—F45154.3 (3)
C36—C35—C38—F34105.4 (3)C46—C45—C48—F4527.9 (4)
C34—C35—C38—F36164.4 (3)C44—C45—C48—F4433.2 (4)
C36—C35—C38—F3617.3 (4)C46—C45—C48—F44148.9 (3)
C34—C35—C38—F3545.5 (4)C44—C45—C48—F4686.7 (3)
C36—C35—C38—F35136.2 (3)C46—C45—C48—F4691.2 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z1/2.
19F NMR (p.p.m., Hz) data for reaction products top
GroupNo. of Fsδ 19F5JFFδ 19Fa5JFFa
Ar2SiF2
o-CF312-57.7t, 12.4-57.3t, 12.8
p-CF36-63.8s-64.2s
Si—F2-125.7m, NRb-124.5m, 12.8
Ar'2SiF2
o-CF312-57.5t, 12.8-57.5t, 12.3
Si—F2-125.4m, 12.8-125.5m, 12.5
Ar''2SiBr2
o-CF36-57.6s
p-CF36-64.5s
Ar''2SiBrF
o-CF36-59.6d, 12.8
p-CF36-64.6s
Si—F1-158.4m, 12.8
Notes: (a) literature data from Batsanov et al. (2003); (b) not resolved.
 

Acknowledgements

The authors thank the EPSRC for a postgraduate fellowship (ALT) and A. Hickman for technical assistance in isolating the crystalline product.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479–481.  CrossRef CAS Web of Science Google Scholar
First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622–4628.  Web of Science CSD CrossRef Google Scholar
First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496–2502.  Web of Science CSD CrossRef Google Scholar
First citationBraddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89–98.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationCornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395–4405.  Web of Science CSD CrossRef Google Scholar
First citationDietzel, P. D. C. & Jansen, M. (2004). Z. Naturforsch. Teil B, 59, 345–347.  CAS Google Scholar
First citationJessop, P. G., Olmstead, M. M., Ablan, C. D., Grabenauer, M., Sheppard, D., Eckert, C. A. & Liotta, C. L. (2002). Inorg. Chem. 41, 3463–3468.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishida, H., Takada, N., Yoshimura, M., Sonoda, T. & Kobayashi, H. (1984). Bull. Chem. Soc. Jpn, 57, 2600–2604.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds