metal-organic compounds
1,4-Diazoniabicyclo[2.2.2]octane tetraaquatetrachlorolanthanate(III) chloride
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, (C6H14N2)[LaCl4(H2O)4]Cl, is built up from organic cations, [La(H2O)4Cl4]− complex anions and uncoordinated chloride ions. The previously unseen rare-earth-containing complex ion is irregular in shape. A network of O—H⋯Cl and N—H⋯Cl hydrogen bonds helps to establish the structure. Prominent among these are two well defined trifurcated N—H⋯(Cl,Cl,Cl) interactions. The La atom, one Cl atom, two N atoms and two C atoms possess m.
Comment
The title compound, (I), which contains a new La/Cl/H2O complex ion, complements known adducts of lanthanum chloride with O-donor ligands such as the polymeric [LaCl3(C7H8O2)2]n (C7H8O2 is 2,6-dimethyl-4-pyrone; Bisi Castellani & Coda, 1985) and the dimeric [La2(H2O)6Cl8(C6H8N)2] (C6H8N is 4-picoline; Mackenstedt & Urland, 1993). Although various materials containing [LaCl6]3− (Matsumoto et al., 2002), [La(H2O)8]3+ (Hardie et al., 2001) and [La(H2O)9]3+ complex ions (Harrowfield et al., 1983) have been described, the only monomeric La/Cl/H2O complex reported in version 5.27 of the Cambridge Structural Database (Allen, 2002) contains [La(H2O)6Cl2]+ ions (Urland, 1985), although no atomic coordinates are available.
The [La(H2O)4Cl4]− species in (I) (Fig. 1) is generated from the unique atoms by mirror symmetry, with La1 and Cl1 lying on the reflecting plane. Refinements placing Cl2 on the plane led to a highly anisotropic displacement ellipsoid for this atom, and the final cycles placed it just off the mirror plane, disordered over two symmetry-related positions [Cl2⋯Cl2i = 0.530 (4) Å; symmetry code: (i) x, − y, z]. The resulting LaO4Cl4 polyhedron is irregular in shape, although the mean La—O and La—Cl bond lengths of 2.547 (2) and 2.8960 (9) Å, respectively, are normal. The geometrical parameters for the 1,4-diazoniabicyclo[2.2.2]octane cation are also unexceptional (Bremner & Harrison, 2003).
As well as electrostatic forces, the component species in (I) are held together by a network of O—H⋯Cl and N—H⋯Cl hydrogen bonds (Table 2). The most distinctive of these are two trifurcated N—H⋯(Cl,Cl,Cl) interactions, one from each NH group of the C6H14N22+ cation. This results (Fig. 2) in (001) sheets in which [100] columns of cations and anions alternate with respect to the [010] direction. Every trio of acceptor chloride ions (two Cl3 atoms bound to different La atoms and one free Cl4 species) accepts a trifurcated hydrogen bond from both N1/H6 and N2/H7. The average bond angles at H6 and H7 are 108 and 107°, respectively.
The [100] columns of [La(H2O)4Cl4]− anions interact by way of two hydrogen bonds from the O2 water molecule to two chloride ion acceptors. Crystal symmetry results in all the anions in one (001) layer pointing in the same direction. The uncoordinated chloride ion participates in an O—H⋯Cl⋯H—O bridge between adjacent anion columns (Fig. 2). Still further O—H⋯Cl hydrogen bonds help to consolidate the inter-layer packing, to result in a dense three-dimensional network (Fig. 3).
Experimental
0.1 M LaCl3, 1 M HCl and solid 1,4-diazabicyclo[2.2.2]octane (C6H12N2) were mixed in a Petri dish in a 1:1:1 molar ratio, resulting in a clear solution. Small block-like crystals of (I) appeared as the water slowly evaporated over a few days.
Crystal data
|
Refinement
|
|
The O-bound H atoms were located in difference maps and refined as riding in their as-found relative locations. The C- and N-bound H atoms were placed in idealized locations (C—H = 0.97 and N—H = 0.91 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.
Data collection: SMART (Bruker, 1999); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806016898/sg2023sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806016898/sg2023Isup2.hkl
Data collection: SMART (Bruker, 1999); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.(C6H14N2)[LaCl4(H2O)4]Cl | F(000) = 984 |
Mr = 502.42 | Dx = 1.937 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 5263 reflections |
a = 7.5005 (3) Å | θ = 2.4–32.5° |
b = 9.1759 (4) Å | µ = 3.26 mm−1 |
c = 25.0388 (10) Å | T = 293 K |
V = 1723.27 (12) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.21 × 0.16 mm |
Bruker SMART 1000 CCD diffractometer | 3279 independent reflections |
Radiation source: fine-focus sealed tube | 2971 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 32.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −11→6 |
Tmin = 0.395, Tmax = 0.624 | k = −13→13 |
18229 measured reflections | l = −37→37 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difmap (O-H) and geom (others) |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0199P)2 + 0.3724P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
3279 reflections | Δρmax = 0.58 e Å−3 |
101 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00056 (9) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.590349 (16) | 0.2500 | 0.617775 (4) | 0.01947 (4) | |
O1 | 0.4503 (3) | 0.2500 | 0.52432 (6) | 0.0339 (4) | |
H1 | 0.4507 | 0.1732 | 0.5065 | 0.041* | |
O2 | 0.2541 (2) | 0.2500 | 0.62157 (7) | 0.0391 (4) | |
H2 | 0.1698 | 0.2500 | 0.5993 | 0.047* | |
H3 | 0.1848 | 0.2500 | 0.6468 | 0.047* | |
O3 | 0.50337 (19) | 0.09026 (12) | 0.69689 (4) | 0.0369 (3) | |
H4 | 0.5053 | 0.0001 | 0.7008 | 0.044* | |
H5 | 0.4731 | 0.1284 | 0.7299 | 0.044* | |
Cl1 | 0.90617 (9) | 0.2500 | 0.69439 (2) | 0.03609 (13) | |
Cl2 | 0.90460 (11) | 0.2211 (2) | 0.55605 (3) | 0.0453 (6) | 0.50 |
Cl3 | 0.55658 (6) | −0.04244 (4) | 0.580485 (16) | 0.03060 (8) | |
C1 | 0.1477 (2) | 0.61758 (19) | 0.65549 (8) | 0.0352 (4) | |
H1A | 0.1859 | 0.6177 | 0.6925 | 0.042* | |
H1B | 0.1944 | 0.5306 | 0.6385 | 0.042* | |
C2 | −0.0537 (2) | 0.6177 (2) | 0.65261 (9) | 0.0390 (4) | |
H2A | −0.0946 | 0.5310 | 0.6342 | 0.047* | |
H2B | −0.1032 | 0.6169 | 0.6884 | 0.047* | |
C3 | 0.1595 (3) | 0.7500 | 0.57038 (10) | 0.0414 (6) | |
H3A | 0.2059 | 0.6643 | 0.5525 | 0.050* | |
C4 | −0.0427 (4) | 0.7500 | 0.56802 (10) | 0.0430 (7) | |
H4A | −0.0842 | 0.8357 | 0.5490 | 0.052* | |
N1 | −0.1154 (2) | 0.7500 | 0.62359 (7) | 0.0251 (4) | |
H6 | −0.2367 | 0.7500 | 0.6222 | 0.030* | |
N2 | 0.2166 (3) | 0.7500 | 0.62779 (7) | 0.0291 (4) | |
H7 | 0.3378 | 0.7500 | 0.6293 | 0.035* | |
Cl4 | 0.54768 (8) | 0.7500 | 0.70889 (2) | 0.02892 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01944 (6) | 0.02101 (5) | 0.01796 (6) | 0.000 | 0.00004 (4) | 0.000 |
O1 | 0.0509 (11) | 0.0277 (7) | 0.0230 (7) | 0.000 | −0.0084 (7) | 0.000 |
O2 | 0.0214 (8) | 0.0584 (11) | 0.0373 (9) | 0.000 | −0.0009 (7) | 0.000 |
O3 | 0.0609 (9) | 0.0255 (5) | 0.0241 (5) | −0.0054 (6) | 0.0066 (6) | −0.0002 (4) |
Cl1 | 0.0366 (3) | 0.0475 (3) | 0.0242 (2) | 0.000 | −0.0057 (2) | 0.000 |
Cl2 | 0.0253 (3) | 0.0869 (18) | 0.0236 (3) | −0.0029 (5) | 0.0034 (3) | −0.0010 (4) |
Cl3 | 0.0393 (2) | 0.02462 (15) | 0.02786 (17) | 0.00411 (14) | −0.00325 (15) | −0.00412 (13) |
C1 | 0.0304 (8) | 0.0320 (8) | 0.0433 (10) | 0.0059 (7) | −0.0021 (7) | 0.0040 (7) |
C2 | 0.0310 (9) | 0.0329 (8) | 0.0532 (11) | −0.0023 (7) | −0.0025 (8) | 0.0125 (8) |
C3 | 0.0277 (12) | 0.0739 (19) | 0.0226 (11) | 0.000 | 0.0010 (9) | 0.000 |
C4 | 0.0271 (12) | 0.077 (2) | 0.0248 (11) | 0.000 | −0.0022 (9) | 0.000 |
N1 | 0.0182 (8) | 0.0301 (9) | 0.0270 (9) | 0.000 | −0.0015 (7) | 0.000 |
N2 | 0.0188 (8) | 0.0396 (10) | 0.0290 (9) | 0.000 | −0.0003 (7) | 0.000 |
Cl4 | 0.0298 (3) | 0.0300 (2) | 0.0269 (2) | 0.000 | −0.0018 (2) | 0.000 |
La1—O2 | 2.5240 (18) | C1—C2 | 1.512 (2) |
La1—O3i | 2.5492 (11) | C1—H1A | 0.9700 |
La1—O3 | 2.5492 (11) | C1—H1B | 0.9700 |
La1—O1 | 2.5650 (16) | C2—N1 | 1.489 (2) |
La1—Cl2 | 2.8310 (8) | C2—H2A | 0.9700 |
La1—Cl2i | 2.8310 (8) | C2—H2B | 0.9700 |
La1—Cl3 | 2.8524 (4) | C3—N2 | 1.500 (3) |
La1—Cl3i | 2.8524 (4) | C3—C4 | 1.518 (4) |
La1—Cl1 | 3.0482 (6) | C3—H3A | 0.9700 |
O1—H1 | 0.8335 | C4—N1 | 1.494 (3) |
O2—H2 | 0.8433 | C4—H4A | 0.9700 |
O2—H3 | 0.8172 | N1—C2ii | 1.489 (2) |
O3—H4 | 0.8330 | N1—H6 | 0.9100 |
O3—H5 | 0.9262 | N2—C1ii | 1.491 (2) |
Cl2—Cl2i | 0.530 (4) | N2—H7 | 0.9100 |
C1—N2 | 1.491 (2) | ||
O2—La1—O3i | 73.44 (5) | La1—O2—H2 | 136.4 |
O2—La1—O3 | 73.44 (5) | La1—O2—H3 | 131.6 |
O3i—La1—O3 | 70.20 (5) | H2—O2—H3 | 92.0 |
O2—La1—O1 | 67.98 (6) | La1—O3—H4 | 131.2 |
O3i—La1—O1 | 127.16 (4) | La1—O3—H5 | 122.6 |
O3—La1—O1 | 127.16 (4) | H4—O3—H5 | 105.9 |
O2—La1—Cl2 | 148.49 (4) | Cl2i—Cl2—La1 | 84.63 (4) |
O3i—La1—Cl2 | 133.72 (4) | N2—C1—C2 | 108.86 (14) |
O3—La1—Cl2 | 125.70 (5) | N2—C1—H1A | 109.9 |
O1—La1—Cl2 | 80.97 (5) | C2—C1—H1A | 109.9 |
O2—La1—Cl2i | 148.49 (4) | N2—C1—H1B | 109.9 |
O3i—La1—Cl2i | 125.70 (5) | C2—C1—H1B | 109.9 |
O3—La1—Cl2i | 133.72 (4) | H1A—C1—H1B | 108.3 |
O1—La1—Cl2i | 80.97 (5) | N1—C2—C1 | 109.54 (15) |
Cl2—La1—Cl2i | 10.73 (8) | N1—C2—H2A | 109.8 |
O2—La1—Cl3 | 85.617 (16) | C1—C2—H2A | 109.8 |
O3i—La1—Cl3 | 140.58 (3) | N1—C2—H2B | 109.8 |
O3—La1—Cl3 | 71.99 (3) | C1—C2—H2B | 109.8 |
O1—La1—Cl3 | 70.429 (9) | H2A—C2—H2B | 108.2 |
Cl2—La1—Cl3 | 78.89 (4) | N2—C3—C4 | 108.8 (2) |
Cl2i—La1—Cl3 | 89.04 (4) | N2—C3—H3A | 109.9 |
O2—La1—Cl3i | 85.617 (16) | C4—C3—H3A | 109.9 |
O3i—La1—Cl3i | 71.99 (3) | N1—C4—C3 | 109.2 (2) |
O3—La1—Cl3i | 140.58 (3) | N1—C4—H4A | 109.8 |
O1—La1—Cl3i | 70.429 (9) | C3—C4—H4A | 109.8 |
Cl2—La1—Cl3i | 89.04 (4) | C2ii—N1—C2 | 109.3 (2) |
Cl2i—La1—Cl3i | 78.89 (4) | C2ii—N1—C4 | 109.94 (13) |
Cl3—La1—Cl3i | 140.349 (16) | C2—N1—C4 | 109.94 (13) |
O2—La1—Cl1 | 138.84 (4) | C2ii—N1—H6 | 109.2 |
O3i—La1—Cl1 | 73.13 (3) | C2—N1—H6 | 109.2 |
O3—La1—Cl1 | 73.13 (3) | C4—N1—H6 | 109.2 |
O1—La1—Cl1 | 153.18 (4) | C1ii—N2—C1 | 109.12 (19) |
Cl2—La1—Cl1 | 72.33 (2) | C1ii—N2—C3 | 110.29 (13) |
Cl2i—La1—Cl1 | 72.33 (2) | C1—N2—C3 | 110.29 (13) |
Cl3—La1—Cl1 | 105.963 (9) | C1ii—N2—H7 | 109.0 |
Cl3i—La1—Cl1 | 105.963 (9) | C1—N2—H7 | 109.0 |
La1—O1—H1 | 119.0 | C3—N2—H7 | 109.0 |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl3iii | 0.83 | 2.49 | 3.2429 (14) | 151 |
O2—H2···Cl2iv | 0.84 | 2.28 | 3.1035 (19) | 166 |
O2—H2···Cl2v | 0.84 | 2.28 | 3.1035 (19) | 166 |
O2—H3···Cl1iv | 0.82 | 2.41 | 3.1834 (19) | 159 |
O3—H4···Cl4vi | 0.83 | 2.33 | 3.1542 (12) | 173 |
O3—H5···Cl1vii | 0.93 | 2.26 | 3.1765 (12) | 173 |
N1—H6···Cl3v | 0.91 | 2.67 | 3.2930 (15) | 127 |
N1—H6···Cl3viii | 0.91 | 2.67 | 3.2930 (15) | 127 |
N1—H6···Cl4iv | 0.91 | 2.71 | 3.3086 (19) | 125 |
N2—H7···Cl4 | 0.91 | 2.54 | 3.208 (2) | 131 |
N2—H7···Cl3ix | 0.91 | 2.80 | 3.3962 (17) | 125 |
N2—H7···Cl3i | 0.91 | 2.80 | 3.3962 (17) | 125 |
Symmetry codes: (i) x, −y+1/2, z; (iii) −x+1, −y, −z+1; (iv) x−1, y, z; (v) x−1, −y+1/2, z; (vi) x, y−1, z; (vii) x−1/2, y, −z+3/2; (viii) x−1, y+1, z; (ix) x, y+1, z. |
Acknowledgements
LKR thanks the Carnegie Trust for the Universities of Scotland for a vacation scholarship.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bisi Castellani, C. & Coda, A. (1985). Acta Cryst. C41, 186–189. CSD CrossRef CAS IUCr Journals Google Scholar
Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hardie, M. J., Raston, C. L. & Salinas, A. (2001). Chem. Commun. pp. 1850–1851. Web of Science CSD CrossRef Google Scholar
Harrowfield, J. McB., Kepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 483–492. CrossRef CAS Google Scholar
Mackenstedt, D. & Urland, W. (1993). Z. Anorg. Allg. Chem. 619, 893–896. CSD CrossRef CAS Web of Science Google Scholar
Matsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186–m187. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Urland, W. (1985). Z. Naturforsch. Teil B, 40, 496–499. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.