metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane tetra­aqua­tetra­chloro­lanthanate(III) chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 3 May 2006; accepted 8 May 2006; online 10 May 2006)

The title compound, (C6H14N2)[LaCl4(H2O)4]Cl, is built up from organic cations, [La(H2O)4Cl4] complex anions and uncoordinated chloride ions. The previously unseen rare-earth-containing complex ion is irregular in shape. A network of O—H⋯Cl and N—H⋯Cl hydrogen bonds helps to establish the structure. Prominent among these are two well defined trifurcated N—H⋯(Cl,Cl,Cl) inter­actions. The La atom, one Cl atom, two N atoms and two C atoms possess site symmetry m.

Comment

The title compound, (I)[link], which contains a new La/Cl/H2O complex ion, complements known adducts of lanthanum chloride with O-donor ligands such as the polymeric [LaCl3(C7H8O2)2]n (C7H8O2 is 2,6-dimethyl-4-pyrone; Bisi Castellani & Coda, 1985[Bisi Castellani, C. & Coda, A. (1985). Acta Cryst. C41, 186-189.]) and the dimeric [La2(H2O)6Cl8(C6H8N)2] (C6H8N is 4-picoline; Mackenstedt & Urland, 1993[Mackenstedt, D. & Urland, W. (1993). Z. Anorg. Allg. Chem. 619, 893-896.]). Although various materials containing [LaCl6]3− (Matsumoto et al., 2002[Matsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186-m187.]), [La(H2O)8]3+ (Hardie et al., 2001[Hardie, M. J., Raston, C. L. & Salinas, A. (2001). Chem. Commun. pp. 1850-1851.]) and [La(H2O)9]3+ complex ions (Harrowfield et al., 1983[Harrowfield, J. McB., Kepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 483-492.]) have been described, the only monomeric La/Cl/H2O complex reported in version 5.27 of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) contains [La(H2O)6Cl2]+ ions (Urland, 1985[Urland, W. (1985). Z. Naturforsch. Teil B, 40, 496-499.]), although no atomic coordinates are available.

[Scheme 1]

The [La(H2O)4Cl4] species in (I)[link] (Fig. 1[link]) is generated from the unique atoms by mirror symmetry, with La1 and Cl1 lying on the reflecting plane. Refinements placing Cl2 on the plane led to a highly anisotropic displacement ellipsoid for this atom, and the final refinement cycles placed it just off the mirror plane, disordered over two symmetry-related positions [Cl2⋯Cl2i = 0.530 (4) Å; symmetry code: (i) x, [{1\over 2}]y, z]. The resulting LaO4Cl4 polyhedron is irregular in shape, although the mean La—O and La—Cl bond lengths of 2.547 (2) and 2.8960 (9) Å, respectively, are normal. The geometrical parameters for the 1,4-diazo­niabicyclo­[2.2.2]octane cation are also unexceptional (Bremner & Harrison, 2003[Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425-m426.]).

As well as electrostatic forces, the component species in (I)[link] are held together by a network of O—H⋯Cl and N—H⋯Cl hydrogen bonds (Table 2[link]). The most distinctive of these are two trifurcated N—H⋯(Cl,Cl,Cl) inter­actions, one from each NH group of the C6H14N22+ cation. This results (Fig. 2[link]) in (001) sheets in which [100] columns of cations and anions alternate with respect to the [010] direction. Every trio of acceptor chloride ions (two Cl3 atoms bound to different La atoms and one free Cl4 species) accepts a trifurcated hydrogen bond from both N1/H6 and N2/H7. The average bond angles at H6 and H7 are 108 and 107°, respectively.

The [100] columns of [La(H2O)4Cl4] anions inter­act by way of two hydrogen bonds from the O2 water mol­ecule to two chloride ion acceptors. Crystal symmetry results in all the anions in one (001) layer pointing in the same direction. The uncoordinated chloride ion participates in an O—H⋯Cl⋯H—O bridge between adjacent anion columns (Fig. 2[link]). Still further O—H⋯Cl hydrogen bonds help to consolidate the inter-layer packing, to result in a dense three-dimensional network (Fig. 3[link]).

[Figure 1]
Figure 1
View of (I)[link], showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Only one orientation of the disordered atom Cl2 is shown. [Symmetry codes: (i) x, [{1\over 2}]y, z; (ii) x, [{3\over 2}]y, z.]
[Figure 2]
Figure 2
View down [001] of part of a (C6H14N2)·[La(H2O)4Cl4]·Cl layer in (I)[link], with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity and only one orientation of the disordered atom Cl2 is shown. [Symmetry codes: (i) x, [{1\over 2}]y, z; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) x − 1, [{1\over 2}]y, z; (v) x − 1, y, z; (vi) x − 1, y + 1, z.]
[Figure 3]
Figure 3
The packing in (I)[link], viewed down [100]. Drawing conventions as in Fig. 2[link].

Experimental

0.1 M LaCl3, 1 M HCl and solid 1,4-diaza­bicyclo­[2.2.2]octane (C6H12N2) were mixed in a Petri dish in a 1:1:1 molar ratio, resulting in a clear solution. Small block-like crystals of (I)[link] appeared as the water slowly evaporated over a few days.

Crystal data
  • (C6H14N2)[LaCl4(H2O)4]Cl

  • Mr = 502.42

  • Orthorhombic, P n m a

  • a = 7.5005 (3) Å

  • b = 9.1759 (4) Å

  • c = 25.0388 (10) Å

  • V = 1723.27 (12) Å3

  • Z = 4

  • Dx = 1.937 Mg m−3

  • Mo Kα radiation

  • μ = 3.26 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.35 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.395, Tmax = 0.624

  • 18229 measured reflections

  • 3279 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 32.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.044

  • S = 1.14

  • 3279 reflections

  • 101 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0199P)2 + 0.3724P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.43 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00056 (9)

Table 1
Selected bond lengths (Å)

La1—O2 2.5240 (18)
La1—O3 2.5492 (11)
La1—O1 2.5650 (16)
La1—Cl2 2.8310 (8)
La1—Cl3 2.8524 (4)
La1—Cl1 3.0482 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl3i 0.83 2.49 3.2429 (14) 151
O2—H2⋯Cl2ii 0.84 2.28 3.1035 (19) 166
O2—H2⋯Cl2iii 0.84 2.28 3.1035 (19) 166
O2—H3⋯Cl1ii 0.82 2.41 3.1834 (19) 159
O3—H4⋯Cl4iv 0.83 2.33 3.1542 (12) 173
O3—H5⋯Cl1v 0.93 2.26 3.1765 (12) 173
N1—H6⋯Cl3iii 0.91 2.67 3.2930 (15) 127
N1—H6⋯Cl3vi 0.91 2.67 3.2930 (15) 127
N1—H6⋯Cl4ii 0.91 2.71 3.3086 (19) 125
N2—H7⋯Cl4 0.91 2.54 3.208 (2) 131
N2—H7⋯Cl3vii 0.91 2.80 3.3962 (17) 125
N2—H7⋯Cl3viii 0.91 2.80 3.3962 (17) 125
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vi) x-1, y+1, z; (vii) x, y+1, z; (viii) [x, -y+{\script{1\over 2}}, z].

The O-bound H atoms were located in difference maps and refined as riding in their as-found relative locations. The C- and N-bound H atoms were placed in idealized locations (C—H = 0.97 and N—H = 0.91 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1,4-Diazoniabicyclo[2.2.2]octane tetraaquatetrachlorolanthanate(III) chloride top
Crystal data top
(C6H14N2)[LaCl4(H2O)4]ClF(000) = 984
Mr = 502.42Dx = 1.937 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5263 reflections
a = 7.5005 (3) Åθ = 2.4–32.5°
b = 9.1759 (4) ŵ = 3.26 mm1
c = 25.0388 (10) ÅT = 293 K
V = 1723.27 (12) Å3Block, colourless
Z = 40.35 × 0.21 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube2971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 116
Tmin = 0.395, Tmax = 0.624k = 1313
18229 measured reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (others)
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0199P)2 + 0.3724P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3279 reflectionsΔρmax = 0.58 e Å3
101 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00056 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.590349 (16)0.25000.617775 (4)0.01947 (4)
O10.4503 (3)0.25000.52432 (6)0.0339 (4)
H10.45070.17320.50650.041*
O20.2541 (2)0.25000.62157 (7)0.0391 (4)
H20.16980.25000.59930.047*
H30.18480.25000.64680.047*
O30.50337 (19)0.09026 (12)0.69689 (4)0.0369 (3)
H40.50530.00010.70080.044*
H50.47310.12840.72990.044*
Cl10.90617 (9)0.25000.69439 (2)0.03609 (13)
Cl20.90460 (11)0.2211 (2)0.55605 (3)0.0453 (6)0.50
Cl30.55658 (6)0.04244 (4)0.580485 (16)0.03060 (8)
C10.1477 (2)0.61758 (19)0.65549 (8)0.0352 (4)
H1A0.18590.61770.69250.042*
H1B0.19440.53060.63850.042*
C20.0537 (2)0.6177 (2)0.65261 (9)0.0390 (4)
H2A0.09460.53100.63420.047*
H2B0.10320.61690.68840.047*
C30.1595 (3)0.75000.57038 (10)0.0414 (6)
H3A0.20590.66430.55250.050*
C40.0427 (4)0.75000.56802 (10)0.0430 (7)
H4A0.08420.83570.54900.052*
N10.1154 (2)0.75000.62359 (7)0.0251 (4)
H60.23670.75000.62220.030*
N20.2166 (3)0.75000.62779 (7)0.0291 (4)
H70.33780.75000.62930.035*
Cl40.54768 (8)0.75000.70889 (2)0.02892 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01944 (6)0.02101 (5)0.01796 (6)0.0000.00004 (4)0.000
O10.0509 (11)0.0277 (7)0.0230 (7)0.0000.0084 (7)0.000
O20.0214 (8)0.0584 (11)0.0373 (9)0.0000.0009 (7)0.000
O30.0609 (9)0.0255 (5)0.0241 (5)0.0054 (6)0.0066 (6)0.0002 (4)
Cl10.0366 (3)0.0475 (3)0.0242 (2)0.0000.0057 (2)0.000
Cl20.0253 (3)0.0869 (18)0.0236 (3)0.0029 (5)0.0034 (3)0.0010 (4)
Cl30.0393 (2)0.02462 (15)0.02786 (17)0.00411 (14)0.00325 (15)0.00412 (13)
C10.0304 (8)0.0320 (8)0.0433 (10)0.0059 (7)0.0021 (7)0.0040 (7)
C20.0310 (9)0.0329 (8)0.0532 (11)0.0023 (7)0.0025 (8)0.0125 (8)
C30.0277 (12)0.0739 (19)0.0226 (11)0.0000.0010 (9)0.000
C40.0271 (12)0.077 (2)0.0248 (11)0.0000.0022 (9)0.000
N10.0182 (8)0.0301 (9)0.0270 (9)0.0000.0015 (7)0.000
N20.0188 (8)0.0396 (10)0.0290 (9)0.0000.0003 (7)0.000
Cl40.0298 (3)0.0300 (2)0.0269 (2)0.0000.0018 (2)0.000
Geometric parameters (Å, º) top
La1—O22.5240 (18)C1—C21.512 (2)
La1—O3i2.5492 (11)C1—H1A0.9700
La1—O32.5492 (11)C1—H1B0.9700
La1—O12.5650 (16)C2—N11.489 (2)
La1—Cl22.8310 (8)C2—H2A0.9700
La1—Cl2i2.8310 (8)C2—H2B0.9700
La1—Cl32.8524 (4)C3—N21.500 (3)
La1—Cl3i2.8524 (4)C3—C41.518 (4)
La1—Cl13.0482 (6)C3—H3A0.9700
O1—H10.8335C4—N11.494 (3)
O2—H20.8433C4—H4A0.9700
O2—H30.8172N1—C2ii1.489 (2)
O3—H40.8330N1—H60.9100
O3—H50.9262N2—C1ii1.491 (2)
Cl2—Cl2i0.530 (4)N2—H70.9100
C1—N21.491 (2)
O2—La1—O3i73.44 (5)La1—O2—H2136.4
O2—La1—O373.44 (5)La1—O2—H3131.6
O3i—La1—O370.20 (5)H2—O2—H392.0
O2—La1—O167.98 (6)La1—O3—H4131.2
O3i—La1—O1127.16 (4)La1—O3—H5122.6
O3—La1—O1127.16 (4)H4—O3—H5105.9
O2—La1—Cl2148.49 (4)Cl2i—Cl2—La184.63 (4)
O3i—La1—Cl2133.72 (4)N2—C1—C2108.86 (14)
O3—La1—Cl2125.70 (5)N2—C1—H1A109.9
O1—La1—Cl280.97 (5)C2—C1—H1A109.9
O2—La1—Cl2i148.49 (4)N2—C1—H1B109.9
O3i—La1—Cl2i125.70 (5)C2—C1—H1B109.9
O3—La1—Cl2i133.72 (4)H1A—C1—H1B108.3
O1—La1—Cl2i80.97 (5)N1—C2—C1109.54 (15)
Cl2—La1—Cl2i10.73 (8)N1—C2—H2A109.8
O2—La1—Cl385.617 (16)C1—C2—H2A109.8
O3i—La1—Cl3140.58 (3)N1—C2—H2B109.8
O3—La1—Cl371.99 (3)C1—C2—H2B109.8
O1—La1—Cl370.429 (9)H2A—C2—H2B108.2
Cl2—La1—Cl378.89 (4)N2—C3—C4108.8 (2)
Cl2i—La1—Cl389.04 (4)N2—C3—H3A109.9
O2—La1—Cl3i85.617 (16)C4—C3—H3A109.9
O3i—La1—Cl3i71.99 (3)N1—C4—C3109.2 (2)
O3—La1—Cl3i140.58 (3)N1—C4—H4A109.8
O1—La1—Cl3i70.429 (9)C3—C4—H4A109.8
Cl2—La1—Cl3i89.04 (4)C2ii—N1—C2109.3 (2)
Cl2i—La1—Cl3i78.89 (4)C2ii—N1—C4109.94 (13)
Cl3—La1—Cl3i140.349 (16)C2—N1—C4109.94 (13)
O2—La1—Cl1138.84 (4)C2ii—N1—H6109.2
O3i—La1—Cl173.13 (3)C2—N1—H6109.2
O3—La1—Cl173.13 (3)C4—N1—H6109.2
O1—La1—Cl1153.18 (4)C1ii—N2—C1109.12 (19)
Cl2—La1—Cl172.33 (2)C1ii—N2—C3110.29 (13)
Cl2i—La1—Cl172.33 (2)C1—N2—C3110.29 (13)
Cl3—La1—Cl1105.963 (9)C1ii—N2—H7109.0
Cl3i—La1—Cl1105.963 (9)C1—N2—H7109.0
La1—O1—H1119.0C3—N2—H7109.0
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl3iii0.832.493.2429 (14)151
O2—H2···Cl2iv0.842.283.1035 (19)166
O2—H2···Cl2v0.842.283.1035 (19)166
O2—H3···Cl1iv0.822.413.1834 (19)159
O3—H4···Cl4vi0.832.333.1542 (12)173
O3—H5···Cl1vii0.932.263.1765 (12)173
N1—H6···Cl3v0.912.673.2930 (15)127
N1—H6···Cl3viii0.912.673.2930 (15)127
N1—H6···Cl4iv0.912.713.3086 (19)125
N2—H7···Cl40.912.543.208 (2)131
N2—H7···Cl3ix0.912.803.3962 (17)125
N2—H7···Cl3i0.912.803.3962 (17)125
Symmetry codes: (i) x, y+1/2, z; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x1, y+1/2, z; (vi) x, y1, z; (vii) x1/2, y, z+3/2; (viii) x1, y+1, z; (ix) x, y+1, z.
 

Acknowledgements

LKR thanks the Carnegie Trust for the Universities of Scotland for a vacation scholarship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBisi Castellani, C. & Coda, A. (1985). Acta Cryst. C41, 186–189.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardie, M. J., Raston, C. L. & Salinas, A. (2001). Chem. Commun. pp. 1850–1851.  Web of Science CSD CrossRef Google Scholar
First citationHarrowfield, J. McB., Kepert, D. L., Patrick, J. M. & White, A. H. (1983). Aust. J. Chem. 36, 483–492.  CrossRef CAS Google Scholar
First citationMackenstedt, D. & Urland, W. (1993). Z. Anorg. Allg. Chem. 619, 893–896.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186–m187.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationUrland, W. (1985). Z. Naturforsch. Teil B, 40, 496–499.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds