organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of sulfanilic acid monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 29 March 2006; accepted 1 May 2006; online 10 May 2006)

An ortho­rhom­bic polymorph of sulfanilic acid monohydrate, C6H7NO3S·H2O, is described in which there are significant hydrogen-bonding inter­actions between the components of the structure.

Comment

The crystal structure of a monoclinic form (P21/n) of sulfanilic acid monohydrate, (II), has been described (Rae & Maslen, 1962[Rae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285-1291.]). Here, the structure of an ortho­rhom­bic form, (I)[link] (P212121), obtained by recrystallization from a methanol solution of the compound, is described (Fig. 1[link] and Table 1[link]).

[Scheme 1]

The C—S and C—N bond lengths in (I)[link] (Table 1[link]) are close to the corresponding distances in (II) and O3SC6H4NH–CH–N(CH3)2·H2O (Hempel et al., 1999[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 697-698.]). The S—O bond distances in (I)[link] are similar to those found in (II) (Rae & Maslen, 1962[Rae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285-1291.]), in metanilic acid (Hall & Maslen, 1965[Hall, S. R. & Maslen, E. N. (1965). Acta Cryst. 18, 301-306.]), and in 2,5-dichloro­benzene­sulfonic acid and 2,5-dibromo­benzene­sulfonic acid (Lundgren & Lundin, 1972[Lundgren, J.-O. & Lundin, P. (1972). Acta Cryst. B28, 486-491.]). The C—S—O and O—S—O angles deviate from 109.5° in the expected manner.

The crystal structure of (I)[link] is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]), which result in the formation of a hydrogen-bonded network (Fig. 2[link]). The water mol­ecule is hydrogen bonded to the amine group (N1/H1B). The distance between the two parallel structures, with symmetry (1 + x, y, z), in the packing diagram (Fig. 2[link]) is 6.163 (3) Å.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. The hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link], viewed approximately along the a axis. Dashed lines indicate the hydrogen-bonding inter­actions.

Experimental

Sulfanilic acid (1.732 g, 1 mmol) was dissolved in methanol (20 ml) and stirred for 1 h. After filtration, the clear solution was left for crystallization, and after two weeks, pale-yellow crystals were obtained.

Crystal data
  • C6H7NO3S·H2O

  • Mr = 191.20

  • Orthorhombic, P 21 21 21

  • a = 6.1630 (6) Å

  • b = 6.9607 (5) Å

  • c = 18.3251 (10) Å

  • V = 786.12 (10) Å3

  • Z = 4

  • Dx = 1.616 Mg m−3

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 150 (2) K

  • Block, pale yellow

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.910, Tmax = 0.927

  • 1822 measured reflections

  • 957 independent reflections

  • 793 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 26.3°

  • 3 standard reflections every 134 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.04

  • 957 reflections

  • 114 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1313P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O1 1.448 (3)
S1—O2 1.459 (3)
S1—O3 1.446 (3)
S1—C1 1.773 (3)
N1—C4 1.468 (4)
O1—S1—O2 111.64 (19)
O1—S1—O3 113.77 (19)
O1—S1—C1 106.26 (15)
O2—S1—O3 112.15 (15)
O2—S1—C1 105.00 (15)
O3—S1—C1 107.36 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.95 1.90 2.821 (3) 163
O4—H4B⋯O2ii 0.95 1.89 2.838 (4) 175
N1—H1A⋯O3iii 0.94 1.97 2.846 (4) 154
N1—H1B⋯O4 0.93 1.84 2.738 (3) 160
N1—H1C⋯O2iv 0.96 1.95 2.895 (4) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

In the absence of significant anomalous scattering, Friedel pairs were merged before the final refinement. C-bound H atoms were included in the riding model approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). H atoms attached to N and O(water) were located from an electron density map, fixed in these positions and assigned individual isotropic displacement parameters; see Table 2[link] for bond distances.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Gοttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

sulfanilic acid monohydrate top
Crystal data top
C6H7NO3S·H2OF(000) = 400
Mr = 191.20Dx = 1.616 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 957 reflections
a = 6.1630 (6) Åθ = 2.9–26.3°
b = 6.9607 (5) ŵ = 0.39 mm1
c = 18.3251 (10) ÅT = 150 K
V = 786.12 (10) Å3Block, pale yellow
Z = 40.25 × 0.22 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
793 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.3°, θmin = 2.2°
ω/θ scansh = 70
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 82
Tmin = 0.910, Tmax = 0.927l = 2222
3 measured reflections1534 standard reflections every 134 reflections
957 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1313P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
957 reflectionsΔρmax = 0.31 e Å3
114 parametersΔρmin = 0.29 e Å3
5 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01053 (14)0.48483 (12)0.63841 (4)0.0291 (2)
O10.2228 (4)0.5066 (5)0.63447 (13)0.0463 (7)
O20.1130 (5)0.6505 (4)0.67294 (13)0.0386 (7)
O30.0795 (5)0.3055 (4)0.67078 (13)0.0428 (7)
O40.0515 (4)0.6429 (5)0.25576 (15)0.0663 (11)
N10.3138 (4)0.5290 (4)0.32896 (13)0.0307 (7)
C10.1055 (5)0.4873 (4)0.54710 (15)0.0252 (7)
C20.3124 (6)0.5482 (5)0.53154 (17)0.0303 (8)
H20.40840.58270.56990.036*
C30.3807 (6)0.5591 (5)0.45936 (17)0.0307 (8)
H30.52340.60110.44800.037*
C40.2392 (5)0.5081 (5)0.40465 (16)0.0273 (7)
C50.0359 (6)0.4401 (5)0.41925 (16)0.0304 (8)
H50.05540.40060.38030.036*
C60.0381 (4)0.4282 (4)0.49055 (13)0.0299 (8)
H60.17970.38230.50130.036*
H1A0.37810.41130.31580.053 (13)*
H1B0.19760.54360.29700.041 (11)*
H1C0.41420.63170.31970.059 (14)*
H4A0.14340.61630.21560.12 (2)*
H4B0.16150.71840.27770.15 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (4)0.0347 (4)0.0195 (3)0.0022 (5)0.0003 (3)0.0014 (4)
O10.0293 (13)0.079 (2)0.0311 (12)0.0029 (16)0.0032 (10)0.0047 (17)
O20.0500 (18)0.0387 (13)0.0270 (12)0.0017 (14)0.0012 (14)0.0070 (11)
O30.0549 (19)0.0419 (14)0.0315 (13)0.0020 (14)0.0023 (15)0.0098 (11)
O40.052 (2)0.096 (3)0.0513 (16)0.025 (2)0.0144 (17)0.0228 (18)
N10.0376 (16)0.0327 (16)0.0217 (12)0.0033 (15)0.0041 (13)0.0000 (12)
C10.0299 (16)0.0241 (15)0.0216 (13)0.0018 (18)0.0004 (12)0.0007 (13)
C20.0306 (18)0.0334 (18)0.0268 (16)0.0028 (16)0.0057 (14)0.0008 (14)
C30.0296 (19)0.0331 (17)0.0294 (16)0.0016 (16)0.0019 (14)0.0002 (14)
C40.0353 (17)0.0254 (16)0.0212 (15)0.0001 (17)0.0030 (12)0.0001 (15)
C50.0321 (19)0.0353 (17)0.0237 (14)0.0036 (15)0.0054 (15)0.0067 (13)
C60.031 (2)0.0305 (16)0.0284 (15)0.0041 (15)0.0018 (15)0.0026 (13)
Geometric parameters (Å, º) top
S1—O11.448 (3)C1—C21.374 (5)
S1—O21.459 (3)C1—C61.424 (4)
S1—O31.446 (3)C2—C31.390 (4)
S1—C11.773 (3)C2—H20.9500
O4—H4A0.9476C3—C41.376 (5)
O4—H4B0.9474C3—H30.9500
N1—C41.468 (4)C4—C51.366 (5)
N1—H1A0.9415C5—C61.386 (4)
N1—H1B0.9315C5—H50.9500
N1—H1C0.9606C6—H60.9500
O1—S1—O2111.64 (19)C1—C2—C3119.7 (3)
O1—S1—O3113.77 (19)C1—C2—H2120.2
O1—S1—C1106.26 (15)C3—C2—H2120.2
O2—S1—O3112.15 (15)C4—C3—C2119.2 (3)
O2—S1—C1105.00 (15)C4—C3—H3120.4
O3—S1—C1107.36 (15)C2—C3—H3120.4
H4A—O4—H4B90.5C5—C4—C3121.9 (3)
C4—N1—H1A106.8C5—C4—N1120.4 (3)
C4—N1—H1B111.4C3—C4—N1117.7 (3)
H1A—N1—H1B104.9C4—C5—C6120.5 (3)
C4—N1—H1C116.3C4—C5—H5119.8
H1A—N1—H1C109.3C6—C5—H5119.8
H1B—N1—H1C107.6C5—C6—C1117.7 (3)
C2—C1—C6121.0 (3)C5—C6—H6121.2
C2—C1—S1120.4 (2)C1—C6—H6121.2
C6—C1—S1118.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4a···O1i0.951.902.821 (3)163
O4—H4b···O2ii0.951.892.838 (4)175
N1—H1a···O3iii0.941.972.846 (4)154
N1—H1b···O40.931.842.738 (3)160
N1—H1c···O2iv0.961.952.895 (4)166
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

GMGH acknowledges the Ministry of Science and Technology, The People's Republic of Bangladesh, for the award of a Bangabandhu Fellowship.

References

First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, S. R. & Maslen, E. N. (1965). Acta Cryst. 18, 301–306.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 697–698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London.  Google Scholar
First citationLundgren, J.-O. & Lundin, P. (1972). Acta Cryst. B28, 486–491.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285–1291.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Gοttingen, Germany.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds