metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(homopiperazinium) di­aqua­penta­kis(nitrato-κ2O,O′)lanthanate(III) dinitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 9 May 2006; accepted 10 May 2006; online 12 May 2006)

The title compound, (C5H14N2)2[La(NO3)5(H2O)2](NO3)2, contains a network of doubly protonated homopiperazinium (1,4-diazo­niacyclo­hepta­ne) cations, diaqua­penta­nitrato­lan­thanate(III) dianions and nitrate anions. In the complex anion, the 12 O atoms surround La in a distorted icosa­hedral arrangement. A network of N—H⋯O and O—H⋯O hydrogen bonds help to consolidate the crystal packing, resulting in a three-dimensional network. The La atom and one N and one O atom lie on a twofold axis.

Comment

The title compound, (I)[link] (Fig. 1[link]), contains organic dications, lanthanum/nitrate/water complex anions and non-coordinated nitrate anions. The LaIII cation, which occupies a twofold symmetry axis, is surrounded by five bidentate nitrate groups [mean La—O = 2.681 (2) Å] and two water mol­ecules (Table 1[link]). The resulting O12 grouping (Fig. 2[link]) surrounding the La ion is a distorted icosa­hedron. As expected, the icosa­hedral O⋯O contacts associated with O atoms that are part of the same nitrate ion are much shorter (O⋯O < 2.17 Å) than the other contacts (O⋯O > 2.8 Å). Atoms O1, O5, O2i, O4i and O7i [symmetry code (i) −x, y, [{1\over 2}]z] are approximately coplanar (r.m.s. deviation from the mean plane = 0.052 Å) and the symmetry-equivalent set of atoms O2, O4, O7, O1i and O5i have the same r.m.s. deviation. The La cation is displaced by 1.0046 (6) Å from each set of five O atoms. The dihedral angle between the two penta­gons of O atoms is 1.42 (4)°. A very similar complex anion was seen in (CH6N3)2[La(H2O)2(NO3)5] (Fowkes & Harrison, 2004[Fowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1647-m1649.]).

[Scheme 1]

The conformation of the homopiperazinium cation in (I)[link] approximates to a chair, with atoms N1, C2, C3 and C5 almost coplanar (r.m.s. deviation from the mean plane = 0.033 Å) and C1, C4 and N2 displaced from the plane by −0.672 (3), 1.183 (3) and 1.028 (3) Å, respectively. A similar conformation for the same species was observed by Almond et al. (2000[Almond, P. M., Talley, C. E., Bean, A. C., Peper, S. M. & Albrecht-Smith, T. E. (2000). J. Solid State Chem. 154, 635-641.]) with the inter­esting difference that the `seat' of the chair was defined by four C atoms rather than three C atoms and one N atom as found here.

As well as coulombic and van der Waals forces, the component species in (I)[link] inter­act by way of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). The O9—H91⋯O1(x, 1 − y, z[{1\over 2}]) bonds link adjacent [La(H2O)2(NO3)5]2− anions into infinite [100] chains (Fig. 3[link]) and the O9—H92⋯O12 bond attaches a pendant nitrate ion to the chain. The organic cations cross-link the chains into a three-dimensional network by way of the N—H⋯O inter­actions (Fig. 4[link]). In (CH6N3)2[La(H2O)2(NO3)5] (Fowkes & Harrison, 2004[Fowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1647-m1649.]), the anions form a two-dimensional hydrogen-bonded array, rather than the chains seen here.

[Figure 1]
Figure 1
Component units of (I)[link] (40% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii). [Symmetry code (i) −x, y, [{1\over 2}]z.]
[Figure 2]
Figure 2
The LaO12 icosa­hedron in (I)[link] with O⋯O contacts shown as solid lines (30% probability displacement ellipsoids). [Symmetry code: (i) −x, y, [{1\over 2}]z.]
[Figure 3]
Figure 3
Detail of a hydrogen-bonded anionic chain in (I)[link]. Drawing conventions as in Fig. 1[link], with hydrogen bonds indicated by dashed lines. [Symmetry codes: (ii) x, 1 − y, z[{1\over 2}], (iii) −x, 1 − y, −z; (iv) −x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
The packing in (I)[link]. Drawing conventions as in Fig. 1[link]. C-bound H atoms have been omitted for clarity and hydrogen bonds are indicated by dashed lines.

Experimental

The following solutions were mixed at 293 K in a Petri dish to result in a clear solution: 5 ml of 0.1  M homopiperazine, 5 ml of 0.1 M lanthanum nitrate and 1 ml of 1 M HCl. Colourless blocks and slabs of (I)[link] grew over the course of a few days as the water evaporated at 293 K.

Crystal data
  • (C5H14N2)2[La(NO3)5(H2O)2](NO3)2

  • Mr = 813.38

  • Monoclinic, C 2/c

  • a = 17.2458 (5) Å

  • b = 12.8660 (4) Å

  • c = 13.4908 (4) Å

  • β = 105.780 (1)°

  • V = 2880.59 (15) Å3

  • Z = 4

  • Dx = 1.876 Mg m−3

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 293 (2) K

  • Slab, colourless

  • 0.40 × 0.24 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.568, Tmax = 0.870

  • 16827 measured reflections

  • 5192 independent reflections

  • 4634 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 32.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.00

  • 5192 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected geometric parameters (Å, °)

La1—O1 2.6990 (12)
La1—O2 2.6355 (13)
La1—O4 2.6863 (14)
La1—O5 2.6780 (12)
La1—O7 2.7076 (13)
La1—O9 2.5996 (12)
C1—C2—C3—N2 85.3 (2)
C2—C3—N2—C4 −54.1 (2)
C3—N2—C4—C5 −16.1 (3)
N2—C4—C5—N1 76.5 (2)
C4—C5—N1—C1 −81.6 (2)
C5—N1—C1—C2 60.2 (2)
N1—C1—C2—C3 −67.0 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O1ii 0.79 (2) 2.08 (2) 2.8388 (17) 163 (2)
O9—H92⋯O12 0.84 (2) 1.87 (2) 2.705 (2) 173 (2)
N1—H1A⋯O8 0.90 2.11 2.9817 (17) 163
N1—H1B⋯O5ii 0.90 1.97 2.8531 (19) 165
N2—H2A⋯O9v 0.90 2.07 2.966 (2) 172
N2—H2B⋯O11vi 0.90 1.95 2.797 (2) 155
Symmetry codes: (ii) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z+{\script{1\over 2}}].

The water H atoms were located in a difference map and their positions were freely refined The other H atoms were placed in idealized locations [C—H = 0.97 Å and N—H = 0.90 Å] and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. App. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Bis(1,4-diazoniacycloheptane) diaquapentakis(nitrato-κ2O,O')lanthanum(III) dinitrate ? top
Crystal data top
(C5H14N2)2[La(NO3)5(H2O)2](NO3)2F(000) = 1640
Mr = 813.38Dx = 1.876 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9327 reflections
a = 17.2458 (5) Åθ = 2.0–32.5°
b = 12.8660 (4) ŵ = 1.60 mm1
c = 13.4908 (4) ÅT = 293 K
β = 105.780 (1)°Slab, colourless
V = 2880.59 (15) Å30.40 × 0.24 × 0.09 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5192 independent reflections
Radiation source: fine-focus sealed tube4634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2626
Tmin = 0.568, Tmax = 0.870k = 1914
16827 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difmap (O-H) and geom (others)
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0369P)2]
where P = (Fo2 + 2Fc2)/3
5192 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.00000.589697 (10)0.25000.01899 (4)
N40.14572 (9)0.53102 (13)0.43198 (12)0.0315 (3)
O10.07532 (8)0.50627 (11)0.43465 (10)0.0339 (3)
O20.15348 (8)0.56177 (12)0.34585 (10)0.0363 (3)
O30.20254 (10)0.52783 (16)0.50843 (13)0.0609 (5)
N50.09740 (10)0.78175 (12)0.35558 (11)0.0333 (3)
O40.08949 (9)0.76256 (11)0.26240 (9)0.0367 (3)
O50.06011 (8)0.72372 (10)0.40356 (9)0.0308 (3)
O60.13956 (15)0.85228 (16)0.40015 (13)0.0792 (7)
N60.00000.34742 (17)0.25000.0313 (4)
O70.05025 (9)0.39674 (10)0.21651 (12)0.0357 (3)
O80.00000.25002 (16)0.25000.0495 (6)
O90.08881 (8)0.60093 (11)0.12251 (9)0.0262 (2)
H910.0813 (13)0.5617 (18)0.0762 (18)0.031*
H920.0838 (13)0.6601 (19)0.0959 (17)0.031*
N10.09602 (10)0.18968 (13)0.10566 (12)0.0339 (3)
H1A0.07090.22100.14800.041*
H1B0.07570.21650.04230.041*
N20.23276 (10)0.11081 (14)0.30716 (13)0.0355 (4)
H2A0.28650.10130.32670.043*
H2B0.21640.11340.36500.043*
C10.07662 (14)0.07671 (17)0.10186 (16)0.0392 (4)
H1C0.10110.04300.05350.047*
H1D0.01870.06810.07630.047*
C20.10535 (12)0.02359 (17)0.20505 (16)0.0374 (4)
H2C0.08340.04630.19870.045*
H2D0.08350.06060.25400.045*
C30.19600 (12)0.01657 (16)0.24868 (16)0.0355 (4)
H3A0.20860.04330.29390.043*
H3B0.22020.00540.19250.043*
C40.21694 (13)0.21552 (16)0.25651 (15)0.0382 (4)
H4A0.26700.25430.27390.046*
H4B0.17940.25240.28590.046*
C50.18364 (12)0.21604 (16)0.14100 (15)0.0363 (4)
H5A0.19180.28440.11520.044*
H5B0.21350.16640.11170.044*
N70.12793 (11)0.80286 (16)0.01623 (13)0.0422 (4)
O100.1615 (2)0.7241 (2)0.0376 (2)0.1139 (12)
O110.13743 (14)0.88747 (15)0.05498 (17)0.0651 (6)
O120.08566 (15)0.79433 (16)0.04290 (19)0.0805 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01944 (6)0.02038 (7)0.01708 (6)0.0000.00484 (4)0.000
N40.0255 (7)0.0354 (9)0.0301 (7)0.0002 (6)0.0014 (5)0.0080 (6)
O10.0279 (6)0.0412 (8)0.0323 (6)0.0002 (6)0.0075 (5)0.0128 (6)
O20.0271 (6)0.0510 (9)0.0319 (6)0.0004 (6)0.0100 (5)0.0086 (6)
O30.0400 (9)0.0812 (14)0.0452 (9)0.0110 (9)0.0161 (7)0.0229 (9)
N50.0442 (9)0.0305 (8)0.0249 (6)0.0137 (7)0.0090 (6)0.0031 (6)
O40.0540 (8)0.0357 (7)0.0226 (5)0.0117 (6)0.0141 (5)0.0023 (5)
O50.0385 (7)0.0318 (7)0.0242 (5)0.0106 (6)0.0121 (5)0.0038 (5)
O60.1314 (19)0.0706 (13)0.0381 (8)0.0730 (14)0.0272 (10)0.0199 (9)
N60.0340 (11)0.0245 (10)0.0379 (11)0.0000.0140 (9)0.000
O70.0358 (7)0.0296 (7)0.0473 (8)0.0002 (5)0.0211 (6)0.0054 (6)
O80.0635 (14)0.0211 (10)0.0784 (16)0.0000.0440 (13)0.000
O90.0293 (6)0.0295 (7)0.0214 (5)0.0000 (5)0.0096 (5)0.0027 (5)
N10.0394 (8)0.0374 (9)0.0239 (6)0.0124 (7)0.0065 (6)0.0044 (6)
N20.0260 (7)0.0480 (10)0.0300 (7)0.0019 (7)0.0034 (6)0.0098 (7)
C10.0393 (10)0.0423 (12)0.0312 (9)0.0004 (8)0.0013 (8)0.0025 (8)
C20.0345 (9)0.0384 (11)0.0384 (9)0.0047 (8)0.0083 (8)0.0056 (8)
C30.0348 (9)0.0326 (10)0.0404 (9)0.0067 (8)0.0124 (8)0.0113 (8)
C40.0376 (10)0.0359 (11)0.0374 (9)0.0026 (8)0.0037 (8)0.0022 (8)
C50.0391 (10)0.0356 (10)0.0370 (9)0.0029 (8)0.0153 (8)0.0101 (8)
N70.0451 (9)0.0487 (11)0.0360 (8)0.0017 (8)0.0167 (7)0.0105 (8)
O100.174 (3)0.0730 (17)0.140 (3)0.0222 (18)0.119 (2)0.0206 (16)
O110.0918 (15)0.0487 (10)0.0728 (13)0.0027 (10)0.0528 (12)0.0167 (9)
O120.1119 (17)0.0625 (13)0.0973 (16)0.0236 (12)0.0797 (15)0.0343 (11)
Geometric parameters (Å, º) top
La1—O1i2.6990 (12)N1—C51.495 (3)
La1—O12.6990 (12)N1—H1A0.9000
La1—O2i2.6355 (13)N1—H1B0.9000
La1—O22.6355 (13)N2—C31.491 (3)
La1—O42.6863 (14)N2—C41.502 (3)
La1—O4i2.6863 (14)N2—H2A0.9000
La1—O52.6780 (12)N2—H2B0.9000
La1—O5i2.6780 (12)C1—C21.508 (3)
La1—O7i2.7076 (13)C1—H1C0.9700
La1—O72.7076 (13)C1—H1D0.9700
La1—O9i2.5996 (12)C2—C31.516 (3)
La1—O92.5996 (12)C2—H2C0.9700
N4—O31.215 (2)C2—H2D0.9700
N4—O11.2651 (19)C3—H3A0.9700
N4—O21.2686 (19)C3—H3B0.9700
N5—O61.215 (2)C4—C51.507 (3)
N5—O41.2516 (18)C4—H4A0.9700
N5—O51.2713 (18)C4—H4B0.9700
N6—O81.253 (3)C5—H5A0.9700
N6—O71.2533 (17)C5—H5B0.9700
N6—O7i1.2532 (17)N7—O121.223 (2)
O9—H910.79 (2)N7—O111.238 (2)
O9—H920.84 (2)N7—O101.238 (3)
N1—C11.489 (3)
O9i—La1—O9173.63 (6)O1—La1—O772.17 (5)
O9i—La1—O2i68.80 (4)O7i—La1—O747.05 (6)
O9—La1—O2i112.14 (4)O3—N4—O1121.74 (16)
O9i—La1—O2112.14 (4)O3—N4—O2121.77 (17)
O9—La1—O268.80 (4)O1—N4—O2116.47 (14)
O2i—La1—O2164.33 (7)N4—O1—La195.65 (9)
O9i—La1—O568.05 (4)N4—O2—La198.62 (10)
O9—La1—O5107.59 (4)O6—N5—O4122.11 (16)
O2i—La1—O5126.38 (4)O6—N5—O5120.28 (15)
O2—La1—O565.32 (4)O4—N5—O5117.61 (14)
O9i—La1—O5i107.59 (4)N5—O4—La197.45 (10)
O9—La1—O5i68.05 (4)N5—O5—La197.31 (9)
O2i—La1—O5i65.32 (4)O8—N6—O7120.42 (11)
O2—La1—O5i126.38 (4)O8—N6—O7i120.42 (11)
O5—La1—O5i99.83 (6)O7—N6—O7i119.2 (2)
O9i—La1—O4110.16 (4)N6—O7—La196.89 (11)
O9—La1—O464.10 (4)La1—O9—H91119.4 (17)
O2i—La1—O4128.81 (5)La1—O9—H92108.9 (15)
O2—La1—O466.36 (5)H91—O9—H92106 (2)
O5—La1—O447.45 (4)C1—N1—C5115.51 (16)
O5i—La1—O467.05 (4)C1—N1—H1A108.4
O9i—La1—O4i64.10 (4)C5—N1—H1A108.4
O9—La1—O4i110.16 (4)C1—N1—H1B108.4
O2i—La1—O4i66.36 (5)C5—N1—H1B108.4
O2—La1—O4i128.81 (5)H1A—N1—H1B107.5
O5—La1—O4i67.05 (4)C3—N2—C4119.36 (15)
O5i—La1—O4i47.45 (4)C3—N2—H2A107.5
O4—La1—O4i68.22 (6)C4—N2—H2A107.5
O9i—La1—O1i114.24 (4)C3—N2—H2B107.5
O9—La1—O1i68.51 (4)C4—N2—H2B107.5
O2i—La1—O1i47.62 (4)H2A—N2—H2B107.0
O2—La1—O1i124.45 (4)N1—C1—C2113.34 (16)
O5—La1—O1i163.32 (5)N1—C1—H1C108.9
O5i—La1—O1i63.53 (4)C2—C1—H1C108.9
O4—La1—O1i120.72 (4)N1—C1—H1D108.9
O4i—La1—O1i98.49 (4)C2—C1—H1D108.9
O9i—La1—O168.51 (4)H1C—C1—H1D107.7
O9—La1—O1114.24 (4)C1—C2—C3115.50 (17)
O2i—La1—O1124.45 (4)C1—C2—H2C108.4
O2—La1—O147.62 (4)C3—C2—H2C108.4
O5—La1—O163.53 (4)C1—C2—H2D108.4
O5i—La1—O1163.32 (5)C3—C2—H2D108.4
O4—La1—O198.49 (4)H2C—C2—H2D107.5
O4i—La1—O1120.72 (4)N2—C3—C2113.72 (16)
O1i—La1—O1133.13 (6)N2—C3—H3A108.8
O9i—La1—O7i70.59 (4)C2—C3—H3A108.8
O9—La1—O7i115.74 (4)N2—C3—H3B108.8
O2i—La1—O7i68.44 (5)C2—C3—H3B108.8
O2—La1—O7i96.75 (5)H3A—C3—H3B107.7
O5—La1—O7i122.37 (4)N2—C4—C5116.45 (17)
O5i—La1—O7i130.19 (5)N2—C4—H4A108.2
O4—La1—O7i162.41 (5)C5—C4—H4A108.2
O4i—La1—O7i124.40 (4)N2—C4—H4B108.2
O1i—La1—O7i72.17 (5)C5—C4—H4B108.2
O1—La1—O7i64.97 (5)H4A—C4—H4B107.3
O9i—La1—O7115.74 (4)N1—C5—C4113.38 (15)
O9—La1—O770.59 (4)N1—C5—H5A108.9
O2i—La1—O796.75 (5)C4—C5—H5A108.9
O2—La1—O768.44 (5)N1—C5—H5B108.9
O5—La1—O7130.19 (5)C4—C5—H5B108.9
O5i—La1—O7122.37 (4)H5A—C5—H5B107.7
O4—La1—O7124.40 (4)O12—N7—O11121.7 (2)
O4i—La1—O7162.41 (5)O12—N7—O10118.5 (2)
O1i—La1—O764.97 (5)O11—N7—O10119.8 (2)
O3—N4—O1—La1165.63 (19)O1—La1—O4—N539.07 (12)
O2—N4—O1—La112.69 (18)O7i—La1—O4—N558.18 (19)
O9i—La1—O1—N4147.79 (12)O7—La1—O4—N5113.23 (12)
O9—La1—O1—N425.97 (12)O6—N5—O5—La1175.0 (2)
O2i—La1—O1—N4170.05 (10)O4—N5—O5—La14.27 (18)
O2—La1—O1—N47.36 (10)O9i—La1—O5—N5153.38 (12)
O5—La1—O1—N472.44 (11)O9—La1—O5—N521.68 (11)
O5i—La1—O1—N468.28 (18)O2i—La1—O5—N5114.76 (11)
O4—La1—O1—N439.39 (12)O2—La1—O5—N577.40 (11)
O4i—La1—O1—N4109.04 (11)O5i—La1—O5—N548.26 (10)
O1i—La1—O1—N4108.57 (11)O4—La1—O5—N52.39 (10)
O7i—La1—O1—N4134.35 (12)O4i—La1—O5—N583.30 (11)
O7—La1—O1—N484.12 (11)O1i—La1—O5—N552.03 (19)
O3—N4—O2—La1165.23 (18)O1—La1—O5—N5130.53 (11)
O1—N4—O2—La113.09 (18)O7i—La1—O5—N5159.45 (10)
O9i—La1—O2—N417.58 (13)O7—La1—O5—N5100.81 (11)
O9—La1—O2—N4169.21 (13)O8—N6—O7—La1180.0
O2i—La1—O2—N472.69 (11)O7i—N6—O7—La10.0
O5—La1—O2—N468.44 (11)O9i—La1—O7—N617.68 (10)
O5i—La1—O2—N4152.40 (11)O9—La1—O7—N6163.14 (10)
O4—La1—O2—N4120.76 (12)O2i—La1—O7—N652.00 (9)
O4i—La1—O2—N491.44 (12)O2—La1—O7—N6122.71 (9)
O1i—La1—O2—N4127.15 (11)O5—La1—O7—N699.86 (8)
O1—La1—O2—N47.39 (10)O5i—La1—O7—N6116.98 (8)
O7i—La1—O2—N454.17 (12)O4—La1—O7—N6160.22 (7)
O7—La1—O2—N492.51 (12)O4i—La1—O7—N667.52 (17)
O6—N5—O4—La1175.0 (2)O1i—La1—O7—N688.45 (9)
O5—N5—O4—La14.26 (18)O1—La1—O7—N672.07 (8)
O9i—La1—O4—N531.07 (12)O7i—La1—O7—N60.0
O9—La1—O4—N5151.96 (13)C1—C2—C3—N285.3 (2)
O2i—La1—O4—N5109.59 (11)C2—C3—N2—C454.1 (2)
O2—La1—O4—N575.04 (11)C3—N2—C4—C516.1 (3)
O5—La1—O4—N52.43 (10)N2—C4—C5—N176.5 (2)
O5i—La1—O4—N5132.26 (12)C4—C5—N1—C181.6 (2)
O4i—La1—O4—N580.70 (11)C5—N1—C1—C260.2 (2)
O1i—La1—O4—N5167.69 (10)N1—C1—C2—C367.0 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O1ii0.79 (2)2.08 (2)2.8388 (17)163 (2)
O9—H92···O120.84 (2)1.87 (2)2.705 (2)173 (2)
N1—H1A···O80.902.112.9817 (17)163
N1—H1B···O5ii0.901.972.8531 (19)165
N2—H2A···O9iii0.902.072.966 (2)172
N2—H2B···O11iv0.901.952.797 (2)155
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z+1/2.
 

Acknowledgements

AF thanks the Carnegie Trust for the Universities of Scotland for a vacation scholarship.

References

First citationAlmond, P. M., Talley, C. E., Bean, A. C., Peper, S. M. & Albrecht-Smith, T. E. (2000). J. Solid State Chem. 154, 635–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. App. Cryst. 30, 565.  CrossRef Google Scholar
First citationFowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1647–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds