organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­chloro­thia­zide N,N-di­methyl­acetamide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 2 June 2006; accepted 14 June 2006; online 21 June 2006)

Hydro­chloro­thia­zide forms a 1:2 solvate with N,N-dimethyl­acetamide (systematic name: 6-chloro-3,4-dihydro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide dimethyl­acet­amide disolvate), C7H8ClN3O4S2·2C4H9NO. The compound crystallizes with one hydro­chorothia­zide and two disordered solvent mol­ecules in the asymmetric unit, with a hydrogen-bonding network comprising four N—H⋯O contacts.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least two non-solvated forms; form I (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]) and form II (Florence et al., 2005[Florence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798-o2800.]). Compound (I)[link] was produced during an automated parallel crystallization study on HCT. The sample was identified as a new form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated N,N-dimethyl­acetamide (DMA) solution by slow evaporation at 298 K yielded samples of the HCT DMA disolvate suitable for single-crystal diffraction (Fig. 1[link]).

[Scheme 1]

The compound crystallizes with one HCT and two DMA mol­ecules in the asymmetric unit. Both solvent mol­ecules are disordered over two sites though the positions of the acetyl O atoms (O1S and O2S) and one methyl group from each solvent (C2S and C10S) are modelled as coincident. The S1/N1/C1/N2/C2/C7 six-membered ring in HCT adopts a non-planar conformation with atoms S1 and N1 having deviations of 0.105 (1) and 0.684 (3) Å, respectively, from the least-squares plane through atoms C2/C3/C4/C5/C6/C7. The sulfon­amide side chain adopts a torsion angle N3—S2—C5—C4 of 60.7 (3)°, such that O3 eclipses H6, and O4 and N3 are staggered with respect to Cl1.

The structure contains four N—H⋯O hydrogen bonds, with N1, N2 and N3 of HCT donating contacts to adjacent acetyl O atoms of DMA (Fig. 2[link]). In addition, there are two C—H⋯O contacts between HCT and solvent, with a third, viz. C3—H3⋯O1(x, 1 + y, z), forming an infinite chain of HCT mol­ecules in the b-axis direction. Adjacent HCT chains pack as layers in the ab plane and form an alternating stacked arrangement with layers of solvent mol­ecules in the direction of the c axis (Fig. 3[link]).

[Figure 1]
Figure 1
Drawing of the asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The minor occupancy disordered atom sites have been omitted for clarity.
[Figure 2]
Figure 2
A partial packing diagram illustrating unique hydrogen bonds (dashed lines). Contacts are labelled as follow: 1 = N1⋯O2S(1 − x, −[{1\over 2}] + y, [{1\over 2}] − z) of 2.834 (4) Å; 2 = N2⋯O2S of 2.912 (4) Å; 3 = N3⋯O1S(x, −1 + y ,z) of 2.873 (4) Å; 4 = N3⋯O1S(−x, −[{1\over 2}] + y, [{1\over 2}] − z) of 2.881 (4) Å. Contacts illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Version 280604).
[Figure 3]
Figure 3
The crystal packing in the structure of (I)[link], viewed down the b axis, showing the alternating layers of HCT and DMA mol­ecules.

Experimental

A single-crystal sample of the title compound was recrystallized from a saturated dimethyl­acetamide solution by isothermal solvent evaporation at 298 K.

Crystal data
  • C7H8ClN3O4S2·2C4H9NO

  • Mr = 471.98

  • Monoclinic, P 21 /c

  • a = 17.0841 (6) Å

  • b = 7.3905 (3) Å

  • c = 17.7937 (7) Å

  • β = 106.875 (2)°

  • V = 2149.89 (14) Å3

  • Z = 4

  • Dx = 1.458 Mg m−3

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 123 (2) K

  • Prism, colourless

  • 0.20 × 0.14 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 7559 measured reflections

  • 4744 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.121

  • S = 1.01

  • 4744 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4808P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Si 0.75 (3) 2.08 (3) 2.834 (4) 175 (3)
N2—H2N⋯O2S 0.84 (4) 2.26 (4) 2.912 (4) 135 (3)
N3—H3N⋯O1Sii 0.84 (4) 2.05 (4) 2.881 (4) 170 (3)
N3—H4N⋯O1Siii 0.81 (3) 2.11 (4) 2.873 (4) 156 (3)
C1—H1A⋯O2S 0.99 2.56 3.100 (4) 114
C3—H3⋯O1iv 0.95 2.42 3.275 (4) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x, y+1, z.

Both DMA mol­ecules were modelled as disordered over two sites. Occupancy factors refined to 0.61 (1):0.39 (1) for the mol­ecule including atom O1S and to 0.56 (1):0.44 (1) for that including O2S. The DMA atoms N1S, N3S, N4S, C1S, C3S, C4S, C7S, C8S, C9S, C11S, C12S, C13S and C14S were treated isotropically. The amine H atoms were found through difference syntheses and refined [isotropically for those on N2 and N3, and with Uiso(H) = 1.2Ueq(N1) for H1N]. All other H atoms were constrained to idealized positions using a riding model; Uiso(H) = 1.2Ueq for CH and CH2, Uiso(H) = 1.5Ueq for CH3, and C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3, respectively.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide dimethylacetamide disolvate top
Crystal data top
C7H8ClN3O4S2·2C4H9NOF(000) = 992
Mr = 471.98Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4979 reflections
a = 17.0841 (6) Åθ = 1.0–27.1°
b = 7.3905 (3) ŵ = 0.41 mm1
c = 17.7937 (7) ÅT = 123 K
β = 106.875 (2)°Prism, colourless
V = 2149.89 (14) Å30.20 × 0.14 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 27.1°, θmin = 1.3°
ω and φ scansh = 2121
7559 measured reflectionsk = 96
4744 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.16219 (5)0.42882 (11)0.32597 (5)0.0324 (2)
S10.35182 (5)0.20503 (12)0.22599 (5)0.0282 (2)
S20.11163 (5)0.00683 (11)0.35166 (5)0.0275 (2)
O10.37516 (12)0.3338 (3)0.28875 (13)0.0336 (6)
O20.31010 (13)0.2697 (3)0.14910 (13)0.0420 (7)
O30.10866 (13)0.1865 (3)0.34756 (14)0.0366 (6)
O40.12786 (13)0.0924 (3)0.42702 (12)0.0323 (6)
N10.43442 (16)0.1002 (4)0.22180 (16)0.0277 (7)
N20.37250 (16)0.1930 (4)0.20213 (18)0.0327 (8)
N30.02765 (17)0.0846 (5)0.2979 (2)0.0296 (7)
C10.4161 (2)0.0582 (5)0.1713 (2)0.0343 (9)
H1A0.46770.11090.16660.041*
H1B0.38260.02170.11820.041*
C20.31340 (18)0.1506 (4)0.23653 (18)0.0241 (8)
C30.27045 (17)0.2885 (4)0.26157 (18)0.0265 (8)
H30.28260.41140.25400.032*
C40.21091 (18)0.2481 (4)0.29705 (18)0.0235 (8)
C50.19042 (17)0.0684 (4)0.30895 (17)0.0218 (7)
C60.23353 (17)0.0684 (4)0.28549 (17)0.0219 (7)
H60.22110.19110.29320.026*
C70.29477 (17)0.0286 (4)0.25075 (17)0.0220 (8)
O1S0.02987 (13)0.9177 (3)0.15273 (13)0.0345 (6)
C2S0.1018 (2)0.6895 (4)0.0857 (2)0.0353 (9)
H2S10.14520.66250.13340.053*0.608 (12)
H2S20.11160.62140.04130.053*0.608 (12)
H2S30.04880.65630.09130.053*0.608 (12)
H2S40.15640.66090.12020.053*0.392 (12)
H2S50.10300.69070.03100.053*0.392 (12)
H2S60.06280.59770.09210.053*0.392 (12)
N2S0.1023 (3)0.8849 (7)0.0686 (3)0.0252 (19)0.608 (12)
C6S0.0727 (5)1.1960 (13)0.1004 (5)0.027 (3)*0.608 (12)
H6S10.04251.25540.13260.041*0.608 (12)
H6S20.04921.23100.04540.041*0.608 (12)
H6S30.13021.23300.11840.041*0.608 (12)
C5S0.0668 (3)0.9902 (10)0.1081 (3)0.0244 (19)0.608 (12)
C7S0.1485 (4)0.9454 (12)0.0156 (4)0.0322 (19)*0.608 (12)
H7S10.12331.05520.01180.048*0.608 (12)
H7S20.14800.85020.02280.048*0.608 (12)
H7S30.20510.97130.04610.048*0.608 (12)
C1S0.0755 (6)0.8753 (16)0.1077 (7)0.029 (3)*0.392 (12)
N1S0.0990 (5)1.0187 (13)0.0733 (5)0.028 (3)*0.392 (12)
C4S0.1538 (6)1.0100 (17)0.0235 (6)0.029 (3)*0.392 (12)
H4S10.20310.94180.05060.044*0.392 (12)
H4S20.16911.13290.01250.044*0.392 (12)
H4S30.12580.94940.02610.044*0.392 (12)
C3S0.0738 (8)1.201 (2)0.0833 (8)0.035 (4)*0.392 (12)
H3S10.02151.19840.09560.053*0.392 (12)
H3S20.06761.26940.03480.053*0.392 (12)
H3S30.11531.25920.12650.053*0.392 (12)
C10S0.5241 (2)0.7173 (5)0.0822 (2)0.0492 (11)
H10A0.52210.80960.12100.074*0.559 (10)
H10B0.55160.76900.04510.074*0.559 (10)
H10C0.55270.61120.10700.074*0.559 (10)
H10D0.51680.82300.11270.074*0.441 (10)
H10E0.52080.75480.02860.074*0.441 (10)
H10F0.57770.66260.10680.074*0.441 (10)
O2S0.45606 (14)0.4448 (3)0.12565 (13)0.0381 (6)
C13S0.3276 (6)0.4946 (15)0.0121 (6)0.032 (3)*0.441 (10)
H13A0.34610.37630.03550.048*0.441 (10)
H13B0.30220.48030.04460.048*0.441 (10)
H13C0.28760.54520.03610.048*0.441 (10)
N4S0.3859 (5)0.5960 (10)0.0233 (5)0.035 (3)*0.441 (10)
C12S0.4554 (6)0.5744 (13)0.0803 (5)0.031 (2)*0.441 (10)
C14S0.3631 (7)0.7524 (13)0.0302 (6)0.048 (3)*0.441 (10)
H14A0.39990.85390.00910.072*0.441 (10)
H14B0.30660.78790.03500.072*0.441 (10)
H14C0.36780.71920.08200.072*0.441 (10)
N3S0.4420 (3)0.6676 (8)0.0396 (3)0.036 (2)*0.559 (10)
C8S0.4111 (4)0.5235 (10)0.0650 (4)0.031 (2)*0.559 (10)
C9S0.3193 (4)0.4448 (12)0.0216 (5)0.032 (2)*0.559 (10)
H9S10.30600.34880.05390.048*0.559 (10)
H9S20.31780.39560.02990.048*0.559 (10)
H9S30.27920.54280.01500.048*0.559 (10)
C11S0.4025 (6)0.7766 (11)0.0286 (4)0.052 (2)*0.559 (10)
H11A0.35490.71200.06180.078*0.559 (10)
H11B0.44130.80040.05860.078*0.559 (10)
H11C0.38490.89150.01140.078*0.559 (10)
H1N0.461 (2)0.085 (6)0.263 (2)0.062*
H3N0.016 (2)0.188 (5)0.311 (2)0.041 (12)*
H4N0.0164 (19)0.058 (5)0.252 (2)0.031 (11)*
H2N0.3790 (19)0.302 (5)0.1912 (19)0.038 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0320 (5)0.0210 (4)0.0495 (6)0.0033 (4)0.0199 (4)0.0037 (4)
S10.0227 (4)0.0283 (5)0.0371 (5)0.0016 (4)0.0141 (4)0.0104 (5)
S20.0283 (5)0.0218 (5)0.0390 (6)0.0032 (4)0.0201 (4)0.0029 (4)
O10.0307 (13)0.0238 (13)0.0510 (16)0.0030 (10)0.0191 (12)0.0005 (12)
O20.0286 (13)0.0564 (17)0.0419 (15)0.0058 (12)0.0115 (11)0.0280 (13)
O30.0413 (14)0.0198 (13)0.0620 (17)0.0033 (11)0.0358 (12)0.0054 (12)
O40.0352 (13)0.0386 (14)0.0274 (13)0.0058 (11)0.0159 (11)0.0018 (12)
N10.0217 (16)0.0312 (17)0.0326 (18)0.0019 (13)0.0116 (13)0.0030 (16)
N20.0296 (17)0.0246 (18)0.051 (2)0.0003 (15)0.0238 (15)0.0020 (16)
N30.0270 (16)0.0279 (19)0.037 (2)0.0005 (14)0.0137 (15)0.0080 (18)
C10.0305 (19)0.041 (2)0.037 (2)0.0010 (17)0.0182 (17)0.0030 (19)
C20.0182 (17)0.0271 (19)0.0272 (19)0.0020 (15)0.0070 (15)0.0006 (16)
C30.0227 (17)0.0206 (18)0.036 (2)0.0029 (15)0.0087 (16)0.0019 (17)
C40.0231 (17)0.0194 (19)0.030 (2)0.0053 (14)0.0103 (15)0.0035 (15)
C50.0196 (16)0.0221 (18)0.0233 (18)0.0004 (15)0.0059 (14)0.0009 (15)
C60.0242 (17)0.0188 (17)0.0236 (18)0.0021 (15)0.0082 (14)0.0015 (15)
C70.0181 (16)0.027 (2)0.0217 (18)0.0017 (14)0.0069 (14)0.0065 (15)
O1S0.0334 (13)0.0397 (15)0.0380 (14)0.0056 (12)0.0224 (12)0.0023 (12)
C2S0.035 (2)0.024 (2)0.051 (2)0.0001 (17)0.0188 (18)0.0026 (18)
N2S0.030 (3)0.024 (4)0.027 (3)0.003 (2)0.016 (2)0.003 (2)
C5S0.016 (3)0.035 (4)0.022 (4)0.000 (3)0.005 (3)0.006 (3)
C10S0.060 (3)0.046 (3)0.053 (3)0.004 (2)0.035 (2)0.003 (2)
O2S0.0426 (15)0.0359 (15)0.0347 (14)0.0057 (12)0.0097 (12)0.0093 (12)
Geometric parameters (Å, º) top
Cl1—C41.729 (3)C7S—H7S10.9800
S1—O21.429 (2)C7S—H7S20.9800
S1—O11.433 (2)C7S—H7S30.9800
S1—N11.630 (3)C1S—N1S1.342 (19)
S1—C71.759 (3)N1S—C3S1.441 (18)
S2—O31.431 (2)N1S—C4S1.466 (14)
S2—O41.435 (2)C4S—H4S10.9800
S2—N31.584 (3)C4S—H4S20.9800
S2—C51.786 (3)C4S—H4S30.9800
N1—C11.453 (4)C3S—H3S10.9800
N1—H1N0.75 (4)C3S—H3S20.9800
N2—C21.360 (4)C3S—H3S30.9800
N2—C11.444 (4)C10S—N3S1.435 (6)
N2—H2N0.84 (3)C10S—C12S1.572 (10)
N3—H3N0.84 (4)C10S—H10A0.9782
N3—H4N0.81 (3)C10S—H10B0.9912
C1—H1A0.9900C10S—H10C0.9606
C1—H1B0.9900C10S—H10D0.9800
C2—C31.402 (4)C10S—H10E0.9800
C2—C71.403 (4)C10S—H10F0.9800
C3—C41.377 (4)O2S—C12S1.250 (10)
C3—H30.9500O2S—C8S1.269 (8)
C4—C51.405 (4)C13S—N4S1.215 (13)
C5—C61.384 (4)C13S—H13A0.9800
C6—C71.392 (4)C13S—H13B0.9800
C6—H60.9500C13S—H13C0.9800
O1S—C5S1.267 (7)N4S—C12S1.329 (15)
O1S—C1S1.308 (13)N4S—C14S1.476 (12)
C2S—N2S1.476 (6)C14S—H14A0.9800
C2S—C1S1.531 (12)C14S—H14B0.9800
C2S—H2S10.9729C14S—H14C0.9800
C2S—H2S20.9897C14S—H11A0.6155
C2S—H2S30.9710C14S—H11C1.1113
C2S—H2S40.9800N3S—C8S1.325 (12)
C2S—H2S50.9800N3S—C11S1.449 (9)
C2S—H2S60.9800C8S—C9S1.642 (10)
N2S—C5S1.310 (10)C9S—H9S10.9800
N2S—C7S1.464 (9)C9S—H9S20.9800
C6S—C5S1.533 (12)C9S—H9S30.9800
C6S—H6S10.9800C11S—H11A0.9800
C6S—H6S20.9800C11S—H11B0.9800
C6S—H6S30.9800C11S—H11C0.9800
O2—S1—O1118.19 (14)O1S—C5S—N2S118.5 (6)
O2—S1—N1108.25 (14)O1S—C5S—C6S122.2 (6)
O1—S1—N1107.61 (14)N2S—C5S—C6S119.3 (7)
O2—S1—C7109.22 (14)O1S—C1S—N1S113.6 (10)
O1—S1—C7110.25 (14)O1S—C1S—C2S130.1 (10)
N1—S1—C7102.07 (15)N1S—C1S—C2S116.3 (10)
O3—S2—O4118.81 (14)C1S—N1S—C3S122.8 (11)
O3—S2—N3108.62 (16)C1S—N1S—C4S124.7 (10)
O4—S2—N3107.48 (17)C3S—N1S—C4S112.5 (9)
O3—S2—C5104.63 (14)N1S—C4S—H4S1109.5
O4—S2—C5108.69 (14)N1S—C4S—H4S2109.5
N3—S2—C5108.22 (15)H4S1—C4S—H4S2109.5
C1—N1—S1112.1 (2)N1S—C4S—H4S3109.5
C1—N1—H1N116 (3)H4S1—C4S—H4S3109.5
S1—N1—H1N109 (3)H4S2—C4S—H4S3109.5
C2—N2—C1122.9 (3)N1S—C3S—H3S1109.5
C2—N2—H2N119 (2)N1S—C3S—H3S2109.5
C1—N2—H2N117 (2)H3S1—C3S—H3S2109.5
S2—N3—H3N114 (2)N1S—C3S—H3S3109.5
S2—N3—H4N115 (2)H3S1—C3S—H3S3109.5
H3N—N3—H4N121 (4)H3S2—C3S—H3S3109.5
N2—C1—N1111.3 (3)N3S—C10S—C12S37.6 (3)
N2—C1—H1A109.4N3S—C10S—H10A108.9
N1—C1—H1A109.4C12S—C10S—H10A107.8
N2—C1—H1B109.4N3S—C10S—H10B109.0
N1—C1—H1B109.4C12S—C10S—H10B137.8
H1A—C1—H1B108.0H10A—C10S—H10B108.7
N2—C2—C3120.1 (3)N3S—C10S—H10C108.9
N2—C2—C7122.4 (3)C12S—C10S—H10C74.9
C3—C2—C7117.5 (3)H10A—C10S—H10C111.2
C4—C3—C2120.9 (3)H10B—C10S—H10C110.1
C4—C3—H3119.6N3S—C10S—H10D103.6
C2—C3—H3119.6C12S—C10S—H10D109.5
C3—C4—C5121.6 (3)H10A—C10S—H10D10.4
C3—C4—Cl1116.9 (2)H10B—C10S—H10D102.9
C5—C4—Cl1121.5 (2)H10C—C10S—H10D121.7
C6—C5—C4117.8 (3)N3S—C10S—H10E77.7
C6—C5—S2118.4 (2)C12S—C10S—H10E109.8
C4—C5—S2123.8 (2)H10A—C10S—H10E119.0
C5—C6—C7120.9 (3)H10B—C10S—H10E31.3
C5—C6—H6119.5H10C—C10S—H10E123.8
C7—C6—H6119.5H10D—C10S—H10E109.5
C6—C7—C2121.2 (3)N3S—C10S—H10F140.7
C6—C7—S1119.8 (2)C12S—C10S—H10F109.1
C2—C7—S1118.9 (2)H10A—C10S—H10F101.0
C5S—O1S—C1S39.1 (4)H10B—C10S—H10F83.9
N2S—C2S—C1S36.4 (4)H10C—C10S—H10F34.3
N2S—C2S—H2S1109.4H10D—C10S—H10F109.5
C1S—C2S—H2S199.6H10E—C10S—H10F109.5
N2S—C2S—H2S2108.7C12S—O2S—C8S37.9 (4)
C1S—C2S—H2S2142.2C13S—N4S—C12S124.0 (9)
H2S1—C2S—H2S2109.3C13S—N4S—C14S109.1 (8)
N2S—C2S—H2S3109.3C12S—N4S—C14S126.6 (8)
C1S—C2S—H2S381.3O2S—C12S—N4S115.0 (8)
H2S1—C2S—H2S3110.8O2S—C12S—C10S129.4 (8)
H2S2—C2S—H2S3109.4N4S—C12S—C10S115.6 (8)
N2S—C2S—H2S4106.1N4S—C14S—H11A99.0
C1S—C2S—H2S4109.2H14A—C14S—H11A132.3
H2S1—C2S—H2S420.3H14B—C14S—H11A95.3
H2S2—C2S—H2S492.3H14C—C14S—H11A22.9
H2S3—C2S—H2S4128.9N4S—C14S—H11C121.9
N2S—C2S—H2S577.5H14A—C14S—H11C19.2
C1S—C2S—H2S5109.8H14B—C14S—H11C90.7
H2S1—C2S—H2S5129.7H14C—C14S—H11C113.8
H2S2—C2S—H2S532.4H11A—C14S—H11C133.8
H2S3—C2S—H2S5113.3C8S—N3S—C10S116.7 (6)
H2S4—C2S—H2S5109.5C8S—N3S—C11S126.8 (7)
N2S—C2S—H2S6138.3C10S—N3S—C11S116.5 (5)
C1S—C2S—H2S6109.4O2S—C8S—N3S117.2 (6)
H2S1—C2S—H2S697.3O2S—C8S—C9S119.8 (6)
H2S2—C2S—H2S691.1N3S—C8S—C9S123.0 (7)
H2S3—C2S—H2S629.3N3S—C11S—H11A109.7
H2S4—C2S—H2S6109.5N3S—C11S—H11B109.4
H2S5—C2S—H2S6109.5H11A—C11S—H11B109.5
C5S—N2S—C7S125.7 (6)N3S—C11S—H11C109.3
C5S—N2S—C2S116.1 (6)H11A—C11S—H11C109.5
C7S—N2S—C2S117.9 (5)H11B—C11S—H11C109.5
O2—S1—N1—C163.1 (3)N1—S1—C7—C220.2 (3)
O1—S1—N1—C1168.1 (2)C1S—C2S—N2S—C5S1.0 (7)
C7—S1—N1—C152.1 (2)C1S—C2S—N2S—C7S173.3 (9)
C2—N2—C1—N139.1 (4)C1S—O1S—C5S—N2S5.0 (7)
S1—N1—C1—N264.2 (3)C1S—O1S—C5S—C6S173.7 (11)
C1—N2—C2—C3176.7 (3)C7S—N2S—C5S—O1S179.0 (5)
C1—N2—C2—C75.5 (5)C2S—N2S—C5S—O1S5.2 (6)
N2—C2—C3—C4179.5 (3)C7S—N2S—C5S—C6S0.2 (8)
C7—C2—C3—C41.5 (4)C2S—N2S—C5S—C6S173.5 (5)
C2—C3—C4—C50.5 (5)C5S—O1S—C1S—N1S0.6 (5)
C2—C3—C4—Cl1179.7 (2)C5S—O1S—C1S—C2S175.8 (15)
C3—C4—C5—C61.5 (4)N2S—C2S—C1S—O1S171.9 (14)
Cl1—C4—C5—C6178.7 (2)N2S—C2S—C1S—N1S4.4 (5)
C3—C4—C5—S2177.9 (2)O1S—C1S—N1S—C3S1.9 (13)
Cl1—C4—C5—S21.8 (4)C2S—C1S—N1S—C3S175.1 (8)
O3—S2—C5—C63.1 (3)O1S—C1S—N1S—C4S176.6 (7)
O4—S2—C5—C6124.8 (2)C2S—C1S—N1S—C4S6.4 (12)
N3—S2—C5—C6118.8 (3)C8S—O2S—C12S—N4S1.3 (6)
O3—S2—C5—C4176.4 (3)C8S—O2S—C12S—C10S179.9 (13)
O4—S2—C5—C455.8 (3)C13S—N4S—C12S—O2S3.6 (12)
N3—S2—C5—C460.7 (3)C14S—N4S—C12S—O2S169.6 (7)
C4—C5—C6—C70.4 (4)C13S—N4S—C12S—C10S177.6 (8)
S2—C5—C6—C7179.0 (2)C14S—N4S—C12S—C10S9.2 (11)
C5—C6—C7—C21.7 (4)N3S—C10S—C12S—O2S178.8 (12)
C5—C6—C7—S1176.9 (2)N3S—C10S—C12S—N4S0.2 (5)
N2—C2—C7—C6179.5 (3)C12S—C10S—N3S—C8S0.2 (6)
C3—C2—C7—C62.6 (4)C12S—C10S—N3S—C11S178.1 (9)
N2—C2—C7—S12.0 (4)C12S—O2S—C8S—N3S0.9 (7)
C3—C2—C7—S1175.9 (2)C12S—O2S—C8S—C9S178.8 (11)
O2—S1—C7—C687.2 (3)C10S—N3S—C8S—O2S1.5 (7)
O1—S1—C7—C644.2 (3)C11S—N3S—C8S—O2S179.1 (6)
N1—S1—C7—C6158.3 (2)C10S—N3S—C8S—C9S178.2 (5)
O2—S1—C7—C294.2 (3)C11S—N3S—C8S—C9S0.6 (10)
O1—S1—C7—C2134.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Si0.75 (3)2.08 (3)2.834 (4)175 (3)
N2—H2N···O2S0.84 (4)2.26 (4)2.912 (4)135 (3)
N3—H3N···O1Sii0.84 (4)2.05 (4)2.881 (4)170 (3)
N3—H4N···O1Siii0.81 (3)2.11 (4)2.873 (4)156 (3)
C1—H1A···O2S0.992.563.100 (4)114
C3—H3···O1iv0.952.423.275 (4)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

We thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).

References

First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798–o2800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds