organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Nitro­phenyl)­male­imide

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Química, Facultad de Ciencias, Universidad Tecnológica de Pereira, Pereira, Colombia, and cDepartment of Pure and Applied Chemistry, University of Strathclyde, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 2 May 2006; accepted 1 June 2006; online 14 June 2006)

The title compound, C10H6N2O4, belongs to a series of N-aryl­maleimides, which can be used as photoinitiators for free-radical polymerization. The dihedral angles between the planes of the benzene and imide rings are 56.2 (1) and 52.9 (1)° in the two independent mol­ecules in the asymmetric unit.

Comment

There is considerable activity related to the use of N-substituted maleimides as photoionizers for free-radical polymerization, where the maleimide can produce the initiating radical species (Pyriadi & Nabeel, 1988[Pyriadi, T. M. & Nabeel, E. (1988). J. Macromol. Sci. Chem. A, 25, 1683-1688.]; Andersson et al., 1996[Andersson, H., Gedde, U. W. & Hult, A. (1996). Macromolecules, 29, 1649-1654.]; Hoyle et al., 1999[Hoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793-2795.]). In continuing the structural studies on N-substituted maleimide systems, to study the behaviour of Caryl—N distance and imide/benzene inter­planar angle, the crystal structure determination of m-nitro­phenyl­maleimide, C10H6N2O4, (I)[link], was undertaken. The reactivity of N-aromatic maleimides in photopolymerization processes as a function of the angle between the maleimide and benzene rings has been analysed (Miller et al., 2000[Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D. & Jonsson, E. S. (2000). J. Chem. Crystallogr. 30, 563-571.]). The p-nitro­phenyl­maleimide (p-NPM) system has been reported by our research group (Moreno-Fuquen et al., 2003[Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717-o1718.]). This structure has a close analogy to the title compound and it has been used as a model for comparison.

[Scheme 1]

A perspective view of the two independent mol­ecules in the asymmetric unit of the title compound, showing the atomic numbering scheme, is given in Fig. 1[link]. Focusing on the N—Car­yl bond length, in the title compound the N2—C5 and N4—C15 distances are 1.424 (4) and 1.421 (4) Å, respectively. These values are close to the N—Car­yl bond length for p-nitro­phenyl­maleimide (Moreno-Fuquen et al., 2003[Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717-o1718.]) and are slightly smaller than the average value reported for nine N-aryl­maleimide derivatives (Miller et al., 2000[Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D. & Jonsson, E. S. (2000). J. Chem. Crystallogr. 30, 563-571.]). The benzene ring mean plane is rotated 56.2 (1) and 52.9 (1)° with respect to the imide ring mean plane. These values are dicta­ted probably by the weak hydrogen bond between an O atom of the maleimide group and a C atom of the benzene ring. The rotation is smaller in the case of p-NPM, which has an angle of 42.98 (5)°. This is consistent with the literature values, where other maleimides with bulky ortho substituents show angles of rotation greater than 80°. Other bond lengths and inter­nal geometrical parameters of the title compound (Table 1[link]) are similar to those in p-NPM. There are no significant inter­molecular hydrogen bonds in the structure.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Experimental

Reagents and solvents for the synthesis were obtained from Aldrich Chemical Co., and were used without additional purification. The title compound was prepared by taking equimolar quanti­ties of m-nitro­aniline and maleic anhydride in nitro­benzene and refluxing at 513 K for 3 h. The reaction product was filtered and washed with hexane and then it was dissolved in a mixture of ethyl acetate–hexane (15% hexa­ne) in order to purify it by column chromatography. The solid was crystallized from chloro­form, giving pale-yellow prisms with a melting point of 395 (1) K.

Crystal data
  • C10H6N2O4

  • Mr = 218.17

  • Orthorhombic, P n a 21

  • a = 18.9815 (6) Å

  • b = 6.6643 (2) Å

  • c = 14.8702 (4) Å

  • V = 1881.06 (10) Å3

  • Z = 8

  • Dx = 1.541 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 (2) K

  • Prism, pale yellow

  • 0.40 × 0.25 × 0.07 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 4072 measured reflections

  • 2238 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

  • 2 standard reflections frequency: 150 min intensity decay: 0.1%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.05

  • 2238 reflections

  • 289 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0754P)2 + 0.0433P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

N2—C10 1.393 (4)
N2—C7 1.404 (4)
N2—C5 1.424 (4)
N4—C17 1.400 (5)
N4—C20 1.403 (4)
N4—C15 1.421 (4)
C4—C5 1.394 (5)
C5—C6 1.392 (4)
C8—C9 1.318 (6)
C14—C15 1.383 (4)
C15—C16 1.386 (5)
C18—C19 1.329 (6)
C10—N2—C5 124.8 (3)
C7—N2—C5 124.2 (3)
C17—N4—C15 124.8 (3)
C20—N4—C15 124.8 (3)
C2—C1—N1 118.8 (3)
C16—C11—N3 118.4 (3)
O1—N1—C1—C2 −6.9 (5)
C7—N2—C5—C6 116.7 (4)
O5—N3—C11—C16 175.7 (3)
C20—N4—C15—C16 −47.8 (5)

In the absence of significant anomalous scattering, Friedel pairs were merged. H atoms were located in electron-density difference maps and subsequently treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 SDP (Frenz, 1978[Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft: University Press.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 SDP (Frenz, 1978); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

m-Nitrophenylmaleimide top
Crystal data top
C10H6N2O4Dx = 1.541 Mg m3
Mr = 218.17Melting point: 395(1) K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 18.9815 (6) Åθ = 2.6–27.5°
b = 6.6643 (2) ŵ = 0.12 mm1
c = 14.8702 (4) ÅT = 123 K
V = 1881.06 (10) Å3Prism, pale yellow
Z = 80.40 × 0.25 × 0.07 mm
F(000) = 896
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.6°
Graphite monochromatorh = 2424
ω/2θ scansk = 88
4072 measured reflectionsl = 1919
2238 independent reflections2 standard reflections every 150 min
1693 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.0433P]
where P = (Fo2 + 2Fc2)/3
2238 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55002 (13)0.9037 (4)0.9815 (2)0.0418 (7)
O20.61359 (13)1.1499 (4)1.0305 (2)0.0336 (6)
O30.91013 (14)0.7232 (5)1.0915 (2)0.0443 (7)
O40.84956 (12)1.2131 (4)0.8924 (2)0.0330 (6)
O50.81692 (13)0.5768 (4)0.7350 (2)0.0373 (6)
O60.88410 (13)0.3317 (3)0.6919 (2)0.0324 (6)
O71.17689 (15)0.7919 (5)0.6292 (2)0.0474 (8)
O81.11689 (14)0.2920 (3)0.82382 (19)0.0310 (6)
N10.60690 (15)0.9805 (4)0.9992 (2)0.0288 (7)
N20.86358 (14)0.9338 (4)0.98297 (19)0.0237 (6)
N30.87500 (15)0.5040 (4)0.7210 (2)0.0281 (7)
N41.13008 (15)0.5751 (4)0.73457 (19)0.0237 (6)
C10.67096 (18)0.8626 (5)0.9812 (2)0.0254 (8)
C20.6639 (2)0.6636 (5)0.9546 (2)0.0282 (8)
H20.61880.60410.94760.034*
C30.7248 (2)0.5549 (5)0.9387 (3)0.0320 (8)
H30.72160.41780.92170.038*
C40.7910 (2)0.6447 (5)0.9473 (3)0.0279 (8)
H40.83260.56990.93500.033*
C50.79573 (18)0.8449 (5)0.9739 (2)0.0239 (8)
C60.73525 (17)0.9557 (5)0.9921 (2)0.0240 (7)
H60.73821.09131.01140.029*
C70.91483 (18)0.8697 (6)1.0447 (3)0.0303 (8)
C80.97290 (19)1.0196 (6)1.0392 (3)0.0360 (9)
H81.01621.01241.07120.043*
C90.95494 (19)1.1638 (5)0.9830 (3)0.0323 (8)
H90.98271.27800.96860.039*
C100.88335 (19)1.1171 (5)0.9458 (3)0.0258 (7)
C110.93765 (18)0.6284 (5)0.7381 (2)0.0232 (7)
C120.92815 (18)0.8288 (5)0.7621 (2)0.0272 (8)
H120.88240.88390.76960.033*
C130.9875 (2)0.9439 (5)0.7746 (3)0.0295 (8)
H130.98281.08200.78930.035*
C141.05406 (19)0.8610 (5)0.7661 (2)0.0266 (8)
H141.09450.94200.77570.032*
C151.06188 (17)0.6608 (4)0.7437 (2)0.0229 (7)
C161.00312 (17)0.5423 (5)0.7282 (2)0.0225 (7)
H161.00790.40550.71110.027*
C171.18201 (18)0.6437 (6)0.6752 (3)0.0324 (8)
C181.24049 (19)0.4970 (6)0.6797 (3)0.0361 (9)
H181.28360.50610.64750.043*
C191.22294 (19)0.3507 (5)0.7361 (3)0.0332 (8)
H191.25150.23860.75110.040*
C201.15106 (18)0.3915 (5)0.7721 (2)0.0255 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (14)0.0482 (16)0.0558 (18)0.0019 (11)0.0034 (12)0.0033 (15)
O20.0333 (15)0.0317 (13)0.0357 (14)0.0089 (11)0.0003 (11)0.0034 (12)
O30.0297 (14)0.0605 (18)0.0427 (17)0.0091 (13)0.0019 (12)0.0226 (16)
O40.0307 (13)0.0293 (13)0.0389 (14)0.0035 (11)0.0014 (12)0.0011 (13)
O50.0227 (14)0.0427 (14)0.0465 (16)0.0052 (11)0.0025 (12)0.0015 (14)
O60.0274 (14)0.0299 (12)0.0398 (15)0.0047 (10)0.0007 (11)0.0053 (12)
O70.0312 (15)0.0609 (19)0.0501 (18)0.0012 (13)0.0023 (13)0.0282 (17)
O80.0369 (14)0.0231 (11)0.0331 (14)0.0005 (10)0.0011 (11)0.0039 (12)
N10.0223 (16)0.0373 (16)0.0268 (17)0.0027 (12)0.0006 (12)0.0024 (14)
N20.0192 (14)0.0257 (14)0.0262 (14)0.0016 (11)0.0003 (12)0.0003 (13)
N30.0265 (17)0.0298 (15)0.0281 (17)0.0009 (13)0.0011 (13)0.0014 (14)
N40.0228 (14)0.0224 (13)0.0259 (15)0.0012 (11)0.0021 (12)0.0011 (13)
C10.0230 (18)0.0306 (18)0.0226 (18)0.0012 (14)0.0027 (14)0.0028 (15)
C20.030 (2)0.0311 (18)0.0231 (18)0.0067 (15)0.0055 (15)0.0016 (15)
C30.039 (2)0.0244 (17)0.0324 (19)0.0001 (16)0.0005 (17)0.0061 (16)
C40.032 (2)0.0256 (17)0.0262 (18)0.0048 (14)0.0022 (15)0.0010 (14)
C50.0264 (19)0.0228 (17)0.0225 (17)0.0014 (13)0.0010 (14)0.0001 (14)
C60.0275 (19)0.0218 (15)0.0225 (17)0.0007 (13)0.0039 (15)0.0006 (15)
C70.0221 (17)0.044 (2)0.0248 (19)0.0082 (16)0.0021 (15)0.0038 (17)
C80.0180 (18)0.060 (3)0.030 (2)0.0011 (17)0.0026 (16)0.0065 (19)
C90.0289 (19)0.036 (2)0.0322 (19)0.0068 (14)0.0047 (16)0.0083 (17)
C100.0305 (19)0.0211 (16)0.0259 (18)0.0012 (13)0.0013 (15)0.0025 (15)
C110.0243 (18)0.0264 (16)0.0191 (16)0.0019 (13)0.0015 (14)0.0007 (14)
C120.0248 (19)0.0300 (18)0.027 (2)0.0042 (14)0.0049 (15)0.0019 (15)
C130.041 (2)0.0191 (15)0.0281 (19)0.0035 (15)0.0051 (17)0.0000 (16)
C140.033 (2)0.0227 (16)0.0242 (18)0.0028 (14)0.0021 (16)0.0020 (14)
C150.0232 (18)0.0231 (16)0.0224 (16)0.0009 (13)0.0021 (14)0.0033 (14)
C160.0257 (17)0.0221 (16)0.0197 (17)0.0014 (13)0.0011 (14)0.0003 (14)
C170.0232 (18)0.046 (2)0.0284 (19)0.0071 (16)0.0047 (16)0.0102 (18)
C180.024 (2)0.055 (2)0.0290 (19)0.0010 (17)0.0001 (16)0.0011 (17)
C190.0251 (18)0.0362 (18)0.038 (2)0.0069 (15)0.0074 (17)0.0062 (18)
C200.0289 (19)0.0225 (16)0.0252 (17)0.0029 (13)0.0061 (15)0.0062 (15)
Geometric parameters (Å, º) top
O1—N11.223 (4)C4—H40.950
O2—N11.228 (4)C5—C61.392 (4)
O3—C71.202 (5)C6—H60.950
O4—C101.204 (4)C7—C81.490 (5)
O5—N31.222 (4)C8—C91.318 (6)
O6—N31.239 (3)C8—H80.950
O7—C171.205 (5)C9—C101.500 (5)
O8—C201.205 (5)C9—H90.950
N1—C11.473 (4)C11—C161.377 (5)
N2—C101.393 (4)C11—C121.394 (4)
N2—C71.404 (4)C12—C131.375 (5)
N2—C51.424 (4)C12—H120.950
N3—C111.472 (4)C13—C141.385 (5)
N4—C171.400 (5)C13—H130.950
N4—C201.403 (4)C14—C151.383 (4)
N4—C151.421 (4)C14—H140.950
C1—C61.379 (5)C15—C161.386 (5)
C1—C21.390 (5)C16—H160.950
C2—C31.385 (5)C17—C181.481 (5)
C2—H20.950C18—C191.329 (6)
C3—C41.398 (5)C18—H180.950
C3—H30.950C19—C201.490 (5)
C4—C51.394 (5)C19—H190.950
O1—N1—O2123.9 (3)C8—C9—C10108.5 (3)
O1—N1—C1117.8 (3)C8—C9—H9125.7
O2—N1—C1118.3 (3)C10—C9—H9125.7
C10—N2—C7109.9 (3)O4—C10—N2125.7 (3)
C10—N2—C5124.8 (3)O4—C10—C9128.0 (3)
C7—N2—C5124.2 (3)N2—C10—C9106.2 (3)
O5—N3—O6123.6 (3)C16—C11—C12122.9 (3)
O5—N3—C11118.4 (3)C16—C11—N3118.4 (3)
O6—N3—C11118.0 (3)C12—C11—N3118.6 (3)
C17—N4—C20109.6 (3)C13—C12—C11117.6 (3)
C17—N4—C15124.8 (3)C13—C12—H12121.2
C20—N4—C15124.8 (3)C11—C12—H12121.2
C6—C1—C2123.2 (3)C12—C13—C14120.8 (3)
C6—C1—N1118.0 (3)C12—C13—H13119.6
C2—C1—N1118.8 (3)C14—C13—H13119.6
C3—C2—C1117.9 (3)C15—C14—C13120.3 (3)
C3—C2—H2121.1C15—C14—H14119.8
C1—C2—H2121.1C13—C14—H14119.8
C2—C3—C4120.7 (3)C14—C15—C16120.2 (3)
C2—C3—H3119.6C14—C15—N4120.5 (3)
C4—C3—H3119.6C16—C15—N4119.2 (3)
C5—C4—C3119.5 (3)C11—C16—C15118.1 (3)
C5—C4—H4120.2C11—C16—H16121.0
C3—C4—H4120.2C15—C16—H16121.0
C6—C5—C4120.7 (3)O7—C17—N4124.7 (3)
C6—C5—N2120.4 (3)O7—C17—C18128.9 (4)
C4—C5—N2118.9 (3)N4—C17—C18106.5 (3)
C1—C6—C5117.9 (3)C19—C18—C17109.0 (3)
C1—C6—H6121.0C19—C18—H18125.5
C5—C6—H6121.0C17—C18—H18125.5
O3—C7—N2125.0 (3)C18—C19—C20108.8 (3)
O3—C7—C8129.2 (3)C18—C19—H19125.6
N2—C7—C8105.8 (3)C20—C19—H19125.6
C9—C8—C7109.4 (3)O8—C20—N4125.5 (3)
C9—C8—H8125.3O8—C20—C19128.4 (3)
C7—C8—H8125.3N4—C20—C19106.1 (3)
O1—N1—C1—C6173.4 (3)O5—N3—C11—C16175.7 (3)
O2—N1—C1—C66.3 (5)O6—N3—C11—C165.3 (5)
O1—N1—C1—C26.9 (5)O5—N3—C11—C125.4 (5)
O2—N1—C1—C2173.4 (3)O6—N3—C11—C12173.6 (3)
C6—C1—C2—C30.1 (5)C16—C11—C12—C131.1 (5)
N1—C1—C2—C3179.5 (3)N3—C11—C12—C13177.7 (3)
C1—C2—C3—C41.4 (5)C11—C12—C13—C141.8 (5)
C2—C3—C4—C51.3 (6)C12—C13—C14—C150.8 (6)
C3—C4—C5—C60.1 (5)C13—C14—C15—C161.0 (5)
C3—C4—C5—N2179.5 (3)C13—C14—C15—N4179.8 (3)
C10—N2—C5—C650.0 (5)C17—N4—C15—C1457.8 (5)
C7—N2—C5—C6116.7 (4)C20—N4—C15—C14133.5 (4)
C10—N2—C5—C4130.6 (4)C17—N4—C15—C16121.0 (4)
C7—N2—C5—C462.7 (5)C20—N4—C15—C1647.8 (5)
C2—C1—C6—C51.2 (5)C12—C11—C16—C150.6 (5)
N1—C1—C6—C5179.2 (3)N3—C11—C16—C15179.5 (3)
C4—C5—C6—C11.3 (5)C14—C15—C16—C111.7 (5)
N2—C5—C6—C1179.3 (3)N4—C15—C16—C11179.5 (3)
C10—N2—C7—O3175.1 (4)C20—N4—C17—O7175.6 (4)
C5—N2—C7—O36.7 (6)C15—N4—C17—O75.4 (6)
C10—N2—C7—C84.5 (4)C20—N4—C17—C182.9 (4)
C5—N2—C7—C8172.9 (3)C15—N4—C17—C18173.1 (3)
O3—C7—C8—C9176.2 (4)O7—C17—C18—C19176.9 (4)
N2—C7—C8—C93.3 (4)N4—C17—C18—C191.5 (4)
C7—C8—C9—C101.0 (4)C17—C18—C19—C200.4 (4)
C7—N2—C10—O4178.0 (3)C17—N4—C20—O8178.0 (3)
C5—N2—C10—O49.7 (6)C15—N4—C20—O87.7 (6)
C7—N2—C10—C93.9 (4)C17—N4—C20—C193.1 (4)
C5—N2—C10—C9172.3 (3)C15—N4—C20—C19173.3 (3)
C8—C9—C10—O4179.8 (4)C18—C19—C20—O8178.9 (4)
C8—C9—C10—N21.8 (4)C18—C19—C20—N42.1 (4)
 

Acknowledgements

We are grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the Cambridge Structural Database System. The authors also acknowledge the Universidad del Valle, Colombia for partial financial support.

References

First citationAndersson, H., Gedde, U. W. & Hult, A. (1996). Macromolecules, 29, 1649–1654.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft: University Press.  Google Scholar
First citationHoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793–2795.  Web of Science CrossRef CAS Google Scholar
First citationMiller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D. & Jonsson, E. S. (2000). J. Chem. Crystallogr. 30, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyriadi, T. M. & Nabeel, E. (1988). J. Macromol. Sci. Chem. A, 25, 1683–1688.  CrossRef Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds