organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­amino-2,2′,6,6′-tetra­methyl­bi­phenyl

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 31 May 2006; accepted 14 June 2006; online 23 June 2006)

Each of the three independent mol­ecules of the title compound, C16H20N2, has near-perpendicular benzene rings and pyramidal N atoms. Hydrogen bonding in the structure is rather inefficient.

Comment

Benz­idine derivatives are now widely used in the solid state as hole-injecting and transport materials in applications ranging from the Xerox process to organic light-emitting diodes (OLEDs) (Thelakkat, 2002[Thelakkat, M. (2002). Macromol. Mater. Eng. 287, 442-461.]). As noted by Shankland et al. (2005[Shankland, K., Kennedy, A. R. & David, W. I. F. (2005). J. Mater. Chem. 15, 4838-4844.]), the solid-state structures of these materials are of more than simply crystallographic inter­est, with the physical structure playing a critical role in determining the mechanism and energetics of the charge transport process. In the course of a wider study of tetra­(ar­yl)benzidines (Littleford et al., 2004[Littleford, R. E., Paterson, M. A. J., Low, P. J., Tackley, D. R., Jayes, L., Dent, G., Cherryman, J. C. & Smith, W. E. (2004). Phys. Chem. Chem. Phys. 6, 3257-3263.]; Low, Paterson, Goeta et al., 2004[Low, P. J., Paterson, M. A. J., Goeta, A. E., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R. & Brown, B. (2004). J. Mater. Chem. 14, 2516-2523.]; Low, Paterson, Puschmann et al., 2004[Low, P. J., Paterson, M. A. J., Puschmann, H., Goeta, A. E., Howard, J. A. K., Lambert, C., Cherryman, J. C., Tackley, D. R., Leeming, S. & Brown, B. (2004). Chem. Eur. J. 10, 83-91.]; Low et al., 2005[Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brook, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304-2315.]) we have determined the structure of 4,4′-diamino-2,2′,6,6′-tetra­methyl­biphenyl, (I)[link], reported here.

[Scheme 1]

The asymmetric unit of (I)[link] comprises three mol­ecules (Fig. 1[link]), which adopt twisted conformations due to steric repulsion between methyl groups. The intra­molecular dihedral angle between benzene rings is 84.51 (4), 86.38 (3) and 80.46 (4)°, similar to 86° in m-toluidine (Fowweather, 1952[Fowweather, F. (1952). Acta Cryst. 5, 820-825.]), 86° in 2,2′,6,6′-tetra­(mercapto)-4,4-diamino­biphenyl and 90° in 2,2′,6,6′-tetra­(ethyl­thio)-4,4-diamino­biphenyl (Zhu-Ohlbach et al., 1998[Zhu-Ohlbach, O., Gleiter, R., Rominger, F., Schmidt, H.-L. & Reda, T. (1998). Eur. J. Org. Chem. pp. 2409-2416.]). The unsubstituted benzidine mol­ecule (in various cocrystals) was found to be either planar (Ermer & Eling, 1994[Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925-944.]) or twisted by ca 40° (Giastas et al., 2003[Giastas, P., Yannakopoulou, K. & Mavridis, I. M. (2003). Acta Cryst. B59, 287-299.]).

All N atoms in (I)[link] have substanti­ally pyramidal geometry with a mean bond angle of 113 (1)°, and are nearly coplanar with the attached rings, except atoms N1 and N4, which are displaced from these planes by 0.102 (2) and 0.129 (2) Å, respectively. The degree of pyramidalization is similar to that observed in solid aniline (Fukuyo et al., 1982[Fukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640-643.]); the mean N—C bond distance of 1.410 (3) Å in (I)[link] is marginally longer than in aniline [1.392 (6) Å].

The most peculiar feature of the structure is the inefficiency of hydrogen bonding. While the asymmetric unit contains 12 polar H atoms and six potential acceptor sites (nitro­gen lone pairs), there are only four definite N—H⋯N hydrogen bonds (Table 2[link]). The N2—H2A bond points towards the centroid, X, of the C41–C46 benzene ring at the symmetry position (−x, 1 − y, −z) [H⋯X = 2.49 (2) Å and N—H⋯X = 173 (2)°], and the N2—H2B bond towards the C36 atom generated by the translation (x + 1, y, z) [H⋯C = 2.745 (18) Å and N—H⋯C = 150.4 (14)°]. The latter two contacts may be regarded as weak hydrogen bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]). The remaining amino atoms H1B, H3A, H4B, H5A, H5B and H6A form no hydrogen bonds of any kind, contacting only with methyl- or phenyl-group H atoms. Probably, the rigidity of the mol­ecular rods prevents more efficient hydrogen bonding.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing atomic displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonds.

Experimental

Compound (I)[link] was prepared according to Carlin (1945[Carlin, R. B. (1945). J. Am. Chem. Soc. 67, 928-933.]) and recrystallized from benzene and hexane (1:1).

Crystal data
  • C16H20N2

  • Mr = 240.34

  • Monoclinic, P 21 /c

  • a = 11.393 (2) Å

  • b = 16.523 (3) Å

  • c = 22.487 (3) Å

  • β = 99.96 (1)°

  • V = 4169.3 (12) Å3

  • Z = 12

  • Dx = 1.149 Mg m−3

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 (2) K

  • Prism, pale brown

  • 0.50 × 0.43 × 0.35 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 76630 measured reflections

  • 12148 independent reflections

  • 9388 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.02

  • 12148 reflections

  • 559 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.078P)2 + 1.0547P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

N1—C11 1.4101 (16)
N2—C21 1.4120 (15)
N3—C31 1.4091 (14)
N4—C41 1.4055 (14)
N5—C51 1.4141 (17)
N6—C61 1.4097 (16)
C14—C24 1.5002 (15)
C34—C44 1.4974 (14)
C54—C64 1.4970 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N6 0.95 (2) 2.18 (2) 3.1291 (19) 175.1 (16)
N2—H2B⋯C36i 0.915 (18) 2.745 (18) 3.5699 (17) 150.4 (14)
N3—H3B⋯N4ii 0.901 (19) 2.426 (19) 3.3052 (18) 165.1 (15)
N4—H4A⋯N2 0.93 (2) 2.31 (2) 3.1585 (16) 150.3 (16)
N6—H6B⋯N3iii 0.931 (19) 2.19 (2) 3.1035 (18) 168.9 (16)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Amino H atoms were located in a difference map and were refined isotropically [N—H = 0.86 (2)–0.95 (3) Å]. Methyl groups were refined as rigid bodies [C—H = 0.98 Å] rotating around the C—C bonds, with a common refined Uiso value for the three H atoms; the benzene H atoms were treated as riding on the C atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

4,4'-Diamino-2,2',6,6'-tetramethylbiphenyl top
Crystal data top
C16H20N2F(000) = 1560
Mr = 240.34Dx = 1.149 Mg m3
Monoclinic, P21/cMelting point: 439 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.393 (2) ÅCell parameters from 989 reflections
b = 16.523 (3) Åθ = 12.1–20.1°
c = 22.487 (3) ŵ = 0.07 mm1
β = 99.96 (1)°T = 120 K
V = 4169.3 (12) Å3Prism, pale brown
Z = 120.50 × 0.43 × 0.35 mm
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
9388 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 30.0°, θmin = 1.5°
Detector resolution: 8 pixels mm-1h = 1616
ω scansk = 2323
76630 measured reflectionsl = 3131
12148 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.078P)2 + 1.0547P]
where P = (Fo2 + 2Fc2)/3
12148 reflections(Δ/σ)max = 0.001
559 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different φ and/or 2θ angles and each scan (5 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.84 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70896 (12)0.47619 (7)0.48452 (5)0.0381 (3)
H1A0.7732 (18)0.5131 (12)0.4954 (8)0.055 (5)*
H1B0.6618 (18)0.4700 (12)0.5135 (9)0.059 (6)*
N20.25254 (9)0.49082 (7)0.06564 (5)0.0299 (2)
H2A0.2396 (16)0.5385 (12)0.0475 (8)0.049 (5)*
H2B0.2845 (15)0.4574 (11)0.0402 (8)0.043 (4)*
N30.76569 (10)0.22171 (7)0.06263 (5)0.0327 (2)
H3A0.7645 (15)0.2004 (11)0.0978 (8)0.042 (4)*
H3B0.8212 (16)0.2608 (11)0.0541 (8)0.044 (4)*
N40.05145 (9)0.36911 (8)0.00726 (6)0.0371 (2)
H4A0.0859 (17)0.4149 (12)0.0276 (8)0.052 (5)*
H4B0.0685 (17)0.3629 (12)0.0295 (9)0.052 (5)*
N51.04677 (12)0.92424 (9)0.90559 (6)0.0444 (3)
H5A1.085 (2)0.8959 (13)0.9375 (10)0.067 (6)*
H5B1.083 (2)0.9757 (16)0.9014 (11)0.083 (7)*
N60.91274 (12)0.60121 (7)0.52656 (6)0.0379 (2)
H6A0.9824 (18)0.5837 (12)0.5202 (8)0.054 (5)*
H6B0.8723 (17)0.6334 (12)0.4957 (8)0.050 (5)*
C110.64316 (11)0.48704 (7)0.42593 (5)0.0286 (2)
C120.69882 (10)0.51355 (7)0.37890 (5)0.0274 (2)
H120.78060.52830.38710.033*
C130.63621 (10)0.51861 (6)0.31982 (5)0.0255 (2)
C140.51478 (10)0.49779 (6)0.30713 (5)0.0233 (2)
C150.45769 (10)0.47320 (6)0.35473 (5)0.0256 (2)
C160.52232 (11)0.46734 (7)0.41311 (5)0.0289 (2)
H160.48350.44950.44490.035*
C170.32661 (11)0.45313 (8)0.34280 (6)0.0334 (3)
H17A0.29930.44350.38120.062 (3)*
H17B0.28190.49840.32170.062 (3)*
H17C0.31350.40440.31770.062 (3)*
C180.69991 (12)0.54610 (9)0.26991 (6)0.0365 (3)
H18A0.78340.55790.28670.081 (4)*
H18B0.69640.50340.23940.081 (4)*
H18C0.66140.59510.25120.081 (4)*
C210.31935 (9)0.49376 (7)0.12467 (5)0.0244 (2)
C220.37329 (10)0.42417 (7)0.15137 (5)0.0261 (2)
H220.36650.37500.12920.031*
C230.43674 (10)0.42531 (6)0.21007 (5)0.0246 (2)
C240.44751 (9)0.49770 (6)0.24358 (5)0.0227 (2)
C250.39334 (11)0.56786 (6)0.21661 (5)0.0265 (2)
C260.32989 (10)0.56521 (7)0.15777 (5)0.0263 (2)
H260.29290.61300.14000.032*
C270.49338 (12)0.34780 (7)0.23649 (6)0.0346 (3)
H27A0.48400.30570.20530.089 (4)*
H27B0.57840.35700.25140.089 (4)*
H27C0.45450.33030.27000.089 (4)*
C280.40174 (17)0.64720 (8)0.24999 (6)0.0454 (4)
H28A0.33500.65200.27200.076 (4)*
H28B0.47710.64950.27860.076 (4)*
H28C0.39860.69180.22100.076 (4)*
C310.65224 (10)0.24440 (7)0.05151 (5)0.0251 (2)
C320.55008 (10)0.20373 (7)0.07867 (5)0.0250 (2)
H320.55670.15960.10500.030*
C330.43799 (10)0.22686 (6)0.06757 (5)0.0236 (2)
C340.42743 (9)0.29207 (6)0.02865 (5)0.02132 (19)
C350.53043 (9)0.33125 (6)0.00064 (5)0.0220 (2)
C360.64153 (9)0.30675 (7)0.01078 (5)0.0242 (2)
H360.71130.33300.00950.029*
C370.32875 (11)0.18151 (7)0.09718 (6)0.0311 (2)
H37A0.28190.21590.12810.048 (3)*
H37B0.28030.16700.06670.048 (3)*
H37C0.35280.13220.11610.048 (3)*
C380.52296 (10)0.39937 (7)0.04438 (5)0.0276 (2)
H38A0.60220.42320.05680.051 (3)*
H38B0.49400.37830.07990.051 (3)*
H38C0.46790.44090.02490.051 (3)*
C410.06956 (10)0.35588 (7)0.00953 (5)0.0271 (2)
C420.13690 (9)0.30397 (7)0.03193 (5)0.0254 (2)
H420.10210.28110.06360.030*
C430.25459 (9)0.28503 (6)0.02759 (5)0.0224 (2)
C440.30574 (9)0.31796 (6)0.01968 (5)0.02113 (19)
C450.23894 (9)0.37154 (6)0.06077 (5)0.0232 (2)
C460.12183 (10)0.39063 (7)0.05499 (5)0.0260 (2)
H460.07740.42770.08240.031*
C470.32459 (11)0.22829 (7)0.07289 (5)0.0284 (2)
H47A0.27630.21300.10320.073 (4)*
H47B0.39750.25530.09280.073 (4)*
H47C0.34560.17960.05210.073 (4)*
C480.29144 (11)0.40767 (8)0.11206 (5)0.0303 (2)
H48A0.30120.36530.14130.051 (3)*
H48B0.36930.43160.09610.051 (3)*
H48C0.23790.44970.13200.051 (3)*
C511.02467 (10)0.87787 (8)0.85197 (6)0.0331 (3)
C520.99011 (10)0.79726 (8)0.85369 (6)0.0322 (3)
H520.98480.77300.89150.039*
C530.96381 (10)0.75101 (7)0.80116 (6)0.0294 (2)
C540.97603 (10)0.78555 (7)0.74541 (5)0.0267 (2)
C551.00943 (10)0.86743 (7)0.74345 (6)0.0294 (2)
C561.03240 (11)0.91257 (8)0.79650 (6)0.0327 (3)
H561.05400.96790.79470.039*
C570.92199 (13)0.66481 (8)0.80451 (6)0.0384 (3)
H57A0.90820.65340.84550.068 (3)*
H57B0.84770.65710.77580.068 (3)*
H57C0.98300.62790.79440.068 (3)*
C581.02182 (13)0.90747 (8)0.68434 (6)0.0388 (3)
H58A1.06420.95900.69250.078 (4)*
H58B1.06680.87190.66160.078 (4)*
H58C0.94250.91740.66060.078 (4)*
C610.92964 (11)0.64538 (7)0.58100 (6)0.0295 (2)
C621.03380 (11)0.63963 (7)0.62318 (6)0.0312 (2)
H621.09570.60480.61540.037*
C631.04915 (10)0.68419 (7)0.67676 (6)0.0292 (2)
C640.95752 (10)0.73531 (7)0.68916 (5)0.0259 (2)
C650.85006 (10)0.73825 (7)0.64775 (5)0.0267 (2)
C660.83737 (11)0.69407 (7)0.59429 (5)0.0283 (2)
H660.76470.69720.56630.034*
C671.16542 (12)0.67751 (9)0.71997 (7)0.0410 (3)
H67A1.22130.64450.70180.084 (4)*
H67B1.19910.73170.72880.084 (4)*
H67C1.15160.65200.75750.084 (4)*
C680.74637 (11)0.78782 (8)0.66115 (6)0.0347 (3)
H68A0.67560.77640.63080.059 (3)*
H68B0.73020.77390.70130.059 (3)*
H68C0.76610.84550.66000.059 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (7)0.0362 (6)0.0277 (5)0.0005 (5)0.0049 (5)0.0004 (4)
N20.0291 (5)0.0307 (5)0.0277 (5)0.0037 (4)0.0013 (4)0.0023 (4)
N30.0259 (5)0.0379 (6)0.0363 (6)0.0064 (4)0.0115 (4)0.0028 (5)
N40.0189 (5)0.0464 (7)0.0464 (7)0.0051 (4)0.0065 (4)0.0013 (5)
N50.0369 (6)0.0543 (8)0.0412 (7)0.0051 (6)0.0048 (5)0.0164 (6)
N60.0471 (7)0.0307 (5)0.0375 (6)0.0023 (5)0.0118 (5)0.0041 (5)
C110.0357 (6)0.0205 (5)0.0277 (5)0.0030 (4)0.0000 (4)0.0015 (4)
C120.0259 (5)0.0222 (5)0.0327 (6)0.0010 (4)0.0010 (4)0.0031 (4)
C130.0266 (5)0.0204 (5)0.0299 (5)0.0006 (4)0.0059 (4)0.0004 (4)
C140.0254 (5)0.0186 (4)0.0255 (5)0.0002 (4)0.0036 (4)0.0001 (4)
C150.0284 (5)0.0206 (5)0.0287 (5)0.0009 (4)0.0070 (4)0.0003 (4)
C160.0374 (6)0.0239 (5)0.0262 (5)0.0006 (4)0.0076 (4)0.0004 (4)
C170.0293 (6)0.0369 (6)0.0350 (6)0.0073 (5)0.0084 (5)0.0000 (5)
C180.0311 (6)0.0433 (7)0.0368 (6)0.0060 (5)0.0106 (5)0.0043 (5)
C210.0205 (5)0.0263 (5)0.0263 (5)0.0032 (4)0.0036 (4)0.0022 (4)
C220.0264 (5)0.0222 (5)0.0289 (5)0.0018 (4)0.0024 (4)0.0029 (4)
C230.0231 (5)0.0208 (5)0.0293 (5)0.0010 (4)0.0031 (4)0.0002 (4)
C240.0231 (5)0.0202 (4)0.0250 (5)0.0009 (4)0.0043 (4)0.0011 (4)
C250.0334 (6)0.0200 (5)0.0263 (5)0.0006 (4)0.0056 (4)0.0006 (4)
C260.0295 (5)0.0222 (5)0.0271 (5)0.0022 (4)0.0046 (4)0.0044 (4)
C270.0395 (7)0.0234 (5)0.0376 (7)0.0079 (5)0.0028 (5)0.0010 (5)
C280.0778 (11)0.0212 (5)0.0330 (7)0.0087 (6)0.0019 (7)0.0020 (5)
C310.0240 (5)0.0267 (5)0.0260 (5)0.0052 (4)0.0081 (4)0.0034 (4)
C320.0281 (5)0.0246 (5)0.0230 (5)0.0047 (4)0.0064 (4)0.0007 (4)
C330.0245 (5)0.0233 (5)0.0230 (5)0.0009 (4)0.0042 (4)0.0003 (4)
C340.0198 (4)0.0222 (5)0.0224 (5)0.0018 (4)0.0047 (4)0.0004 (4)
C350.0221 (5)0.0209 (4)0.0235 (5)0.0016 (4)0.0051 (4)0.0004 (4)
C360.0198 (5)0.0259 (5)0.0274 (5)0.0007 (4)0.0051 (4)0.0010 (4)
C370.0284 (6)0.0299 (6)0.0343 (6)0.0027 (4)0.0031 (5)0.0093 (5)
C380.0236 (5)0.0250 (5)0.0338 (6)0.0002 (4)0.0039 (4)0.0066 (4)
C410.0183 (5)0.0281 (5)0.0344 (6)0.0002 (4)0.0032 (4)0.0050 (4)
C420.0213 (5)0.0262 (5)0.0296 (5)0.0018 (4)0.0068 (4)0.0013 (4)
C430.0207 (5)0.0212 (4)0.0252 (5)0.0004 (4)0.0035 (4)0.0018 (4)
C440.0192 (4)0.0208 (4)0.0231 (5)0.0005 (3)0.0031 (4)0.0024 (4)
C450.0222 (5)0.0231 (5)0.0237 (5)0.0000 (4)0.0018 (4)0.0015 (4)
C460.0212 (5)0.0261 (5)0.0288 (5)0.0023 (4)0.0013 (4)0.0017 (4)
C470.0287 (5)0.0270 (5)0.0298 (6)0.0031 (4)0.0056 (4)0.0046 (4)
C480.0327 (6)0.0312 (6)0.0272 (5)0.0016 (4)0.0053 (4)0.0042 (4)
C510.0203 (5)0.0418 (7)0.0367 (6)0.0040 (4)0.0035 (4)0.0085 (5)
C520.0235 (5)0.0436 (7)0.0296 (6)0.0032 (5)0.0049 (4)0.0020 (5)
C530.0220 (5)0.0330 (6)0.0324 (6)0.0007 (4)0.0026 (4)0.0042 (5)
C540.0218 (5)0.0280 (5)0.0299 (5)0.0003 (4)0.0032 (4)0.0009 (4)
C550.0233 (5)0.0294 (5)0.0358 (6)0.0008 (4)0.0059 (4)0.0013 (5)
C560.0241 (5)0.0315 (6)0.0424 (7)0.0001 (4)0.0053 (5)0.0040 (5)
C570.0399 (7)0.0372 (7)0.0371 (7)0.0064 (5)0.0033 (5)0.0092 (5)
C580.0438 (7)0.0320 (6)0.0426 (7)0.0035 (5)0.0129 (6)0.0063 (5)
C610.0350 (6)0.0220 (5)0.0337 (6)0.0013 (4)0.0122 (5)0.0016 (4)
C620.0294 (6)0.0237 (5)0.0428 (7)0.0030 (4)0.0131 (5)0.0023 (5)
C630.0233 (5)0.0265 (5)0.0379 (6)0.0010 (4)0.0059 (4)0.0049 (5)
C640.0240 (5)0.0244 (5)0.0295 (5)0.0007 (4)0.0053 (4)0.0035 (4)
C650.0253 (5)0.0259 (5)0.0294 (5)0.0023 (4)0.0060 (4)0.0033 (4)
C660.0288 (5)0.0271 (5)0.0291 (6)0.0005 (4)0.0053 (4)0.0024 (4)
C670.0256 (6)0.0439 (7)0.0513 (8)0.0060 (5)0.0005 (5)0.0004 (6)
C680.0291 (6)0.0408 (7)0.0334 (6)0.0097 (5)0.0034 (5)0.0020 (5)
Geometric parameters (Å, º) top
N1—C111.4101 (16)C35—C361.3945 (14)
N1—H1A0.95 (2)C35—C381.5067 (15)
N1—H1B0.92 (2)C36—H360.95
N2—C211.4120 (15)C37—H37A0.98
N2—H2A0.89 (2)C37—H37B0.98
N2—H2B0.91 (2)C37—H37C0.98
N3—C311.4091 (14)C38—H38A0.98
N3—H3A0.86 (2)C38—H38B0.98
N3—H3B0.90 (2)C38—H38C0.98
N4—C411.4055 (14)C41—C461.3928 (17)
N4—H4A0.93 (2)C41—C421.3951 (16)
N4—H4B0.89 (2)C42—C431.3966 (15)
N5—C511.4141 (17)C42—H420.95
N5—H5A0.90 (2)C43—C441.4070 (15)
N5—H5B0.95 (3)C43—C471.5072 (15)
N6—C611.4097 (16)C44—C451.4048 (15)
N6—H6A0.88 (2)C45—C461.3988 (15)
N6—H6B0.93 (2)C45—C481.5109 (16)
C11—C121.3944 (17)C46—H460.95
C11—C161.3954 (17)C47—H47A0.98
C12—C131.3974 (16)C47—H47B0.98
C12—H120.95C47—H47C0.98
C13—C141.4062 (15)C48—H48A0.98
C13—C181.5081 (16)C48—H48B0.98
C14—C151.4053 (15)C48—H48C0.98
C14—C241.5002 (15)C51—C561.3892 (19)
C15—C161.3930 (16)C51—C521.3914 (19)
C15—C171.5079 (16)C52—C531.3952 (18)
C16—H160.95C52—H520.95
C17—H17A0.98C53—C541.4062 (17)
C17—H17B0.98C53—C571.5079 (18)
C17—H17C0.98C54—C551.4082 (17)
C18—H18A0.98C54—C641.4970 (16)
C18—H18B0.98C55—C561.3928 (18)
C18—H18C0.98C55—C581.5131 (18)
C21—C261.3897 (16)C56—H560.95
C21—C221.3903 (16)C57—H57A0.98
C22—C231.3911 (16)C57—H57B0.98
C22—H220.95C57—H57C0.98
C23—C241.4077 (15)C58—H58A0.98
C23—C271.5088 (16)C58—H58B0.98
C24—C251.4010 (15)C58—H58C0.98
C25—C261.3945 (16)C61—C621.3882 (18)
C25—C281.5053 (17)C61—C661.3966 (16)
C26—H260.95C62—C631.3969 (18)
C27—H27A0.98C62—H620.95
C27—H27B0.98C63—C641.4078 (16)
C27—H27C0.98C63—C671.5053 (18)
C28—H28A0.98C64—C651.4050 (16)
C28—H28B0.98C65—C661.3924 (17)
C28—H28C0.98C65—C681.5100 (16)
C31—C321.3905 (16)C66—H660.95
C31—C361.3977 (16)C67—H67A0.98
C32—C331.3962 (15)C67—H67B0.98
C32—H320.95C67—H67C0.98
C33—C341.4065 (15)C68—H68A0.98
C33—C371.5057 (16)C68—H68B0.98
C34—C351.4009 (15)C68—H68C0.98
C34—C441.4974 (14)
C11—N1—H1A114.8 (11)C33—C37—H37C109.5
C11—N1—H1B113.2 (12)H37A—C37—H37C109.5
H1A—N1—H1B114.0 (16)H37B—C37—H37C109.5
C21—N2—H2A114.9 (12)C35—C38—H38A109.5
C21—N2—H2B113.7 (11)C35—C38—H38B109.4
H2A—N2—H2B107.4 (15)H38A—C38—H38B109.5
C31—N3—H3A113.7 (12)C35—C38—H38C109.6
C31—N3—H3B113.7 (11)H38A—C38—H38C109.5
H3A—N3—H3B112.8 (16)H38B—C38—H38C109.5
C41—N4—H4A116.1 (12)C46—C41—C42119.24 (10)
C41—N4—H4B113.0 (12)C46—C41—N4120.61 (11)
H4A—N4—H4B114.0 (17)C42—C41—N4120.06 (11)
C51—N5—H5A112.8 (14)C41—C42—C43120.98 (10)
C51—N5—H5B114.5 (14)C41—C42—H42119.5
H5A—N5—H5B112 (2)C43—C42—H42119.5
C61—N6—H6A108.6 (13)C42—C43—C44119.62 (10)
C61—N6—H6B109.2 (11)C42—C43—C47119.62 (10)
H6A—N6—H6B114.3 (17)C44—C43—C47120.75 (9)
C12—C11—C16118.58 (11)C45—C44—C43119.51 (9)
C12—C11—N1120.70 (12)C45—C44—C34120.02 (9)
C16—C11—N1120.63 (12)C43—C44—C34120.36 (9)
C11—C12—C13121.03 (11)C46—C45—C44119.86 (10)
C11—C12—H12119.5C46—C45—C48119.45 (10)
C13—C12—H12119.4C44—C45—C48120.67 (10)
C12—C13—C14120.06 (10)C41—C46—C45120.73 (10)
C12—C13—C18119.56 (11)C41—C46—H46119.6
C14—C13—C18120.38 (10)C45—C46—H46119.7
C15—C14—C13119.00 (10)C43—C47—H47A109.6
C15—C14—C24119.86 (10)C43—C47—H47B109.4
C13—C14—C24121.08 (10)H47A—C47—H47B109.5
C16—C15—C14119.94 (10)C43—C47—H47C109.4
C16—C15—C17119.88 (10)H47A—C47—H47C109.5
C14—C15—C17120.18 (10)H47B—C47—H47C109.5
C15—C16—C11121.35 (11)C45—C48—H48A109.6
C15—C16—H16119.4C45—C48—H48B109.5
C11—C16—H16119.2H48A—C48—H48B109.5
C15—C17—H17A109.5C45—C48—H48C109.4
C15—C17—H17B109.5H48A—C48—H48C109.5
H17A—C17—H17B109.5H48B—C48—H48C109.5
C15—C17—H17C109.3C56—C51—C52118.83 (12)
H17A—C17—H17C109.5C56—C51—N5120.83 (13)
H17B—C17—H17C109.5C52—C51—N5120.29 (13)
C13—C18—H18A109.4C51—C52—C53121.40 (12)
C13—C18—H18B109.7C51—C52—H52119.4
H18A—C18—H18B109.5C53—C52—H52119.2
C13—C18—H18C109.3C52—C53—C54119.52 (11)
H18A—C18—H18C109.5C52—C53—C57119.90 (11)
H18B—C18—H18C109.5C54—C53—C57120.58 (11)
C26—C21—C22118.72 (10)C53—C54—C55119.13 (11)
C26—C21—N2121.02 (10)C53—C54—C64120.46 (10)
C22—C21—N2120.24 (10)C55—C54—C64120.38 (10)
C21—C22—C23121.13 (10)C56—C55—C54119.96 (11)
C21—C22—H22119.4C56—C55—C58119.09 (11)
C23—C22—H22119.5C54—C55—C58120.95 (11)
C22—C23—C24120.15 (10)C51—C56—C55121.09 (12)
C22—C23—C27118.60 (10)C51—C56—H56119.6
C24—C23—C27121.25 (10)C55—C56—H56119.4
C25—C24—C23118.71 (10)C53—C57—H57A109.4
C25—C24—C14121.71 (10)C53—C57—H57B109.5
C23—C24—C14119.58 (9)H57A—C57—H57B109.5
C26—C25—C24120.13 (10)C53—C57—H57C109.4
C26—C25—C28118.57 (10)H57A—C57—H57C109.5
C24—C25—C28121.30 (11)H57B—C57—H57C109.5
C21—C26—C25121.17 (10)C55—C58—H58A109.5
C21—C26—H26119.4C55—C58—H58B109.5
C25—C26—H26119.4H58A—C58—H58B109.5
C23—C27—H27A109.5C55—C58—H58C109.5
C23—C27—H27B109.5H58A—C58—H58C109.5
H27A—C27—H27B109.5H58B—C58—H58C109.5
C23—C27—H27C109.4C62—C61—C66118.65 (11)
H27A—C27—H27C109.5C62—C61—N6122.01 (11)
H27B—C27—H27C109.5C66—C61—N6119.30 (12)
C25—C28—H28A109.5C61—C62—C63121.19 (11)
C25—C28—H28B109.5C61—C62—H62119.3
H28A—C28—H28B109.5C63—C62—H62119.5
C25—C28—H28C109.4C62—C63—C64120.04 (11)
H28A—C28—H28C109.5C62—C63—C67118.89 (11)
H28B—C28—H28C109.5C64—C63—C67121.06 (12)
C32—C31—C36118.86 (10)C65—C64—C63118.71 (11)
C32—C31—N3121.15 (11)C65—C64—C54121.34 (10)
C36—C31—N3119.94 (11)C63—C64—C54119.95 (10)
C31—C32—C33120.74 (10)C66—C65—C64120.17 (11)
C31—C32—H32119.6C66—C65—C68119.25 (11)
C33—C32—H32119.6C64—C65—C68120.57 (11)
C32—C33—C34120.02 (10)C65—C66—C61121.14 (11)
C32—C33—C37119.76 (10)C65—C66—H66119.4
C34—C33—C37120.22 (10)C61—C66—H66119.4
C35—C34—C33119.45 (9)C63—C67—H67A109.5
C35—C34—C44121.63 (9)C63—C67—H67B109.5
C33—C34—C44118.91 (9)H67A—C67—H67B109.5
C36—C35—C34119.50 (10)C63—C67—H67C109.5
C36—C35—C38119.51 (10)H67A—C67—H67C109.5
C34—C35—C38120.99 (9)H67B—C67—H67C109.5
C35—C36—C31121.31 (10)C65—C68—H68A109.5
C35—C36—H36119.3C65—C68—H68B109.5
C31—C36—H36119.4H68A—C68—H68B109.5
C33—C37—H37A109.4C65—C68—H68C109.3
C33—C37—H37B109.5H68A—C68—H68C109.5
H37A—C37—H37B109.5H68B—C68—H68C109.5
N1—C11—C12—C13175.12 (11)C35—C34—C44—C4595.45 (13)
C18—C13—C14—C243.58 (16)C33—C34—C44—C4584.44 (13)
C24—C14—C15—C16175.12 (10)C35—C34—C44—C4388.53 (13)
C13—C14—C15—C17178.00 (10)C33—C34—C44—C4391.57 (13)
C24—C14—C15—C174.89 (16)C34—C44—C45—C46174.99 (10)
N1—C11—C16—C15176.19 (11)C43—C44—C45—C48179.85 (10)
N2—C21—C22—C23178.23 (10)C34—C44—C45—C483.80 (15)
C27—C23—C24—C25179.78 (11)C42—C41—C46—C452.50 (17)
C22—C23—C24—C14179.16 (10)N4—C41—C46—C45173.93 (11)
C27—C23—C24—C141.03 (16)C44—C45—C46—C411.23 (16)
C15—C14—C24—C2596.23 (13)C48—C45—C46—C41177.58 (10)
C13—C14—C24—C2586.73 (14)N5—C51—C52—C53177.76 (11)
C15—C14—C24—C2382.94 (13)C51—C52—C53—C57177.60 (11)
C13—C14—C24—C2394.10 (13)C57—C53—C54—C55176.79 (11)
C14—C24—C25—C26178.96 (10)C52—C53—C54—C64175.23 (10)
C23—C24—C25—C28179.90 (12)C57—C53—C54—C645.10 (17)
C14—C24—C25—C280.93 (18)C64—C54—C55—C56176.71 (11)
N2—C21—C26—C25178.41 (10)C53—C54—C55—C58179.06 (11)
C28—C25—C26—C21179.83 (12)C64—C54—C55—C582.83 (17)
C36—C31—C32—C332.73 (16)N5—C51—C56—C55179.27 (11)
N3—C31—C32—C33179.73 (10)C58—C55—C56—C51178.60 (11)
C31—C32—C33—C37179.58 (10)N6—C61—C62—C63179.69 (11)
C37—C33—C34—C35177.14 (10)C61—C62—C63—C67178.14 (11)
C32—C33—C34—C44177.31 (10)C67—C63—C64—C65178.98 (11)
C37—C33—C34—C442.97 (15)C62—C63—C64—C54177.51 (10)
C44—C34—C35—C36177.78 (10)C67—C63—C64—C541.41 (17)
C33—C34—C35—C38177.78 (10)C53—C54—C64—C65100.33 (13)
C44—C34—C35—C382.32 (16)C55—C54—C64—C6581.59 (14)
C38—C35—C36—C31179.31 (10)C53—C54—C64—C6380.07 (14)
N3—C31—C36—C35179.22 (10)C55—C54—C64—C6398.01 (13)
N4—C41—C42—C43174.95 (11)C54—C64—C65—C66176.70 (10)
C41—C42—C43—C47179.59 (10)C63—C64—C65—C68175.85 (11)
C47—C43—C44—C45179.14 (10)C54—C64—C65—C684.54 (17)
C42—C43—C44—C34174.00 (10)C68—C65—C66—C61177.93 (11)
C47—C43—C44—C344.82 (15)N6—C61—C66—C65179.55 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N60.95 (2)2.18 (2)3.1291 (19)175.1 (16)
N2—H2B···C36i0.915 (18)2.745 (18)3.5699 (17)150.4 (14)
N3—H3B···N4ii0.901 (19)2.426 (19)3.3052 (18)165.1 (15)
N4—H4A···N20.93 (2)2.31 (2)3.1585 (16)150.3 (16)
N6—H6B···N3iii0.931 (19)2.19 (2)3.1035 (18)168.9 (16)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Chemistry (Durham University) and the EPSRC for financial support of this work. MAJP held a doctoral scholarship under the EPSRC's CASE for New Academics (PJL) in conjunction with Avecia Ltd.

References

First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlin, R. B. (1945). J. Am. Chem. Soc. 67, 928–933.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationErmer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925–944.  CSD CrossRef Web of Science Google Scholar
First citationFowweather, F. (1952). Acta Cryst. 5, 820–825.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640–643.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGiastas, P., Yannakopoulou, K. & Mavridis, I. M. (2003). Acta Cryst. B59, 287–299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLittleford, R. E., Paterson, M. A. J., Low, P. J., Tackley, D. R., Jayes, L., Dent, G., Cherryman, J. C. & Smith, W. E. (2004). Phys. Chem. Chem. Phys. 6, 3257–3263.  CrossRef CAS Google Scholar
First citationLow, P. J., Paterson, M. A. J., Goeta, A. E., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R. & Brown, B. (2004). J. Mater. Chem. 14, 2516–2523.  CSD CrossRef CAS Google Scholar
First citationLow, P. J., Paterson, M. A. J., Puschmann, H., Goeta, A. E., Howard, J. A. K., Lambert, C., Cherryman, J. C., Tackley, D. R., Leeming, S. & Brown, B. (2004). Chem. Eur. J. 10, 83–91.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLow, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brook, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304–2315.  CSD CrossRef CAS Google Scholar
First citationShankland, K., Kennedy, A. R. & David, W. I. F. (2005). J. Mater. Chem. 15, 4838–4844.  CrossRef CAS Google Scholar
First citationThelakkat, M. (2002). Macromol. Mater. Eng. 287, 442–461.  CrossRef CAS Google Scholar
First citationZhu-Ohlbach, O., Gleiter, R., Rominger, F., Schmidt, H.-L. & Reda, T. (1998). Eur. J. Org. Chem. pp. 2409–2416.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds