metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1η5-Cyclo­penta­dien­yl)(μ-disulfur dinitrido)(tri­phenyl­phosphino-2κP)cobalt(II)gold(I) perchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 22 May 2006; accepted 22 June 2006; online 28 June 2006)

The title compound, [{Au(C18H15P)}Co(C5H5)(N2S2)]ClO4, has a planar CoS2N2 ring and a close-to-linear N—Au—P angle [176.54 (11)°].

Comment

The disulfur dinitride dianion is not known as a simple species but can be isolated in metal complexes (Kelly & Woollins, 1986[Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607-632.]; Jones et al., 1985a[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.],b[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947-1950.]; Bates et al., 1986[Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.]). These complexes may be protonated at the metal-coordinated N (Jones et al., 1986[Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711-713.]) and we have previously commented on the structural consequences of this protonation (Jones et al., 1987[Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907-914.], 1988[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.]). Recently, we developed a new route to disulfur dinitrido complexes (Aucott et al., 2002[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481-1487.]) and we examined the metallation of IrS2N2 rings using the AuPR3 cation as a species which is isolobal with a proton (Aucott et al., 2003[Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.]). A comparison of metallacycle bond lengths for [(η5-C5Me5)Ir(S2N2)] and [(C5Me5)2Ir2(S2N2)Cl(PPh3)][PF6] indicates that metallation appears to change the IrS2N2 bond lengths and angles in a similar fashion to protonation: both enlarge the M—S2, N1—S1 and N2—S2 distances. We have also recently carried out detailed studies of CpCoS2N2 (Van Droogenbroeck et al., 2005[Van Droogenbroeck, J., Van Alsenoy, C., Aucott, S. M., Woollins, J. D., Hunter, A. D. & Blockhuys, F. (2005). Organometallics, 24, 1004-1011.]). This led us to synthesize the title compound, (I)[link], in order to allow us to investigate the effects of metallation on the CoS2N2 ring.

[Scheme 1]

Compound (I)[link] (Fig. 1[link]) has a planar CoS2N2 ring and a close-to-linear N—Au—P angle [176.54 (11) Å]. Compared with the non-metallated parent, CpCoS2N2 (Van Droogenbroeck et al., 2005[Van Droogenbroeck, J., Van Alsenoy, C., Aucott, S. M., Woollins, J. D., Hunter, A. D. & Blockhuys, F. (2005). Organometallics, 24, 1004-1011.]), we note that (I)[link] has statistically invariant Co—N, Co—S and S2—N2 distances, whilst the N1—S1 distance is longer in (I)[link] than in the parent compound [1.599 (4) versus 1.556 (1) Å] and the S1—N2 distance is slightly shorter in (I)[link] than in the parent mol­ecule [1.580 (4) versus 1.597 (2) Å]. Within the CoS2N2 ring, it is noticeable that metallation results in an almost perfect trigonal Co—N—S inter­nal angle [120.1 (2)° in (I)[link] versus 118.32 (8)° in the parent compound]. In general, all inter­nal angles in the CoS2N2 ring in (I)[link] are closer to the idealized tetra­hedral values at S and trigonal values at N compared with the parent mol­ecule. This work illustrates the difficulties in rationalizing bond lengths in S–N compounds and the continuing need for structural work in this area.

[Figure 1]
Figure 1
The structure and atom-labelling scheme for (I)[link], with displacement ellipsoids drawn at the 50% probability level.

Experimental

Triphenyl­phosphinogold(disulfur dinitrido)(cyclo­penta­dien­yl)­cobalt(II) perchlorate was prepared as described in the literature (Aucott et al., 2003[Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.]) and was crystallized by vapour diffusion of diethyl ether into a dichloro­methane solution, to give small dark-reddish–violet plates.

Crystal data
  • [AuCo(C5H5)(N2N2)(C18H15P)]ClO4

  • Mr = 774.85

  • Monoclinic, P 21 /c

  • a = 14.646 (3) Å

  • b = 14.186 (3) Å

  • c = 13.377 (3) Å

  • β = 111.20 (3)°

  • V = 2591.2 (11) Å3

  • Z = 4

  • Dx = 1.986 Mg m−3

  • Mo Kα radiation

  • μ = 6.65 mm−1

  • T = 133 (2) K

  • Block, red-violet

  • 0.26 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • ω scans

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.203, Tmax = 0.274

  • 15021 measured reflections

  • 4718 independent reflections

  • 3953 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 25.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.054

  • S = 1.04

  • 4718 reflections

  • 317 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0176P)2 + 3.2524P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.007

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.77 e Å−3

All H atoms were included in calculated positions and refined as riding, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Version 1.0. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: CrystalStructure.

(η5-Cyclopentadienyl)(µ-disulfur dinitrido)(triphenylphosphino)cobalt(II)gold(I) perchlorate top
Crystal data top
[AuCo(C5H5)(N2N2)(C18H15P)]ClO4F(000) = 1496
Mr = 774.85Dx = 1.986 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15455 reflections
a = 14.646 (3) Åθ = 3.1–27.5°
b = 14.186 (3) ŵ = 6.65 mm1
c = 13.377 (3) ÅT = 133 K
β = 111.20 (3)°Platelet, red-violet
V = 2591.2 (11) Å30.26 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4718 independent reflections
Radiation source: fine-focus sealed tube3953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1217
Tmin = 0.203, Tmax = 0.274l = 1116
15021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0176P)2 + 3.2524P]
where P = (Fo2 + 2Fc2)/3
4718 reflections(Δ/σ)max = 0.007
317 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.660192 (12)0.597329 (13)0.673981 (14)0.01872 (6)
N10.5266 (3)0.6296 (3)0.5579 (3)0.0204 (9)
S10.43958 (8)0.57139 (8)0.57449 (10)0.0233 (3)
N20.3425 (3)0.5926 (3)0.4758 (3)0.0259 (9)
S20.35506 (8)0.66651 (10)0.38578 (10)0.0280 (3)
Co10.50197 (4)0.70466 (4)0.44071 (5)0.01958 (15)
C10.6283 (4)0.7851 (4)0.4798 (4)0.0347 (13)
H1A0.67790.79320.54850.042*
C20.5432 (4)0.8416 (4)0.4351 (4)0.0328 (13)
H2A0.52490.89300.46950.039*
C30.4904 (4)0.8081 (4)0.3307 (4)0.0351 (13)
H3A0.43130.83400.28160.042*
C40.5411 (4)0.7293 (4)0.3121 (4)0.0345 (13)
H4A0.52160.69230.24860.041*
C50.6262 (4)0.7151 (4)0.4045 (4)0.0341 (13)
H5A0.67350.66680.41400.041*
P10.80157 (8)0.55420 (8)0.80220 (9)0.0163 (3)
C60.8391 (3)0.6366 (3)0.9134 (3)0.0175 (10)
C70.8577 (3)0.6081 (3)1.0179 (3)0.0210 (11)
H7A0.85070.54361.03290.025*
C80.8864 (3)0.6732 (4)1.1007 (4)0.0281 (12)
H8A0.89860.65371.17230.034*
C90.8974 (3)0.7670 (3)1.0782 (4)0.0283 (12)
H9A0.91920.81161.13490.034*
C100.8767 (3)0.7961 (3)0.9735 (4)0.0262 (12)
H10A0.88280.86080.95850.031*
C110.8471 (3)0.7315 (3)0.8908 (4)0.0233 (11)
H11A0.83220.75150.81880.028*
C120.7903 (3)0.4395 (3)0.8568 (4)0.0184 (10)
C130.8595 (3)0.3692 (3)0.8686 (4)0.0244 (11)
H13A0.91590.38200.85160.029*
C140.8470 (4)0.2808 (4)0.9050 (4)0.0325 (13)
H14A0.89380.23250.91160.039*
C150.7661 (4)0.2632 (4)0.9315 (4)0.0362 (14)
H15A0.75790.20270.95750.043*
C160.6973 (4)0.3317 (4)0.9209 (4)0.0376 (14)
H16A0.64170.31830.93910.045*
C170.7084 (3)0.4210 (3)0.8835 (4)0.0258 (12)
H17A0.66080.46860.87630.031*
C180.9053 (3)0.5441 (3)0.7591 (3)0.0155 (10)
C190.8910 (3)0.4966 (3)0.6622 (4)0.0207 (11)
H19A0.82810.47240.62080.025*
C200.9685 (3)0.4852 (3)0.6272 (4)0.0248 (11)
H20A0.95900.45140.56290.030*
C211.0592 (3)0.5224 (4)0.6850 (4)0.0286 (12)
H21A1.11170.51520.65970.034*
C221.0743 (3)0.5710 (3)0.7809 (4)0.0274 (12)
H22A1.13660.59700.82070.033*
C230.9968 (3)0.5805 (3)0.8172 (4)0.0214 (11)
H23A1.00690.61250.88270.026*
Cl10.66335 (9)0.97334 (9)0.70673 (10)0.0320 (3)
O10.7129 (3)0.8856 (3)0.7190 (4)0.0594 (13)
O20.5600 (2)0.9577 (3)0.6805 (3)0.0436 (10)
O30.6772 (3)1.0239 (4)0.6216 (4)0.0808 (17)
O40.7010 (3)1.0237 (4)0.8048 (4)0.0850 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01501 (9)0.02417 (11)0.01521 (10)0.00228 (8)0.00334 (7)0.00008 (8)
N10.0154 (19)0.024 (2)0.020 (2)0.0025 (16)0.0044 (17)0.0047 (17)
S10.0199 (6)0.0273 (7)0.0241 (7)0.0013 (5)0.0097 (5)0.0025 (5)
N20.017 (2)0.033 (2)0.027 (2)0.0014 (18)0.0070 (17)0.0092 (19)
S20.0163 (6)0.0442 (8)0.0193 (7)0.0009 (6)0.0014 (5)0.0038 (6)
Co10.0159 (3)0.0248 (4)0.0174 (3)0.0027 (3)0.0053 (3)0.0007 (3)
C10.025 (3)0.037 (3)0.039 (3)0.014 (2)0.007 (2)0.006 (3)
C20.043 (3)0.026 (3)0.036 (3)0.004 (2)0.022 (3)0.000 (2)
C30.041 (3)0.037 (3)0.027 (3)0.008 (3)0.013 (3)0.010 (2)
C40.045 (3)0.037 (3)0.032 (3)0.002 (3)0.026 (3)0.003 (3)
C50.028 (3)0.035 (3)0.046 (4)0.002 (2)0.021 (3)0.008 (3)
P10.0146 (6)0.0198 (7)0.0143 (6)0.0012 (5)0.0049 (5)0.0011 (5)
C60.014 (2)0.025 (3)0.013 (2)0.0006 (19)0.0033 (19)0.0027 (19)
C70.017 (2)0.023 (3)0.019 (3)0.004 (2)0.0017 (19)0.001 (2)
C80.022 (3)0.041 (3)0.018 (3)0.003 (2)0.002 (2)0.001 (2)
C90.025 (3)0.028 (3)0.032 (3)0.006 (2)0.011 (2)0.015 (2)
C100.027 (3)0.018 (3)0.035 (3)0.006 (2)0.012 (2)0.006 (2)
C110.022 (2)0.023 (3)0.024 (3)0.002 (2)0.008 (2)0.002 (2)
C120.022 (2)0.019 (2)0.014 (2)0.006 (2)0.0058 (19)0.0009 (18)
C130.019 (2)0.026 (3)0.029 (3)0.005 (2)0.008 (2)0.004 (2)
C140.031 (3)0.026 (3)0.042 (3)0.004 (2)0.015 (3)0.008 (2)
C150.039 (3)0.027 (3)0.047 (4)0.008 (3)0.020 (3)0.011 (3)
C160.036 (3)0.045 (4)0.040 (4)0.006 (3)0.024 (3)0.009 (3)
C170.027 (3)0.028 (3)0.028 (3)0.002 (2)0.017 (2)0.001 (2)
C180.018 (2)0.013 (2)0.016 (2)0.0004 (18)0.0058 (19)0.0067 (18)
C190.022 (2)0.022 (3)0.020 (3)0.004 (2)0.009 (2)0.001 (2)
C200.030 (3)0.027 (3)0.020 (3)0.000 (2)0.011 (2)0.001 (2)
C210.027 (3)0.034 (3)0.031 (3)0.006 (2)0.017 (2)0.011 (2)
C220.018 (2)0.035 (3)0.027 (3)0.002 (2)0.005 (2)0.006 (2)
C230.023 (2)0.026 (3)0.013 (2)0.002 (2)0.004 (2)0.0029 (19)
Cl10.0258 (6)0.0343 (8)0.0390 (8)0.0052 (6)0.0155 (6)0.0033 (6)
O10.053 (3)0.050 (3)0.070 (3)0.030 (2)0.015 (2)0.003 (2)
O20.027 (2)0.042 (2)0.060 (3)0.0032 (18)0.0146 (19)0.008 (2)
O30.054 (3)0.097 (4)0.099 (4)0.012 (3)0.036 (3)0.062 (3)
O40.038 (3)0.134 (5)0.085 (4)0.011 (3)0.026 (3)0.077 (4)
Geometric parameters (Å, º) top
Au1—N12.062 (4)C9—C101.385 (7)
Au1—P12.2439 (14)C9—H9A0.9500
N1—S11.599 (4)C10—C111.381 (6)
N1—Co11.821 (4)C10—H10A0.9500
S1—N21.580 (4)C11—H11A0.9500
N2—S21.657 (4)C12—C131.390 (6)
S2—Co12.0782 (14)C12—C171.395 (6)
Co1—C42.031 (5)C13—C141.381 (7)
Co1—C22.044 (5)C13—H13A0.9500
Co1—C32.042 (5)C14—C151.376 (7)
Co1—C52.050 (5)C14—H14A0.9500
Co1—C12.073 (5)C15—C161.371 (7)
C1—C51.408 (7)C15—H15A0.9500
C1—C21.419 (7)C16—C171.393 (7)
C1—H1A0.9500C16—H16A0.9500
C2—C31.412 (7)C17—H17A0.9500
C2—H2A0.9500C18—C231.383 (6)
C3—C41.413 (7)C18—C191.408 (6)
C3—H3A0.9500C19—C201.385 (6)
C4—C51.416 (7)C19—H19A0.9500
C4—H4A0.9500C20—C211.378 (6)
C5—H5A0.9500C20—H20A0.9500
P1—C181.814 (4)C21—C221.401 (7)
P1—C61.814 (4)C21—H21A0.9500
P1—C121.816 (5)C22—C231.394 (7)
C6—C71.384 (6)C22—H22A0.9500
C6—C111.394 (6)C23—H23A0.9500
C7—C81.386 (6)Cl1—O41.419 (4)
C7—H7A0.9500Cl1—O11.420 (4)
C8—C91.386 (7)Cl1—O31.422 (4)
C8—H8A0.9500Cl1—O21.442 (4)
N1—Au1—P1176.54 (11)C6—P1—Au1111.93 (15)
S1—N1—Co1120.1 (2)C12—P1—Au1111.02 (15)
S1—N1—Au1111.6 (2)C7—C6—C11120.0 (4)
Co1—N1—Au1128.1 (2)C7—C6—P1122.0 (4)
N2—S1—N1107.9 (2)C11—C6—P1117.9 (3)
S1—N2—S2115.1 (2)C6—C7—C8120.2 (5)
N2—S2—Co1106.31 (14)C6—C7—H7A119.9
N1—Co1—C4143.30 (19)C8—C7—H7A119.9
N1—Co1—C2128.21 (19)C7—C8—C9119.5 (5)
C4—Co1—C268.1 (2)C7—C8—H8A120.2
N1—Co1—C3168.65 (19)C9—C8—H8A120.2
C4—Co1—C340.6 (2)C10—C9—C8120.4 (4)
C2—Co1—C340.4 (2)C10—C9—H9A119.8
N1—Co1—C5109.25 (19)C8—C9—H9A119.8
C4—Co1—C540.6 (2)C11—C10—C9120.2 (5)
C2—Co1—C567.9 (2)C11—C10—H10A119.9
C3—Co1—C568.1 (2)C9—C10—H10A119.9
N1—Co1—C1102.95 (19)C10—C11—C6119.6 (5)
C4—Co1—C167.6 (2)C10—C11—H11A120.2
C2—Co1—C140.3 (2)C6—C11—H11A120.2
C3—Co1—C167.7 (2)C13—C12—C17119.7 (4)
C5—Co1—C139.9 (2)C13—C12—P1121.4 (4)
N1—Co1—S290.54 (12)C17—C12—P1118.9 (4)
C4—Co1—S2108.58 (16)C14—C13—C12120.5 (4)
C2—Co1—S2121.08 (16)C14—C13—H13A119.8
C3—Co1—S297.29 (16)C12—C13—H13A119.8
C5—Co1—S2145.98 (16)C15—C14—C13119.4 (5)
C1—Co1—S2161.40 (15)C15—C14—H14A120.3
C5—C1—C2108.0 (5)C13—C14—H14A120.3
C5—C1—Co169.2 (3)C16—C15—C14120.9 (5)
C2—C1—Co168.7 (3)C16—C15—H15A119.5
C5—C1—H1A126.0C14—C15—H15A119.5
C2—C1—H1A126.0C15—C16—C17120.3 (5)
Co1—C1—H1A127.7C15—C16—H16A119.8
C3—C2—C1108.0 (5)C17—C16—H16A119.8
C3—C2—Co169.7 (3)C12—C17—C16119.1 (5)
C1—C2—Co171.0 (3)C12—C17—H17A120.5
C3—C2—H2A126.0C16—C17—H17A120.5
C1—C2—H2A126.0C23—C18—C19119.1 (4)
Co1—C2—H2A124.9C23—C18—P1123.0 (4)
C2—C3—C4107.8 (5)C19—C18—P1117.9 (3)
C2—C3—Co169.8 (3)C20—C19—C18120.0 (4)
C4—C3—Co169.3 (3)C20—C19—H19A120.0
C2—C3—H3A126.1C18—C19—H19A120.0
C4—C3—H3A126.1C21—C20—C19120.5 (4)
Co1—C3—H3A126.3C21—C20—H20A119.7
C3—C4—C5108.1 (5)C19—C20—H20A119.7
C3—C4—Co170.1 (3)C20—C21—C22120.1 (4)
C5—C4—Co170.4 (3)C20—C21—H21A119.9
C3—C4—H4A125.9C22—C21—H21A119.9
C5—C4—H4A125.9C23—C22—C21119.2 (4)
Co1—C4—H4A125.2C23—C22—H22A120.4
C1—C5—C4108.0 (5)C21—C22—H22A120.4
C1—C5—Co170.9 (3)C18—C23—C22121.0 (4)
C4—C5—Co169.0 (3)C18—C23—H23A119.5
C1—C5—H5A126.0C22—C23—H23A119.5
C4—C5—H5A126.0O4—Cl1—O1108.8 (3)
Co1—C5—H5A125.7O4—Cl1—O3111.4 (4)
C18—P1—C6105.7 (2)O1—Cl1—O3108.7 (3)
C18—P1—C12105.4 (2)O4—Cl1—O2109.0 (3)
C6—P1—C12107.0 (2)O1—Cl1—O2110.0 (2)
C18—P1—Au1115.20 (14)O3—Cl1—O2108.9 (3)
Co1—N1—S1—N20.8 (3)S2—Co1—C4—C379.2 (3)
Au1—N1—S1—N2174.22 (19)N1—Co1—C4—C544.2 (5)
N1—S1—N2—S20.5 (3)C2—Co1—C4—C581.1 (3)
S1—N2—S2—Co10.0 (3)C3—Co1—C4—C5118.7 (5)
S1—N1—Co1—C4123.7 (3)C1—Co1—C4—C537.4 (3)
Au1—N1—Co1—C450.4 (4)S2—Co1—C4—C5162.0 (3)
S1—N1—Co1—C2131.0 (3)C2—C1—C5—C41.4 (6)
Au1—N1—Co1—C254.9 (3)Co1—C1—C5—C459.3 (3)
S1—N1—Co1—C3133.1 (9)C2—C1—C5—Co157.9 (3)
Au1—N1—Co1—C352.8 (11)C3—C4—C5—C10.3 (6)
S1—N1—Co1—C5152.4 (3)Co1—C4—C5—C160.5 (3)
Au1—N1—Co1—C521.6 (3)C3—C4—C5—Co160.2 (4)
S1—N1—Co1—C1166.4 (3)N1—Co1—C5—C187.3 (3)
Au1—N1—Co1—C119.5 (3)C4—Co1—C5—C1118.9 (4)
S1—N1—Co1—S20.7 (2)C2—Co1—C5—C137.1 (3)
Au1—N1—Co1—S2173.4 (2)C3—Co1—C5—C180.9 (3)
N2—S2—Co1—N10.32 (19)S2—Co1—C5—C1150.4 (3)
N2—S2—Co1—C4148.4 (2)N1—Co1—C5—C4153.8 (3)
N2—S2—Co1—C2136.4 (2)C2—Co1—C5—C481.7 (3)
N2—S2—Co1—C3171.4 (2)C3—Co1—C5—C438.0 (3)
N2—S2—Co1—C5127.4 (3)C1—Co1—C5—C4118.9 (4)
N2—S2—Co1—C1136.6 (5)S2—Co1—C5—C431.5 (5)
N1—Co1—C1—C5104.6 (3)C18—P1—C6—C7109.5 (4)
C4—Co1—C1—C538.0 (3)C12—P1—C6—C72.5 (4)
C2—Co1—C1—C5120.2 (4)Au1—P1—C6—C7124.3 (3)
C3—Co1—C1—C582.1 (3)C18—P1—C6—C1171.8 (4)
S2—Co1—C1—C5119.9 (5)C12—P1—C6—C11176.2 (3)
N1—Co1—C1—C2135.2 (3)Au1—P1—C6—C1154.4 (4)
C4—Co1—C1—C282.1 (3)C11—C6—C7—C81.5 (6)
C3—Co1—C1—C238.1 (3)P1—C6—C7—C8179.8 (3)
C5—Co1—C1—C2120.2 (4)C6—C7—C8—C90.6 (7)
S2—Co1—C1—C20.3 (7)C7—C8—C9—C102.1 (7)
C5—C1—C2—C32.0 (6)C8—C9—C10—C111.5 (7)
Co1—C1—C2—C360.1 (4)C9—C10—C11—C60.6 (7)
C5—C1—C2—Co158.1 (3)C7—C6—C11—C102.1 (7)
N1—Co1—C2—C3179.4 (3)P1—C6—C11—C10179.2 (3)
C4—Co1—C2—C337.8 (3)C18—P1—C12—C136.3 (4)
C5—Co1—C2—C381.7 (3)C6—P1—C12—C13106.0 (4)
C1—Co1—C2—C3118.5 (5)Au1—P1—C12—C13131.6 (3)
S2—Co1—C2—C361.4 (3)C18—P1—C12—C17171.4 (4)
N1—Co1—C2—C160.9 (4)C6—P1—C12—C1776.4 (4)
C4—Co1—C2—C180.7 (3)Au1—P1—C12—C1746.0 (4)
C3—Co1—C2—C1118.5 (5)C17—C12—C13—C141.1 (7)
C5—Co1—C2—C136.8 (3)P1—C12—C13—C14176.6 (4)
S2—Co1—C2—C1179.9 (3)C12—C13—C14—C151.3 (8)
C1—C2—C3—C41.8 (6)C13—C14—C15—C160.9 (8)
Co1—C2—C3—C459.1 (4)C14—C15—C16—C170.4 (9)
C1—C2—C3—Co160.9 (3)C13—C12—C17—C160.5 (7)
N1—Co1—C3—C22.6 (11)P1—C12—C17—C16177.2 (4)
C4—Co1—C3—C2119.1 (5)C15—C16—C17—C120.2 (8)
C5—Co1—C3—C281.2 (3)C6—P1—C18—C2310.6 (4)
C1—Co1—C3—C237.9 (3)C12—P1—C18—C23102.5 (4)
S2—Co1—C3—C2130.7 (3)Au1—P1—C18—C23134.7 (3)
N1—Co1—C3—C4116.6 (9)C6—P1—C18—C19169.6 (3)
C2—Co1—C3—C4119.1 (5)C12—P1—C18—C1977.3 (4)
C5—Co1—C3—C438.0 (3)Au1—P1—C18—C1945.4 (4)
C1—Co1—C3—C481.2 (4)C23—C18—C19—C201.3 (7)
S2—Co1—C3—C4110.2 (3)P1—C18—C19—C20178.5 (3)
C2—C3—C4—C51.0 (6)C18—C19—C20—C211.9 (7)
Co1—C3—C4—C560.4 (4)C19—C20—C21—C221.1 (7)
C2—C3—C4—Co159.4 (4)C20—C21—C22—C230.3 (7)
N1—Co1—C4—C3162.9 (3)C19—C18—C23—C220.1 (7)
C2—Co1—C4—C337.6 (3)P1—C18—C23—C22179.9 (4)
C5—Co1—C4—C3118.7 (5)C21—C22—C23—C181.0 (7)
C1—Co1—C4—C381.3 (3)
 

References

First citationAucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466–1469.  CSD CrossRef CAS Google Scholar
First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481–1487.  CSD CrossRef CAS Google Scholar
First citationBates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367–2370.  CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711–713.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325–1326.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947–1950.  CSD CrossRef CAS Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803–807.  CSD CrossRef Google Scholar
First citationJones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907–914.  CSD CrossRef Google Scholar
First citationKelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607–632.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Version 1.0. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVan Droogenbroeck, J., Van Alsenoy, C., Aucott, S. M., Woollins, J. D., Hunter, A. D. & Blockhuys, F. (2005). Organometallics, 24, 1004–1011.  CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds