organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(3-Amino­prop­yl)piperazin-1-yl]propan-1-aminium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Heriot–Watt University, Edinburgh EH14 4AS, Scotland
*Correspondence e-mail: chepv@hw.ac.uk

(Received 31 May 2006; accepted 1 June 2006; online 9 June 2006)

The title compound, C10H25N4+·Cl, contains monoprotonated amine cations and chloride anions. The cations form chains along the [101] direction via N—H⋯N bonds, while N—H⋯Cl hydrogen bonds link the anions and cations into a three-dimensional structure.

Comment

In solvothermal synthesis, organic amines are generally used as structure-directing agents, and it is known that sometimes salts of the amines appear as unwanted side products. However, recent work on the solvothermal synthesis of phosphates (Rao et al., 2000[Rao, C. N. R., Natarajan, S. & Neeraj, S. (2000). J. Solid State Chem. 152, 302-321.]) and sulfates (Behera et al., 2004[Behera, J. N., Gopalkrishnan, K. V. & Rao, C. N. R. (2004). Inorg. Chem. 43, 2636-2642.]) suggests that these amine salts might play a role in the formation of open-framework phases. It has also been found that the use of amine salts as sources of structure-directing agents may result in the formation of new open-framework structures.

[Scheme 1]

In the title compound, C10H25N4+·Cl, (I)[link], which was the unexpected product of a solvothermal reaction, the amine 1,4-bis­(3-amino­prop­yl)piperazine (bapp) crystallizes as a monoprotonated cation, H+bapp, accompanied by a charge-balancing chloride anion (Fig. 1[link]). As well as electrostatic forces, the anions and cations in (I)[link] inter­act by means of hydrogen bonds (Table 1[link]). The H+bapp cations are connected by strong N—H⋯N hydrogen bonds, forming infinite chains that run along the [101] direction. The chains are cross-linked by N—H⋯Cl bonds arising from the terminal –NH2 and –NH3+ groups to form layers parallel to the ac plane (Fig. 2[link]). Further N—H⋯Cl hydrogen bonds link the layers into a three-dimensional structure (Fig. 3[link]).

[Figure 1]
Figure 1
View of (I)[link], showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2]
Figure 2
View of a layer parallel to the (010) plane, showing the network of hydrogen bonds (dashed lines). Hydrogen atoms not participating in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
View of the packing in (I)[link]. Drawing conventions as in Fig. 2[link].

Experimental

A mixture of CuCl (2 mmol), Te (1 mmol) and 1,4-bis­(3-amino­prop­yl)piperazine (4.2 ml) was loaded into a 23 ml Teflon-lined steel autoclave, heated for 13 days at 473 K and then cooled to room temperature over a period of 12 h. The product, consisting of hygroscopic colourless needles of (I)[link] and a black powder, was filtered and washed with methanol and acetone.

Crystal data
  • C10H25N4+·Cl

  • Mr = 236.79

  • Monoclinic, P 21 /c

  • a = 10.9035 (9) Å

  • b = 15.9679 (13) Å

  • c = 7.8750 (6) Å

  • β = 96.693 (4)°

  • V = 1361.74 (19) Å3

  • Z = 4

  • Dx = 1.155 Mg m−3

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • Needle, colourless

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker–Nonius APEX2 CCD area-detector diffractometer

  • ω/2θ scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.811, Tmax = 0.974

  • 18638 measured reflections

  • 3967 independent reflections

  • 2257 reflections with I > 3.00σ(I)

  • Rint = 0.023

  • θmax = 30.1°

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.033

  • S = 1.11

  • 2257 reflections

  • 211 parameters

  • Only H-atom coordinates refined

  • W = [1 − (δF/6σF)2]2/[0.491T0(x) + 0.340T1(x) + 0.263T2(x)] where Ti are Chebychev polynomials and x = F/Fmax (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H23⋯N5i 0.93 (2) 1.83 (2) 2.7574 (18) 175 (2)
N2—H21⋯Cl1i 0.91 (2) 2.27 (2) 3.1761 (12) 176 (2)
N2—H22⋯Cl1ii 0.88 (2) 2.30 (2) 3.1853 (13) 178 (1)
N5—H52⋯Cl1iii 0.89 (2) 2.58 (2) 3.4104 (13) 156 (2)
N5—H53⋯Cl1iv 0.85 (2) 2.61 (2) 3.4344 (13) 164 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) x, y, z-1.

H atoms were located in difference maps and their positions were freely refined; Uiso(H) = 1.2Ueq(carrier).

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 6.1. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-aminium chloride top
Crystal data top
C10H25N4+·ClF(000) = 520
Mr = 236.79Dx = 1.155 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.9035 (9) ÅCell parameters from 3967 reflections
b = 15.9679 (13) Åθ = 2–30°
c = 7.8750 (6) ŵ = 0.26 mm1
β = 96.693 (4)°T = 293 K
V = 1361.74 (19) Å3Needle, colourless
Z = 40.50 × 0.10 × 0.10 mm
Data collection top
Bruker-Nonius APEX-2 CCD area-detector
diffractometer
2257 reflections with I > 3.00σ(I)
Graphite monochromatorRint = 0.023
ω/2θ scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.811, Tmax = 0.974k = 2222
18638 measured reflectionsl = 119
3967 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029Only H-atom coordinates refined
wR(F2) = 0.033 W = [1-(δF/6σF)2]2/[0.491T0(x) + 0.340T1(x) + 0.263Tn-1(x)]
where Ti are Chebychev polynomials and x = F /Fmax (Watkin, 1994; Prince, 1982)
S = 1.11(Δ/σ)max = 0.0004
2257 reflectionsΔρmax = 0.32 e Å3
211 parametersΔρmin = 0.18 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43536 (4)0.14304 (2)0.77225 (4)0.0211
N21.37324 (11)0.16961 (8)1.37176 (15)0.0161
N31.01135 (10)0.15643 (7)0.92003 (14)0.0139
N40.87488 (11)0.09259 (7)0.60663 (14)0.0143
N50.50436 (12)0.06571 (8)0.17912 (15)0.0177
C61.24057 (12)0.14862 (11)1.32522 (16)0.0170
C71.19916 (13)0.16654 (10)1.13825 (17)0.0171
C81.06443 (12)0.14127 (10)1.09743 (16)0.0153
C91.07007 (13)0.10325 (9)0.79997 (18)0.0152
C101.00747 (13)0.11313 (9)0.61937 (18)0.0152
C110.87922 (12)0.13626 (10)0.90503 (17)0.0156
C120.81727 (12)0.14716 (10)0.72436 (16)0.0160
C130.81963 (13)0.10454 (10)0.42929 (17)0.0164
C140.68553 (14)0.07703 (10)0.39558 (18)0.0191
C150.63633 (14)0.08777 (11)0.20778 (18)0.0203
H211.3947 (17)0.1627 (11)1.486 (2)0.0196*
H221.3889 (16)0.2220 (12)1.346 (2)0.0196*
H231.4214 (17)0.1352 (11)1.312 (2)0.0196*
H520.4953 (17)0.0114 (13)0.197 (2)0.0212*
H530.4781 (17)0.0758 (12)0.075 (2)0.0212*
H611.1909 (17)0.1794 (12)1.393 (2)0.0208*
H621.2318 (17)0.0890 (12)1.348 (2)0.0208*
H711.2089 (16)0.2262 (12)1.116 (2)0.0207*
H721.2516 (16)0.1385 (12)1.070 (2)0.0207*
H811.0146 (17)0.1737 (11)1.169 (2)0.0185*
H821.0563 (16)0.0845 (12)1.126 (2)0.0185*
H911.1566 (17)0.1191 (11)0.802 (2)0.0185*
H921.0675 (16)0.0438 (11)0.833 (2)0.0185*
H1011.0199 (16)0.1713 (12)0.581 (2)0.0188*
H1021.0471 (16)0.0765 (12)0.544 (2)0.0188*
H1110.8371 (16)0.1737 (11)0.983 (2)0.0188*
H1120.8672 (17)0.0789 (12)0.937 (2)0.0188*
H1210.8258 (16)0.2078 (12)0.692 (2)0.0194*
H1220.7347 (17)0.1342 (12)0.721 (2)0.0194*
H1310.8670 (17)0.0735 (12)0.359 (2)0.0198*
H1320.8277 (17)0.1639 (12)0.398 (2)0.0198*
H1410.6795 (16)0.0183 (12)0.423 (2)0.0230*
H1420.6324 (18)0.1086 (12)0.464 (2)0.0230*
H1510.6878 (18)0.0556 (12)0.137 (2)0.0245*
H1520.6447 (17)0.1454 (13)0.174 (2)0.0245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03055 (18)0.01941 (15)0.01294 (14)0.00514 (16)0.00035 (11)0.00047 (15)
N20.0184 (6)0.0186 (6)0.0111 (5)0.0001 (5)0.0004 (4)0.0006 (4)
N30.0122 (5)0.0168 (6)0.0130 (5)0.0006 (4)0.0021 (4)0.0011 (4)
N40.0128 (5)0.0170 (6)0.0133 (5)0.0009 (4)0.0019 (4)0.0012 (4)
N50.0192 (6)0.0206 (6)0.0123 (5)0.0026 (5)0.0027 (4)0.0017 (4)
C60.0159 (6)0.0222 (7)0.0130 (5)0.0020 (6)0.0014 (4)0.0008 (5)
C70.0165 (6)0.0212 (7)0.0136 (6)0.0013 (5)0.0019 (5)0.0026 (5)
C80.0151 (6)0.0163 (6)0.0142 (5)0.0020 (6)0.0013 (4)0.0012 (6)
C90.0128 (6)0.0162 (6)0.0170 (6)0.0007 (5)0.0033 (5)0.0020 (5)
C100.0131 (6)0.0184 (6)0.0149 (6)0.0014 (5)0.0050 (5)0.0025 (5)
C110.0125 (6)0.0184 (7)0.0161 (6)0.0000 (5)0.0029 (4)0.0001 (5)
C120.0132 (6)0.0188 (6)0.0161 (6)0.0015 (5)0.0025 (5)0.0005 (5)
C130.0173 (6)0.0197 (7)0.0125 (6)0.0005 (5)0.0023 (5)0.0012 (5)
C140.0173 (7)0.0251 (8)0.0144 (6)0.0022 (5)0.0007 (5)0.0008 (5)
C150.0199 (7)0.0281 (8)0.0130 (6)0.0017 (6)0.0019 (5)0.0005 (5)
Geometric parameters (Å, º) top
N2—C61.4884 (18)C8—H820.942 (19)
N2—H210.911 (19)C9—C101.512 (2)
N2—H220.882 (19)C9—H910.975 (18)
N2—H230.927 (19)C9—H920.984 (18)
N3—C81.4686 (17)C10—H1010.991 (18)
N3—C91.4717 (17)C10—H1020.972 (18)
N3—C111.4676 (17)C11—C121.5122 (19)
N4—C101.4744 (18)C11—H1111.005 (18)
N4—C121.4659 (17)C11—H1120.962 (19)
N4—C131.4675 (18)C12—H1211.009 (18)
N5—C151.473 (2)C12—H1220.921 (18)
N5—H520.88 (2)C13—C141.520 (2)
N5—H530.853 (19)C13—H1310.941 (19)
C6—C71.5162 (19)C13—H1320.986 (18)
C6—H610.942 (19)C14—C151.523 (2)
C6—H620.975 (19)C14—H1410.967 (19)
C7—C81.5212 (19)C14—H1420.978 (19)
C7—H710.978 (18)C15—H1510.979 (19)
C7—H720.943 (18)C15—H1520.97 (2)
C8—H810.974 (18)
C6—N2—H21110.3 (11)H91—C9—H92107.6 (15)
C6—N2—H22111.4 (12)C9—C10—N4111.86 (11)
H21—N2—H22108.1 (16)C9—C10—H101108.7 (10)
C6—N2—H23109.4 (11)N4—C10—H101110.8 (10)
H21—N2—H23109.7 (16)C9—C10—H102109.3 (10)
H22—N2—H23107.9 (16)N4—C10—H102109.0 (10)
C8—N3—C9111.30 (11)H101—C10—H102107.0 (14)
C8—N3—C11108.35 (10)N3—C11—C12112.16 (11)
C9—N3—C11108.55 (11)N3—C11—H111109.6 (10)
C10—N4—C12108.29 (11)C12—C11—H111108.7 (10)
C10—N4—C13109.05 (11)N3—C11—H112110.5 (11)
C12—N4—C13111.47 (11)C12—C11—H112107.2 (11)
C15—N5—H52109.6 (12)H111—C11—H112108.7 (15)
C15—N5—H53108.4 (13)C11—C12—N4110.45 (12)
H52—N5—H53107.6 (17)C11—C12—H121107.8 (10)
N2—C6—C7111.56 (11)N4—C12—H121110.5 (10)
N2—C6—H61110.4 (11)C11—C12—H122109.3 (11)
C7—C6—H61109.1 (11)N4—C12—H122109.7 (11)
N2—C6—H62106.8 (11)H121—C12—H122109.1 (15)
C7—C6—H62109.6 (11)N4—C13—C14114.11 (11)
H61—C6—H62109.4 (15)N4—C13—H131107.4 (11)
C6—C7—C8109.03 (11)C14—C13—H131109.2 (11)
C6—C7—H71109.4 (11)N4—C13—H132108.8 (11)
C8—C7—H71110.1 (11)C14—C13—H132110.3 (11)
C6—C7—H72109.5 (11)H131—C13—H132106.8 (15)
C8—C7—H72112.8 (11)C13—C14—C15111.09 (12)
H71—C7—H72105.8 (15)C13—C14—H141109.3 (11)
C7—C8—N3114.90 (11)C15—C14—H141107.6 (11)
C7—C8—H81109.1 (11)C13—C14—H142112.0 (11)
N3—C8—H81106.0 (11)C15—C14—H142108.3 (11)
C7—C8—H82108.7 (11)H141—C14—H142108.4 (16)
N3—C8—H82110.6 (11)C14—C15—N5110.43 (12)
H81—C8—H82107.4 (15)C14—C15—H151109.3 (11)
N3—C9—C10111.19 (12)N5—C15—H151113.7 (11)
N3—C9—H91109.4 (11)C14—C15—H152110.0 (11)
C10—C9—H91108.5 (11)N5—C15—H152107.9 (11)
N3—C9—H92111.2 (10)H151—C15—H152105.3 (15)
C10—C9—H92108.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H23···N5i0.926 (18)1.834 (17)2.7574 (18)174.7 (17)
N2—H21···Cl1i0.910 (16)2.268 (16)3.1761 (12)176.3 (17)
N2—H22···Cl1ii0.882 (19)2.304 (19)3.1853 (13)177.8 (14)
N5—H52···Cl1iii0.89 (2)2.58 (2)3.4104 (13)155.9 (16)
N5—H53···Cl1iv0.852 (16)2.607 (16)3.4344 (13)164.3 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y, z1.
 

Acknowledgements

The author thanks the UK EPSRC for an Advanced Research Fellowship.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBehera, J. N., Gopalkrishnan, K. V. & Rao, C. N. R. (2004). Inorg. Chem. 43, 2636–2642.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2000). ATOMS. Version 6.1. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Neeraj, S. (2000). J. Solid State Chem. 152, 302–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds