organic compounds
myo-Inositol dihydrate: a redetermination
aThe Pfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bThe Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: motherwell@ccdc.cam.ac.uk
The myo-inositol dihydrate, C6H12O6·2H2O, previously reported by Lomer, Miller & Beevers [Acta Cryst. (1963), 16, 264–268], has been redetermined, and the positions of the H atoms of the hydroxyl groups were located, showing an ordered hydrogen-bonding scheme.
ofComment
myo-Inositol (Fig. 1) is a biological molecule of nutritional and medical importance, which has been extracted from both plant and animal sources (Posternak, 1965). The of the anhydrous form has previously been determined (Rabinovich & Kraut, 1964) and that of the dihydrate by Lomer et al. (1963).
In a series of experiments aimed at inhibiting the crystallization of myo-inositol from solution, we evaporated aqueous solutions of varying concentrations of myo-inositol and polyvinylpyrrolidone. Needle-shaped crystals formed as the solutions became more concentrated at room temperature. We obtained the structure by single-crystal X-ray at 180 K, confirming the dihydrate structure, with well located H atoms and a rational hydrogen-bonding scheme.
Each myo-inositol molecule forms a total of 13 intermolecular hydrogen bonds, defined as having O⋯O less than 3.04 Å. All 13 hydrogen bonds have normal bond lengths and geometry. The immediate hydrogen-bonded neighbours are six water molecules and four myo-inositol molecules (Fig. 2). Both water molecules show an optimal hydrogen-bond environment of two donor and two acceptor bonds. Each hydroxyl group on the inositol has a donor and acceptor hydrogen bond, with one (O3) forming (as an acceptor) a third hydrogen bond. The packing diagram (Fig. 3) shows an interesting feature where the water molecules link the inositol molecules in the b-axis direction, forming four-membered ring motifs H2O⋯OH⋯H2O⋯OH.
Experimental
An aqueous solution (10 ml) of myo-inositol (0.426 g) and polyvinylpyrrolidone (0.631 g) was prepared. The colourless solution was allowed to evaporate at room temperature. When the solution had reduced to about half its initial volume, white needle-shaped crystals were observed and analysed by single-crystal X-ray diffraction. The crystals dehydrate prior to melting at 469 K.
Crystal data
|
Refinement
|
All OH H atoms were located in the final difference map without any difficulty. The positions of the H atoms were refined independently and successfully, with a single O—H bond-length restraint [O—H = 0.807 (16)–0.844 (17) Å] and common Uiso(H) values for similar atoms [Uiso(H) = 0.44 (2) Å2 for OH and Uiso(H) = 0.52 (3) Å2 for H2O]. The remaining H atoms were positioned geometrically, with C—H = 1.00 Å, and refined as riding with a common displacement parameter [Uiso(H) = 0.206 (14) Å2].
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806022033/hk2049sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806022033/hk2049Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: please supply; software used to prepare material for publication: SHELXL97.C6H12O6·2H2O | F(000) = 464 |
Mr = 216.19 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5712 reflections |
a = 6.6099 (2) Å | θ = 1.0–27.5° |
b = 16.6009 (4) Å | µ = 0.15 mm−1 |
c = 9.0264 (2) Å | T = 180 K |
β = 110.751 (1)° | Needle, white |
V = 926.22 (4) Å3 | 0.46 × 0.35 × 0.23 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1907 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
thin slice ω and φ scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −8→8 |
Tmin = 0.905, Tmax = 0.968 | k = −21→21 |
7754 measured reflections | l = −11→11 |
2104 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3 |
2104 reflections | (Δ/σ)max = 0.001 |
161 parameters | Δρmax = 0.27 e Å−3 |
10 restraints | Δρmin = −0.30 e Å−3 |
Experimental. Previous report: MYTOLD in CSD. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.28308 (15) | 0.46905 (5) | 0.31146 (11) | 0.0298 (2) | |
H1A | 0.367 (3) | 0.4968 (11) | 0.285 (2) | 0.044 (2)* | |
C1 | 0.16681 (18) | 0.41915 (6) | 0.18041 (13) | 0.0186 (2) | |
H1 | 0.0799 | 0.4544 | 0.0905 | 0.0206 (14)* | |
O2 | 0.44085 (14) | 0.42063 (5) | 0.06268 (10) | 0.0227 (2) | |
H2A | 0.563 (3) | 0.4227 (11) | 0.126 (2) | 0.044 (2)* | |
C2 | 0.32068 (17) | 0.36849 (6) | 0.12653 (12) | 0.0167 (2) | |
H2 | 0.4226 | 0.3388 | 0.2194 | 0.0206 (14)* | |
O3 | 0.34860 (13) | 0.25832 (5) | −0.03785 (10) | 0.0215 (2) | |
H3A | 0.315 (3) | 0.2566 (11) | −0.135 (2) | 0.044 (2)* | |
C3 | 0.19698 (17) | 0.30839 (6) | −0.00098 (12) | 0.0168 (2) | |
H3 | 0.1095 | 0.3387 | −0.0984 | 0.0206 (14)* | |
O4 | 0.17370 (13) | 0.20684 (5) | 0.18073 (10) | 0.0223 (2) | |
H4A | 0.092 (3) | 0.1746 (10) | 0.198 (2) | 0.044 (2)* | |
C4 | 0.04578 (17) | 0.25630 (6) | 0.05213 (13) | 0.0168 (2) | |
H4 | −0.0400 | 0.2209 | −0.0379 | 0.0206 (14)* | |
O5 | −0.24375 (14) | 0.25828 (5) | 0.15365 (10) | 0.0215 (2) | |
H5A | −0.370 (3) | 0.2604 (11) | 0.086 (2) | 0.044 (2)* | |
C5 | −0.10927 (17) | 0.30913 (6) | 0.10039 (12) | 0.0168 (2) | |
H5 | −0.2021 | 0.3403 | 0.0060 | 0.0206 (14)* | |
O6 | −0.13972 (14) | 0.41902 (5) | 0.26532 (11) | 0.0238 (2) | |
H6A | −0.119 (3) | 0.4181 (11) | 0.359 (2) | 0.044 (2)* | |
C6 | 0.01239 (17) | 0.36792 (6) | 0.23186 (12) | 0.0170 (2) | |
H6 | 0.0964 | 0.3370 | 0.3294 | 0.0206 (14)* | |
O7 | 0.56987 (15) | 0.58094 (5) | 0.25510 (12) | 0.0272 (2) | |
H7A | 0.698 (3) | 0.5847 (12) | 0.310 (2) | 0.052 (3)* | |
H7B | 0.566 (3) | 0.5798 (12) | 0.162 (2) | 0.052 (3)* | |
O8 | −0.05058 (16) | 0.41219 (6) | 0.58513 (12) | 0.0300 (2) | |
H8A | −0.119 (3) | 0.3725 (10) | 0.595 (2) | 0.052 (3)* | |
H8B | −0.107 (3) | 0.4492 (13) | 0.620 (2) | 0.052 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0305 (5) | 0.0288 (5) | 0.0372 (5) | −0.0131 (4) | 0.0207 (4) | −0.0156 (4) |
C1 | 0.0193 (5) | 0.0172 (5) | 0.0210 (5) | −0.0006 (4) | 0.0094 (4) | −0.0016 (4) |
O2 | 0.0193 (4) | 0.0267 (4) | 0.0249 (4) | −0.0054 (3) | 0.0114 (3) | 0.0009 (3) |
C2 | 0.0151 (5) | 0.0192 (5) | 0.0171 (5) | −0.0010 (4) | 0.0074 (4) | 0.0007 (4) |
O3 | 0.0172 (4) | 0.0296 (4) | 0.0192 (4) | 0.0036 (3) | 0.0081 (3) | −0.0044 (3) |
C3 | 0.0144 (5) | 0.0207 (5) | 0.0162 (5) | 0.0019 (4) | 0.0067 (4) | −0.0005 (4) |
O4 | 0.0194 (4) | 0.0205 (4) | 0.0268 (4) | 0.0015 (3) | 0.0080 (3) | 0.0057 (3) |
C4 | 0.0147 (5) | 0.0190 (5) | 0.0161 (5) | −0.0005 (4) | 0.0046 (4) | −0.0016 (4) |
O5 | 0.0146 (4) | 0.0281 (4) | 0.0221 (4) | −0.0037 (3) | 0.0070 (3) | 0.0031 (3) |
C5 | 0.0134 (5) | 0.0211 (5) | 0.0168 (5) | −0.0003 (4) | 0.0063 (4) | 0.0018 (4) |
O6 | 0.0200 (4) | 0.0290 (5) | 0.0258 (4) | 0.0038 (3) | 0.0124 (4) | −0.0044 (3) |
C6 | 0.0148 (5) | 0.0195 (5) | 0.0184 (5) | 0.0014 (4) | 0.0079 (4) | −0.0007 (4) |
O7 | 0.0265 (5) | 0.0271 (5) | 0.0306 (5) | −0.0033 (3) | 0.0134 (4) | −0.0051 (4) |
O8 | 0.0356 (5) | 0.0245 (5) | 0.0354 (5) | −0.0028 (4) | 0.0194 (4) | −0.0063 (4) |
O1—C1 | 1.4255 (13) | O4—H4A | 0.813 (16) |
O1—H1A | 0.820 (16) | C4—C5 | 1.5250 (14) |
C1—C6 | 1.5221 (14) | C4—H4 | 1.0000 |
C1—C2 | 1.5261 (14) | O5—C5 | 1.4271 (13) |
C1—H1 | 1.0000 | O5—H5A | 0.844 (17) |
O2—C2 | 1.4271 (12) | C5—C6 | 1.5267 (14) |
O2—H2A | 0.807 (16) | C5—H5 | 1.0000 |
C2—C3 | 1.5237 (14) | O6—C6 | 1.4273 (13) |
C2—H2 | 1.0000 | O6—H6A | 0.809 (16) |
O3—C3 | 1.4292 (13) | C6—H6 | 1.0000 |
O3—H3A | 0.824 (17) | O7—H7A | 0.821 (17) |
C3—C4 | 1.5218 (14) | O7—H7B | 0.836 (17) |
C3—H3 | 1.0000 | O8—H8A | 0.820 (15) |
O4—C4 | 1.4287 (13) | O8—H8B | 0.83 (2) |
C1—O1—H1A | 107.8 (13) | O4—C4—C3 | 108.47 (8) |
O1—C1—C6 | 107.11 (9) | O4—C4—C5 | 111.26 (8) |
O1—C1—C2 | 111.13 (9) | C3—C4—C5 | 110.24 (9) |
C6—C1—C2 | 112.58 (9) | O4—C4—H4 | 108.9 |
O1—C1—H1 | 108.6 | C3—C4—H4 | 108.9 |
C6—C1—H1 | 108.6 | C5—C4—H4 | 108.9 |
C2—C1—H1 | 108.6 | C5—O5—H5A | 107.8 (13) |
C2—O2—H2A | 107.7 (13) | O5—C5—C4 | 108.54 (8) |
O2—C2—C3 | 108.58 (8) | O5—C5—C6 | 109.61 (8) |
O2—C2—C1 | 108.88 (8) | C4—C5—C6 | 111.56 (8) |
C3—C2—C1 | 111.20 (8) | O5—C5—H5 | 109.0 |
O2—C2—H2 | 109.4 | C4—C5—H5 | 109.0 |
C3—C2—H2 | 109.4 | C6—C5—H5 | 109.0 |
C1—C2—H2 | 109.4 | C6—O6—H6A | 110.0 (13) |
C3—O3—H3A | 108.6 (13) | O6—C6—C1 | 109.34 (9) |
O3—C3—C4 | 109.62 (9) | O6—C6—C5 | 109.14 (8) |
O3—C3—C2 | 108.89 (8) | C1—C6—C5 | 110.21 (8) |
C4—C3—C2 | 111.76 (8) | O6—C6—H6 | 109.4 |
O3—C3—H3 | 108.8 | C1—C6—H6 | 109.4 |
C4—C3—H3 | 108.8 | C5—C6—H6 | 109.4 |
C2—C3—H3 | 108.8 | H7A—O7—H7B | 105 (2) |
C4—O4—H4A | 107.1 (13) | H8A—O8—H8B | 103 (2) |
O1—C1—C2—O2 | −66.81 (11) | O4—C4—C5—O5 | −57.95 (11) |
C6—C1—C2—O2 | 173.04 (8) | C3—C4—C5—O5 | −178.33 (8) |
O1—C1—C2—C3 | 173.60 (9) | O4—C4—C5—C6 | 62.93 (11) |
C6—C1—C2—C3 | 53.45 (11) | C3—C4—C5—C6 | −57.46 (11) |
O2—C2—C3—O3 | 64.86 (11) | O1—C1—C6—O6 | 63.29 (11) |
C1—C2—C3—O3 | −175.37 (8) | C2—C1—C6—O6 | −174.27 (8) |
O2—C2—C3—C4 | −173.89 (8) | O1—C1—C6—C5 | −176.74 (8) |
C1—C2—C3—C4 | −54.12 (11) | C2—C1—C6—C5 | −54.30 (11) |
O3—C3—C4—O4 | 54.92 (11) | O5—C5—C6—O6 | −63.34 (11) |
C2—C3—C4—O4 | −65.91 (11) | C4—C5—C6—O6 | 176.42 (8) |
O3—C3—C4—C5 | 176.97 (8) | O5—C5—C6—C1 | 176.57 (8) |
C2—C3—C4—C5 | 56.14 (11) | C4—C5—C6—C1 | 56.33 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O7 | 0.82 (2) | 2.02 (2) | 2.8259 (13) | 168 (2) |
O2—H2A···O6i | 0.81 (2) | 1.92 (2) | 2.7275 (12) | 175 (2) |
O3—H3A···O5ii | 0.82 (2) | 1.83 (2) | 2.6454 (12) | 173 (2) |
O4—H4A···O7iii | 0.81 (2) | 2.02 (2) | 2.8207 (12) | 170 (2) |
O5—H5A···O3iv | 0.84 (2) | 1.80 (2) | 2.6359 (12) | 172 (2) |
O6—H6A···O8 | 0.81 (2) | 1.93 (2) | 2.7365 (13) | 176 (2) |
O7—H7A···O8v | 0.82 (2) | 2.18 (2) | 2.9903 (14) | 169 (2) |
O7—H7B···O2vi | 0.84 (2) | 2.01 (2) | 2.8442 (13) | 179 (2) |
O8—H8A···O4vii | 0.82 (2) | 2.23 (2) | 3.0141 (13) | 160 (2) |
O8—H8A···O3vii | 0.82 (2) | 2.45 (2) | 3.0272 (13) | 128 (2) |
O8—H8B···O1viii | 0.83 (2) | 2.03 (2) | 2.8525 (13) | 172 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z; (vii) x−1/2, −y+1/2, z+1/2; (viii) −x, −y+1, −z+1. |
Acknowledgements
The authors are grateful to Dr John Davies (Department of Chemistry, University of Cambridge) for determining the
and Drs A. Trask and L. Fabian for help with preparation. The Pfizer Institute for Pharmaceutical Materials Science is acknowledged for funding the work.References
Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lomer, T. R., Miller, A. & Beevers, C. A. (1963). Acta Cryst. 16, 264–268. CSD CrossRef IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe. P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Posternak, T. (1965). The Cyclitols, Chemistry, Biochemisry, Biology, edited by E. Lederer, pp. 284–286. Paris: Hermann. Google Scholar
Rabinovich, H. N. & Kraut, J. (1964). Acta Cryst. 17, 159–168. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.