organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­nitro­benzo­yl)-N′-phenyl­hydrazine: sheets built from N—H⋯O and C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 26 May 2006; accepted 29 May 2006; online 9 June 2006)

Mol­ecules of the title compound, C13H10N4O5, are linked into sheets by a combination of two N—H⋯O hydrogen bonds and one C—H⋯O hydrogen bond.

Comment

We report here the mol­ecular and supra­molecular structure of the title compound, (I)[link] (Fig. 1[link]). The coordination of atom N1 is exactly planar, while that of N2 is markedly pyramidal. The overall mol­ecular conformation is defined by six torsion angles (Table 1[link]), which show that the –C(=O)—NH– portion adopts the usual trans-planar conformation. While the nitrated aryl ring is nearly coplanar with the central amide unit, the torsion angle of nearly 90° around the N—N bond is a reflection of the mutually orthogonal orientation of the lone pairs on the two hydrazine N atoms. The mol­ecules thus have no inter­nal symmetry in the solid state and hence are chiral, but the centrosymmetric space group accommodates equal numbers of the two enanti­omeric forms.

[Scheme 1]

The mol­ecules of (I)[link] are linked into sheets by a combination of two N—H⋯O hydrogen bonds and one C—H⋯O hydrogen bond (Table 2[link]), and the formation of the sheet is readily analysed in terms of two one-dimensional substructures. Atom N2 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O31 in the mol­ecule at (x, y, 1 + z), so generating by translation a C(9) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction (Fig. 2[link]). Atoms N1 and C2 in the mol­ecule at (x, y, z) both act as hydrogen-bond donors to carbonyl atom O7 in the mol­ecule at (−[{1\over 2}] + x, [3\over2]y, −[{1\over 2}] + z), so forming a C(4)C(5)[R21(7)] chain of rings along [101] and generated by the n-glide plane at y = [3\over4] (Fig. 3[link]). The combination of the [001] and [101] chains then generates a sheet parallel to (010) (Fig. 4[link]). Two such sheets, generated by the n-glide planes at y = [1\over4] and y = [3\over4], pass through each unit cell, but there are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a C(9) chain parallel to [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, 1 + z) and (x, y, −1 + z), respectively.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I)[link], showing the formation of a C(4)C(5)[R21(7)] chain of rings parallel to [101]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded (010) sheet. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

A mixture of equimolar quantities (10 mmol of each component) of 3,5-dinitro­benzoyl chloride and phenyl­hydrazine in tetra­hydro­furan (20 ml) was heated under reflux for 24 h in a dinitro­gen atmosphere. The reaction mixture was cooled, and the solvent was removed under reduced pressure. The solid product was washed successively with cold ethanol and diethyl ether, and then recrystallized from ethanol (m.p. 473–475 K; GC/MS m/z 302 [M]+. IR (KBr disk, χm−1) 3330 and 3280 (NH), 1648 (CO), 1540 and 1344 (NO2).

Crystal data
  • C13H10N4O5

  • Mr = 302.25

  • Monoclinic, P 21 /n

  • a = 7.5696 (3) Å

  • b = 22.176 (2) Å

  • c = 8.4099 (4) Å

  • β = 110.802 (3)°

  • V = 1319.69 (15) Å3

  • Z = 4

  • Dx = 1.521 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.44 × 0.08 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.997

  • 14875 measured reflections

  • 3022 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 1.05

  • 3022 reflections

  • 199 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0578P)2 + 0.6665P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected torsion angles (°)

C1—C7—N1—N2 174.32 (18)
C7—N1—N2—C21 84.2 (2)
N1—N2—C21—C22 50.8 (3)
N1—C7—C1—C2 19.8 (3)
C2—C3—N3—O31 7.0 (3)
C4—C5—N5—O51 −13.6 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.88 1.97 2.806 (2) 157
N2—H2A⋯O31ii 0.88 2.16 3.020 (3) 165
C2—H2⋯O7i 0.95 2.47 3.355 (3) 155
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

All H atoms were located in difference maps and then treated as riding atoms with distances C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

N-(3,5-Dinitrobenzoyl)-N'-phenylhydrazine top
Crystal data top
C13H10N4O5F(000) = 624
Mr = 302.25Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3022 reflections
a = 7.5696 (3) Åθ = 3.0–27.5°
b = 22.176 (2) ŵ = 0.12 mm1
c = 8.4099 (4) ÅT = 120 K
β = 110.802 (3)°Lath, yellow
V = 1319.69 (15) Å30.44 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3022 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2828
Tmin = 0.961, Tmax = 0.997l = 1010
14875 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.6665P]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. NMR (DMSO-d6): δ(H) 11.08 (1H, s, NH), 9.12 (2H, d, J = 2.0 Hz), 9.01 (1H, d, 2.0), 7.18 (2H, dd, J = 7.5 and 8.0 Hz), 6.84 (2H, d, J = 7.5 Hz), 6.76 (1H, dd, J = 7.0 and 7.5 Hz); δ(C) 162.3, 148.7, 148.2, 135.4, 128.7, 127.6, 121.1, 119.0, 112.4.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3507 (3)0.66944 (9)0.3671 (3)0.0219 (5)
C20.2617 (3)0.68260 (10)0.1953 (3)0.0238 (5)
C30.2731 (3)0.64172 (10)0.0765 (3)0.0246 (5)
N30.1766 (3)0.65608 (9)0.1038 (2)0.0343 (5)
O310.1060 (3)0.70687 (8)0.1391 (2)0.0398 (5)
O320.1661 (3)0.61737 (9)0.2088 (2)0.0568 (6)
C40.3710 (3)0.58807 (10)0.1178 (3)0.0257 (5)
C50.4630 (3)0.57717 (9)0.2893 (3)0.0231 (5)
N50.5719 (3)0.52110 (8)0.3400 (2)0.0277 (5)
O510.5481 (2)0.48150 (7)0.2329 (2)0.0390 (5)
O520.6815 (2)0.51683 (7)0.4883 (2)0.0332 (4)
C60.4550 (3)0.61626 (9)0.4147 (3)0.0236 (5)
C70.3390 (3)0.70940 (10)0.5064 (3)0.0234 (5)
O70.4536 (2)0.70439 (7)0.65282 (19)0.0306 (4)
N10.1957 (3)0.74860 (8)0.4635 (2)0.0244 (4)
N20.1620 (3)0.78444 (8)0.5875 (2)0.0271 (5)
C210.2694 (3)0.83829 (10)0.6312 (3)0.0242 (5)
C220.2748 (3)0.87735 (10)0.5041 (3)0.0283 (5)
C230.3666 (3)0.93227 (11)0.5482 (3)0.0321 (6)
C240.4539 (3)0.94840 (11)0.7171 (3)0.0344 (6)
C250.4493 (3)0.90925 (11)0.8429 (3)0.0334 (6)
C260.3579 (3)0.85433 (11)0.8015 (3)0.0288 (5)
H20.19420.71930.16070.029*
H40.37500.56020.03320.031*
H60.51950.60710.53140.028*
H10.11210.75280.36010.029*
H2A0.16930.76220.67620.033*
H220.21600.86650.38780.034*
H230.36970.95920.46130.039*
H240.51640.98620.74610.041*
H250.50960.92010.95900.040*
H260.35530.82760.88890.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (11)0.0199 (11)0.0258 (11)0.0031 (9)0.0085 (9)0.0011 (9)
C20.0211 (11)0.0218 (11)0.0269 (12)0.0009 (9)0.0066 (9)0.0035 (9)
C30.0260 (12)0.0259 (12)0.0237 (11)0.0033 (9)0.0112 (10)0.0020 (9)
N30.0436 (13)0.0337 (12)0.0276 (11)0.0061 (10)0.0152 (9)0.0031 (9)
O310.0574 (12)0.0348 (10)0.0305 (9)0.0131 (9)0.0196 (9)0.0109 (8)
O320.0876 (16)0.0517 (12)0.0266 (10)0.0251 (11)0.0146 (10)0.0054 (9)
C40.0278 (12)0.0237 (12)0.0277 (12)0.0037 (9)0.0125 (10)0.0018 (9)
C50.0194 (11)0.0180 (10)0.0335 (12)0.0012 (9)0.0113 (9)0.0033 (9)
N50.0264 (10)0.0252 (10)0.0333 (11)0.0009 (8)0.0128 (9)0.0038 (9)
O510.0480 (11)0.0246 (9)0.0440 (10)0.0065 (8)0.0157 (9)0.0047 (8)
O520.0293 (9)0.0328 (9)0.0352 (9)0.0046 (7)0.0087 (8)0.0087 (8)
C60.0211 (11)0.0234 (11)0.0247 (11)0.0047 (9)0.0061 (9)0.0007 (9)
C70.0242 (12)0.0209 (11)0.0220 (11)0.0033 (9)0.0044 (9)0.0001 (9)
O70.0319 (9)0.0277 (9)0.0251 (9)0.0014 (7)0.0014 (7)0.0022 (7)
N10.0257 (10)0.0241 (9)0.0210 (9)0.0017 (8)0.0052 (8)0.0012 (8)
N20.0339 (11)0.0252 (10)0.0239 (10)0.0021 (8)0.0123 (9)0.0003 (8)
C210.0227 (12)0.0241 (11)0.0245 (11)0.0066 (9)0.0069 (9)0.0006 (9)
C220.0335 (13)0.0262 (12)0.0224 (11)0.0014 (10)0.0066 (10)0.0021 (10)
C230.0300 (13)0.0265 (12)0.0374 (14)0.0020 (10)0.0088 (11)0.0015 (11)
C240.0269 (13)0.0292 (13)0.0427 (15)0.0025 (10)0.0070 (11)0.0102 (12)
C250.0245 (13)0.0402 (14)0.0299 (13)0.0073 (11)0.0028 (10)0.0131 (11)
C260.0241 (12)0.0351 (13)0.0258 (12)0.0106 (10)0.0072 (10)0.0007 (10)
Geometric parameters (Å, º) top
C1—C21.391 (3)C7—N11.336 (3)
C1—C61.396 (3)N1—N21.405 (2)
C1—C71.496 (3)N1—H10.88
C2—C31.374 (3)N2—C211.418 (3)
C2—H20.95N2—H2A0.88
C3—C41.379 (3)C21—C221.388 (3)
C3—N31.465 (3)C21—C261.395 (3)
N3—O321.214 (3)C22—C231.386 (3)
N3—O311.237 (2)C22—H220.95
C4—C51.382 (3)C23—C241.385 (3)
C4—H40.95C23—H230.95
C5—C61.383 (3)C24—C251.378 (3)
C5—N51.469 (3)C24—H240.95
N5—O511.225 (2)C25—C261.383 (3)
N5—O521.232 (2)C25—H250.95
C6—H60.95C26—H260.95
C7—O71.234 (2)
C2—C1—C6119.4 (2)N1—C7—C1116.21 (18)
C2—C1—C7123.19 (19)C7—N1—N2120.76 (18)
C6—C1—C7117.43 (19)C7—N1—H1124.5
C3—C2—C1119.0 (2)N2—N1—H1114.7
C3—C2—H2120.5N1—N2—C21115.50 (18)
C1—C2—H2120.5N1—N2—H2A109.8
C2—C3—C4123.6 (2)C21—N2—H2A113.3
C2—C3—N3118.16 (19)C22—C21—C26119.8 (2)
C4—C3—N3118.3 (2)C22—C21—N2119.80 (19)
O32—N3—O31123.9 (2)C26—C21—N2120.2 (2)
O32—N3—C3118.6 (2)C23—C22—C21119.4 (2)
O31—N3—C3117.42 (19)C23—C22—H22120.3
C3—C4—C5116.1 (2)C21—C22—H22120.3
C3—C4—H4122.0C24—C23—C22120.9 (2)
C5—C4—H4122.0C24—C23—H23119.6
C4—C5—C6123.0 (2)C22—C23—H23119.6
C4—C5—N5118.3 (2)C25—C24—C23119.5 (2)
C6—C5—N5118.74 (19)C25—C24—H24120.3
O51—N5—O52124.02 (19)C23—C24—H24120.3
O51—N5—C5118.21 (18)C24—C25—C26120.5 (2)
O52—N5—C5117.78 (18)C24—C25—H25119.7
C5—C6—C1119.0 (2)C26—C25—H25119.7
C5—C6—H6120.5C25—C26—C21119.9 (2)
C1—C6—H6120.5C25—C26—H26120.1
O7—C7—N1123.0 (2)C21—C26—H26120.1
O7—C7—C1120.8 (2)
C1—C7—N1—N2174.32 (18)C6—C5—N5—O5214.4 (3)
C7—N1—N2—C2184.2 (2)C4—C5—C6—C10.4 (3)
N1—N2—C21—C2250.8 (3)N5—C5—C6—C1179.55 (18)
N1—C7—C1—C219.8 (3)C2—C1—C6—C51.7 (3)
C6—C1—C2—C32.4 (3)C7—C1—C6—C5177.64 (19)
C7—C1—C2—C3176.9 (2)C2—C1—C7—O7162.2 (2)
C1—C2—C3—C41.0 (3)C6—C1—C7—O718.4 (3)
C1—C2—C3—N3179.3 (2)C6—C1—C7—N1159.5 (2)
C2—C3—N3—O32171.1 (2)O7—C7—N1—N23.6 (3)
C4—C3—N3—O329.1 (3)N1—N2—C21—C26134.1 (2)
C2—C3—N3—O317.0 (3)C26—C21—C22—C230.7 (3)
C4—C3—N3—O31172.8 (2)N2—C21—C22—C23174.5 (2)
C2—C3—C4—C51.1 (3)C21—C22—C23—C240.4 (4)
N3—C3—C4—C5178.66 (19)C22—C23—C24—C250.1 (4)
C3—C4—C5—C61.8 (3)C23—C24—C25—C260.3 (4)
C3—C4—C5—N5179.08 (19)C24—C25—C26—C210.0 (3)
C4—C5—N5—O5113.6 (3)C22—C21—C26—C250.5 (3)
C6—C5—N5—O51165.6 (2)N2—C21—C26—C25174.7 (2)
C4—C5—N5—O52166.47 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.881.972.806 (2)157
N2—H2A···O31ii0.882.163.020 (3)165
C2—H2···O7i0.952.473.355 (3)155
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds