organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetone 3-nitro­phenyl­hydrazone, redetermined at 120 K: sheets built from N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 30 May 2006; accepted 30 May 2006; online 16 June 2006)

Mol­ecules of the title compound, C9H11N3O2, are linked into sheets by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.

Comment

The structure of the title compound, (I)[link] (Fig. 1[link]), was determined many years ago [Cambridge Structural Database, Version 7.27 (Allen 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode NPHYAC; Menczel, 1969[Menczel, G. (1969). Acta Chim. (Budapest), 69, 41-50; Chem. Abstr. 72, 6970z.]], using diffraction data collected at ambient temperature; no H atom coordinates were reported, and the structure was refined only to R = 0.169. We have now redetermined this structure using diffraction data collected at 120 K, and we report here the details of the supra­molecular aggregation.

[Scheme 1]

The mol­ecules are linked into sheets by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]), and the sheet formation is readily analysed in terms of a hydrogen-bonded dimer as the basic building block. Atoms N1 and C2 in the mol­ecule at (x, y, z) both act as hydrogen-bond donors to atom O31 in the mol­ecule at ([{3\over 2}]x, [{1\over 2}] − y, 1 − z), so forming a centrosymmetric dimer centred at (¾, ¼, ½) containing three edge-fused rings, one of R22(10) type (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) flanked by two of R21(6) type (Fig. 2[link]).

Atoms C5 in the mol­ecules at (x, y, z) and ([3\over2]x, [{1\over 2}]y, 1 − z), which form the dimer centred at ([3\over4], [1\over4], [1\over2]), act as hydrogen-bond donors to atoms N2 in the mol­ecules at ([3\over2]x, [{1\over 2}] + y, [3\over2]z) and (x, −y, −[{1\over 2}] + z), which lie in the dimers centred at ([3\over4], [3\over4], 1) and ([3\over4], −[1\over4], 0), respectively. Similarly, atoms N2 at (x, y, z) and ([3\over2]x, [{1\over 2}]y, 1 − z) accept hydrogen bonds from atoms C5 in the mol­ecules at ([3\over2]x, −[{1\over 2}] + y, [3\over2]z) and (x, 1 − y, −[{1\over 2}] + z), which themselves form parts of the dimers centred at ([3\over4], −[1\over4], 1) and ([3\over4], [3\over4], 0), respectively. Hence each dimer is linked by C—H⋯N hydrogen bonds to four other dimers and propagation of these inter­actions then generates a sheet parallel to (100) (Fig. 3[link]).

This sheet is generated by centres of inversion with x = [3\over4], and it occupies the domain 0.5 < x < 1.0; a second sheet, related to the first by the C-centring operation, is generated by centres of inversion with x = [1\over4], and it occupies the domain 0 < x < 0.5; however, there are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
A mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The molecular structure of (I)[link], showing the formation of a centrosymmetric dimer containing three edge-fused hydrogen-bonded (dashed lines) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoscopic view of part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded (dashed lines) sheet parallel to (100). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

3-Nitro­hydrazine hydro­chloride (3 mmol) was dissolved in acetone (30 ml) and the solution was then heated under reflux for 1 h. The solution was cooled and the excess solvent was removed under reduced pressure. The resulting solid product, (I)[link], was crystallized from ethanol.

Crystal data
  • C9H11N3O2

  • Mr = 193.21

  • Monoclinic, C 2/c

  • a = 22.7837 (15) Å

  • b = 3.8307 (2) Å

  • c = 21.7292 (13) Å

  • β = 100.129 (3)°

  • V = 1866.91 (19) Å3

  • Z = 8

  • Dx = 1.375 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.20 × 0.06 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.998

  • 10187 measured reflections

  • 2117 independent reflections

  • 1392 reflections with I > 2σ(I)

  • Rint = 0.079

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.146

  • S = 1.03

  • 2117 reflections

  • 129 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0576P)2 + 1.9052P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O31i 0.84 2.35 3.144 (2) 158
C2—H2⋯O31i 0.95 2.49 3.305 (3) 143
C5—H5⋯N2ii 0.95 2.61 3.546 (3) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms with distances C—H = 0.95 Å or 0.98 Å and N—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Acetone 3-nitrophenylhydrazone top
Crystal data top
C9H11N3O2F(000) = 816
Mr = 193.21Dx = 1.375 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2405 reflections
a = 22.7837 (15) Åθ = 2.9–27.5°
b = 3.8307 (2) ŵ = 0.10 mm1
c = 21.7292 (13) ÅT = 120 K
β = 100.129 (3)°Plate, colourless
V = 1866.91 (19) Å30.20 × 0.06 × 0.02 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2117 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
φ and ω scansh = 1928
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 44
Tmin = 0.977, Tmax = 0.998l = 2828
10187 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.9052P]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73046 (9)0.6977 (5)0.62467 (9)0.0208 (5)
C20.76687 (9)0.5776 (6)0.58397 (9)0.0219 (5)
C30.82780 (9)0.6216 (6)0.60016 (9)0.0222 (5)
N30.86561 (8)0.4855 (5)0.55769 (8)0.0247 (4)
O310.84193 (7)0.3164 (5)0.51155 (7)0.0349 (4)
O320.91943 (7)0.5383 (5)0.56931 (7)0.0379 (5)
C40.85489 (9)0.7812 (6)0.65520 (10)0.0248 (5)
C50.81809 (10)0.9004 (6)0.69488 (10)0.0261 (5)
C60.75668 (9)0.8622 (5)0.68035 (9)0.0231 (5)
N10.66953 (7)0.6555 (5)0.60836 (8)0.0252 (4)
N20.63415 (8)0.7306 (5)0.65204 (8)0.0240 (4)
C70.57836 (10)0.6671 (6)0.63644 (10)0.0259 (5)
C80.54023 (10)0.7472 (7)0.68419 (11)0.0343 (6)
C90.54904 (9)0.5192 (6)0.57486 (10)0.0279 (5)
H20.75010.46740.54570.026*
H40.89700.80730.66520.030*
H50.83521.01100.73290.031*
H60.73230.94790.70830.028*
H10.65690.51580.57920.030*
H8A0.56450.85930.72050.041*
H8B0.52330.53010.69730.041*
H8C0.50790.90470.66600.041*
H9A0.55560.67650.54110.033*
H9B0.50620.49450.57440.033*
H9C0.56620.29000.56880.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0254 (11)0.0207 (11)0.0158 (10)0.0018 (9)0.0018 (8)0.0009 (8)
C20.0276 (11)0.0217 (11)0.0154 (10)0.0027 (9)0.0010 (8)0.0008 (8)
C30.0271 (11)0.0219 (11)0.0176 (10)0.0009 (9)0.0035 (8)0.0016 (9)
N30.0238 (10)0.0284 (11)0.0213 (9)0.0023 (8)0.0025 (7)0.0002 (8)
O310.0317 (9)0.0481 (11)0.0245 (8)0.0038 (8)0.0043 (7)0.0110 (8)
O320.0213 (8)0.0539 (12)0.0382 (10)0.0046 (8)0.0041 (7)0.0086 (8)
C40.0243 (11)0.0247 (12)0.0236 (11)0.0048 (9)0.0005 (9)0.0010 (9)
C50.0329 (12)0.0251 (12)0.0181 (10)0.0049 (10)0.0021 (9)0.0010 (9)
C60.0312 (12)0.0205 (11)0.0184 (10)0.0009 (9)0.0060 (9)0.0012 (9)
N10.0263 (10)0.0314 (11)0.0177 (9)0.0024 (8)0.0031 (7)0.0074 (8)
N20.0266 (10)0.0271 (10)0.0185 (9)0.0028 (8)0.0049 (7)0.0000 (8)
C70.0294 (12)0.0258 (12)0.0221 (11)0.0044 (10)0.0037 (9)0.0032 (9)
C80.0318 (13)0.0422 (15)0.0296 (12)0.0024 (11)0.0075 (10)0.0021 (11)
C90.0262 (12)0.0320 (14)0.0250 (12)0.0017 (10)0.0035 (9)0.0026 (10)
Geometric parameters (Å, º) top
C1—N11.381 (2)C6—H60.95
C1—C21.393 (3)N1—N21.379 (2)
C1—C61.401 (3)N1—H10.84
C2—C31.381 (3)N2—C71.280 (3)
C2—H20.95C7—C81.497 (3)
C3—C41.387 (3)C7—C91.498 (3)
C3—N31.465 (3)C8—H8A0.98
N3—O321.224 (2)C8—H8B0.98
N3—O311.235 (2)C8—H8C0.98
C4—C51.382 (3)C9—H9A0.98
C4—H40.95C9—H9B0.98
C5—C61.387 (3)C9—H9C0.98
C5—H50.95
N1—C1—C2118.85 (18)C1—C6—H6119.9
N1—C1—C6122.08 (19)N2—N1—C1118.80 (16)
C2—C1—C6119.06 (19)N2—N1—H1119.1
C3—C2—C1118.82 (19)C1—N1—H1117.7
C3—C2—H2120.6C7—N2—N1116.84 (17)
C1—C2—H2120.6N2—C7—C8116.60 (19)
C2—C3—C4123.2 (2)N2—C7—C9125.06 (19)
C2—C3—N3118.17 (18)C8—C7—C9118.34 (19)
C4—C3—N3118.57 (19)C7—C8—H8A109.5
O32—N3—O31122.21 (18)C7—C8—H8B109.5
O32—N3—C3119.31 (17)H8A—C8—H8B109.5
O31—N3—C3118.47 (17)C7—C8—H8C109.5
C5—C4—C3117.2 (2)H8A—C8—H8C109.5
C5—C4—H4121.4H8B—C8—H8C109.5
C3—C4—H4121.4C7—C9—H9A109.5
C4—C5—C6121.45 (19)C7—C9—H9B109.5
C4—C5—H5119.3H9A—C9—H9B109.5
C6—C5—H5119.3C7—C9—H9C109.5
C5—C6—C1120.26 (19)H9A—C9—H9C109.5
C5—C6—H6119.9H9B—C9—H9C109.5
N1—C1—C2—C3179.65 (19)C3—C4—C5—C60.0 (3)
C6—C1—C2—C30.6 (3)C4—C5—C6—C10.5 (3)
C1—C2—C3—C40.2 (3)N1—C1—C6—C5179.77 (19)
C1—C2—C3—N3178.36 (18)C2—C1—C6—C50.8 (3)
C2—C3—N3—O32175.98 (19)C2—C1—N1—N2171.33 (18)
C4—C3—N3—O325.4 (3)C6—C1—N1—N29.7 (3)
C2—C3—N3—O314.9 (3)C1—N1—N2—C7175.71 (19)
C4—C3—N3—O31173.65 (19)N1—N2—C7—C8179.65 (18)
C2—C3—C4—C50.2 (3)N1—N2—C7—C90.1 (3)
N3—C3—C4—C5178.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31i0.842.353.144 (2)158
C2—H2···O31i0.952.493.305 (3)143
C5—H5···N2ii0.952.613.546 (3)167
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMenczel, G. (1969). Acta Chim. (Budapest), 69, 41–50; Chem. Abstr. 72, 6970z.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds